Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 27 Issue 4
Jul 2016
Turn off MathJax
Article Contents
Le Qiao, Zhiyong Xiao, Jiannan Zhao, Long Xiao. Subsurface Structures at the Chang'e-3 Landing Site: Interpretations from Orbital and In-Situ Imagery Data. Journal of Earth Science, 2016, 27(4): 707-715. doi: 10.1007/s12583-015-0655-3
Citation: Le Qiao, Zhiyong Xiao, Jiannan Zhao, Long Xiao. Subsurface Structures at the Chang'e-3 Landing Site: Interpretations from Orbital and In-Situ Imagery Data. Journal of Earth Science, 2016, 27(4): 707-715. doi: 10.1007/s12583-015-0655-3

Subsurface Structures at the Chang'e-3 Landing Site: Interpretations from Orbital and In-Situ Imagery Data

doi: 10.1007/s12583-015-0655-3
More Information
  • Corresponding author: Long Xiao, longxiao@cug.edu.cn
  • Received Date: 18 Nov 2014
  • Accepted Date: 25 Mar 2015
  • Publish Date: 12 Jul 2016
  • The Chang'e-3 (CE-3) spacecraft successfully landed on one of the youngest mare surfaces on the Moon in December 2013. The Yutu rover carried by CE-3 was equipped with a radar system that could reveal subsurface structures in unprecedented details, which would facilitate understanding regional and global evolutionary history of the Moon. Based on regional geology, cratering scaling, and morphological study, here we quantify the subsurface structures of the landing site using high-resolution orbital and in-situ imagery data. Three layers of lunar regolith, two layers of basalt units, and one layer of ejecta deposits are recognized at the subsurface of the landing site, and their thicknesses are deduced based on the imagery data. These results could serve as essential references for the on-going interpretation of the CE-3 radar data. The ability to validate our theoretical subsurface structure using CE-3 in-situ radar observations will improve the methods for quantifying lunar subsurface structure using crater morphologies and scaling.

     

  • loading
  • Bugiolacchi, R., Guest, J., 2008. Compositional and Temporal Investigation of Exposed Lunar Basalts in the Mare Imbrium Region. Icarus, 197(1): 1-18. doi: 10.1016/j.icarus.2008.04.001
    Carlson, R. H., Jones, G. D., 1965. Distribution of Ejecta from Cratering Explosions in Soils. Journal of Geophysical Research, 70(8): 1897-1910. doi: 10.1029/jz070i008p01897
    Chen, S. B., Meng, Z. G., Cui, T. F., et al., 2010. Geologic Investigation and Mapping of the Sinus Iridum Quadrangle from Clementine, SELENE, and Chang'e-1 Data. Science China Physics, Mechanics and Astronomy, 53(12): 2179-2187 doi: 10.1007/s11433-010-4160-5
    Cooper, H. F., 1977. A Summary of Explosion Cratering Phenomena Relevant to Meteor Impact Events. In: Roddy, D. J., Pepin, R. O., Merrill, R. B., eds., Impact and Explosion Cratering: Planetary and Terrestrial Implications. Pergamon Press, New York. 11-44
    Fa, W. Z., Liu, T. T., Zhu, M. H., et al., 2014. Regolith Thickness over Sinus Iridum: Results from Morphology and Size-Frequency Distribution of Small Impact Craters. Journal of Geophysical Research: Planets, 119(8): 1914-1935. doi: 10.1002/2013je004604
    Giguere, T. A., Taylor, G. J., Hawke, B. R., et al., 2000. The Titanium Contents of Lunar Mare Basalts. Meteoritics & Planetary Science, 35(1): 193-200 doi: 10.1111/j.1945-5100.2000.tb01985.x
    Golombek, M. P., Plescia, J. B., Franklin, B. J., 1991. Faulting and Folding in the Formation of Planetary Wrinkle Ridges. In: Proceedings of the Lunar and Planetary Science Volume 21, Houston, USA. 679-693
    Haruyama, J., Hara, S., Hioki, K., et al., 2012. Lunar Global Digital Terrain Model Dataset Produced from SELENE (Kaguya) Terrain Camera Stereo Observations. In: Proceedings of 43rd Lunar and Planetary Science Conference, Woodlands, USA. Abstract 1200
    Hiesinger, H., Head, J. W., 2006. New Views of Lunar Geosciences: An Introduction and Overview. In: Jolliff, B. L., Wieczorek, M. A., Shearer, C. K., et al., eds., New View of the Moon. Mineralogy Society of American, Chantilly. 28-29
    Hiesinger, H., Jaumann, R., Neukum, G., et al., 2000. Ages of Mare Basalts on the Lunar Nearside. Journal of Geophysical Research: Planets, 105(E12): 29239-29275. doi: 10.1029/2000je001244
    Hiesinger, H., Head, J. W., Wolf, U., et al., 2002. Lunar Mare Basalt Flow Units: Thicknesses Determined from Crater Size-Frequency Distributions. Geophysical Research Letters, 29(8): 89-1-89-4. doi: 10.1029/2002gl014847
    Lawrence, D. J., Feldman, W. C., Barraclough, B. L., et al., 2000. Thorium Abundances on the Lunar Surface. Journal of Geophysical Research: Planets, 105(E8): 20307-20331 doi: 10.1029/1999JE001177
    Liu, T. T., Fa, W. Z., Zhu, M. H., et al. 2014. Regolith Thickness Estimation over Sinus Iridum Using Morphology and Size-Frequency Distribution of Small Craters from LROC Images. In: Proceedings of 45th Lunar and Planetary Science Conference, Woodlands, USA. Abstract 1347
    Liu, Z. Q., Di, K. C., Peng, M., