Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 26 Issue 1
Feb 2015
Turn off MathJax
Article Contents
Fuzong Zhou, Yucheng Xiong, Ming Tian. Predicting Initial Formation Temperature for Deep Well Engineering with a New Method. Journal of Earth Science, 2015, 26(1): 108-115. doi: 10.1007/s12583-015-0512-4
Citation: Fuzong Zhou, Yucheng Xiong, Ming Tian. Predicting Initial Formation Temperature for Deep Well Engineering with a New Method. Journal of Earth Science, 2015, 26(1): 108-115. doi: 10.1007/s12583-015-0512-4

Predicting Initial Formation Temperature for Deep Well Engineering with a New Method

doi: 10.1007/s12583-015-0512-4
More Information
  • Corresponding author: Fuzong Zhou, zhoufuzong@googlemail.com
  • Received Date: 21 Mar 2014
  • Accepted Date: 17 Oct 2014
  • Publish Date: 01 Jan 2015
  • With the progress of science and technology, human beings explore the energy underground with thousands of meters. As a thermophysical parameter, initial formation temperature (IFT) plays an essential role in deep well engineering. However, it is not easy to predict the IFT accurately before drilling. This work uses a new method to analyze the effect factors of the underground temperature field, and assumes an artificial surface to eliminate the disturbance of the human errors and equipment errors on the surface temperature and thermal conductivity. Considering different distributions of the formation thermal conductivity and the rock radiogenic heat production, an optimized model was established. With this model, the paper predicted the bottom temperature of the main hole of the Chinese Continental Scientific Drilling (CCSD) as 132.80 ℃ at 4 725 m depth with 0.5% error. When the thermal conduction is dominant in the formation, this simple method can predict the IFT distribution effectively for deep well in the exploration stage. However, it is almost impossible to avoid aquifers in the formation of drilling deep well, an existing drillhole including groundwater is needed to predict for testing the model's accuracy.

     

  • loading
  • Akpan, A. E., 2014. Estimation of Subsurface Temperatures in the Tattapani Geothermal Field, Central India, from Limited Volume of Magnetotelluric Data and Borehole Thermograms Using a Constructive Back-Propagation Neural Network. Earth Interactions, 18: 1-26 http://adsabs.harvard.edu/abs/2014EaInt..18f...1A
    Andaverde, J., Verma, S. P., Santoyo, E., 2005. Uncertainty Estimates of Static Formation Temperature in Borehole and Evaluation of Regression Models. Geophys. J. Int., 160: 1112-1122 doi: 10.1111/j.1365-246X.2005.02543.x
    Ascencio, F., Garcia, A., Rivera, J., et al., 1994. Estimation of Undisturbed Formation Temperatures under Spherical-Radial Heat Flow Conditions. Geothermics, 23: 317-326 doi: 10.1016/0375-6505(94)90027-2
    Bassam, A., Santoyo, E., Andaverde, J., et al., 2010. Estimation of Static Formation Temperatures in Geothermal Wells by Using an Artificial Neural Network Approach. Comput. Geosci-UK, 36: 1191-1199 doi: 10.1016/j.cageo.2010.01.006
    Brennand, A. W., 1984. A New Method for the Analysis of Static Formation Temperature Test. In: Proceedings of the 6th New Zealand Geothermal Workshop, Auckland
    Carslaw, H. S., Jaeger, J. C., 1959. Conduction of Heat in Solids. Oxford University Press, London
    Čermák, V., Bodri, L., 1986. Two-Dimensional Temperature Modelling along Five East-European Geotraverses. J. Geodyn. , 5: 133-163 doi: 10.1016/0264-3707(86)90003-7
    Chugunov, V., Fomin, S., Hashida, T., 2003. Heat Flow Rate at a Bore-Face and Temperature in the Multi-Layer Media Surrounding a Borehole. Int. J. Heat Mass Tran. , 46: 4769-4778 doi: 10.1016/S0017-9310(03)00335-1
    Clauser, C., Giese, P., Huenges, E., et al., 1997. The Thermal Regime of the Crystalline Continental Crust: Implications from the KTB. J. Geophys. Res. , 102: 18417-18441 doi: 10.1029/96JB03443
    Cong, B., Zhai, M., Carswell, D. A., et al., 1995. Peotrgenesis of Ultrahigh-Pressure Rocks and Their Contry Rocks at Shuanghe in Dabieshan, Central China. Eur. J. Mineral., 7: 119-138 doi: 10.1127/ejm/7/1/0119
    Dowdle, W. L., Cobb, W. M., 1975. Static Formation Temperature from Well Logs-An Empirical Method. J. Petrol. Tech., 27: 1326-1330 doi: 10.2118/5036-PA
    Espinosa-Paredes, G., Garcia-Gutierrez, A., 2003. Estimation of Static Formation Temperatures in Geothermal Wells. Energ. Convers. Manage., 44: 1343-1355 doi: 10.1016/S0196-8904(02)00117-6
    Furlong, K., Chapman, D. S., 1987. Thermal State of the Lithosphere. Rev. Geophys., 25: 1255-1264 doi: 10.1029/RG025i006p01255
    Ge, S., 1998. Estimation of Groundwater Velocity in Fracture Zones from Well Temperature Profiles. J. Volcanol. Geoth. Res., 84: 93-101 doi: 10.1016/S0377-0273(98)00032-8
    Gorman, J. M., Abraham, J. P., Sparrow, E. M., 2014. A Novel, Comprehensive Numerical Simulation for Predicting Temperatures within Boreholes and the Adjoining Rock Bed. Geothermics, 50: 213-219 doi: 10.1016/j.geothermics.2013.10.001
    Hasan, A. R., Kabir, C. S., 2010. Modeling Two-Phase Fluid and Heat Flows in Geothermal Wells. J. Petrol. Sci. Eng., 71: 77-86 doi: 10.1016/j.petrol.2010.01.008
    He, L. J., Hu, S. B., Yang, W. C., et al., 2006. Temperature Measurement in the Main Hole of the Chinese Continental Scientific Drilling. Chinese J. Geophys. , 49(3): 745-752 (in Chinese with English Abstract) doi: 10.1002/cjg2.881/full
    Ketcham, R. A., 1996. Distribution of Heat Producing Elements in the Upper and Middle Crust of Southern and West Central Arizona: Evidence from the Core Complexes. J. Geophys. Res. , 101: 13611-13632 doi: 10.1029/96JB00664
    Kutasov, I. M., Eppelbaum, L. V., 2005. Determination of Formation Temperature from Bottom-Hole Temperature Logs-A Generalized Horner Method. J. Geophys. Eng., 2: 90-96 doi: 10.1088/1742-2132/2/2/002
    Leblanc, Y., Pascoe, L. J., Jones, F. W., 1981. The Temperature Stabilization of a Borehole. Geophysics, 46: 1301-1303 doi: 10.1190/1.1441268
    Liou, J. G., Wang, Q. C., Zhai, M. G., et al., 1995. Ultrahigh-P Metamorphic Rocks and Their Associated Lithologies from the Dabie Mountains, Central China: A Field Trip Guide to the 3rd International Eclogite Field Symposium. Chinese Sci. Bull. , 40: 1-71 doi: 10.1360/csb1995-40-1-1
    Lu, N., Ge, S., 1996. Effect of Horizontal Heat and Fluid Flow on the Vertical Temperature Distribution in the Semi-Confining Layer. Water Resour. Res., 32: 1449-1454 doi: 10.1029/95WR03095
    Manetti, G., 1973. Attainment of Temperature Equilibrium in Holes during Drilling. Geothermics, 2: 94-100 doi: 10.1016/0375-6505(73)90013-8
    Morita, K., Tago, M., 1995. Development of the Down-Hole Coaxial Heat Exchanger System: Potential for Fully Utilizing Geothermal Resources. GRC Bull., 24: 83-92 http://www.researchgate.net/publication/292232792_Development_of_the_Downhole_Coaxial_Heat_Exchanger_system_potential_for_fully_utilizing_geothermal_resources
    Somerton, W. H., 1992. Thermal Properties and Temperature-Related Behavior of Rock/Fluid Systems. Eisevier, New York
    Tekin, S., Akin, S., 2011. Estimation of the Formation Temperature from the Inlet and Outlet Mud Temperatures while Drilling Geothermal Formations. Proceedings of 36th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford
    Wang, J. Y., Hu, S. B., Cheng, B. H., et al., 2001. Predication of the Deep Temperature in the Target Area of the Chinese Continential Scientific Drilling. Chinese J. Geophys. , 44(6): 774-782 (in Chinese with English Abstract) doi: 10.1002/cjg2.197/full
    Wu, B., Zhang, X., Jeffrey, R. G., 2014. A Model for Downhole Fluid and Rock Temperature Prediction during Circulation. Geothermics, 50: 202-212 doi: 10.1016/j.geothermics.2013.10.004
    Xu, Z. Q., Zhang, Z. M., Liu, F. L., et al., 2003. Exhumation Structure and Mechanism of the Sulu Ultrahigh-Pressure Metamorphic Belt, Central China. Acta Geologica Sinica, 77: 433-450 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200304000.htm
    Zhou, F., Zhang, X., 2013. Assessment of Heat Transfer in an Aquifer Utilizing Fractal Theory. Appl. Therm. Eng. , 59(1-2): 445-453 doi: 10.1016/j.applthermaleng.2013.06.013
    Zhou, N., Li, Z. Z., Jia, Z. X., 1997. Statistical Regression Analysis of Geothermal Gradient. Drilling Technology, 20(5): 5-9 (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(4)

    Article Metrics

    Article views(789) PDF downloads(154) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return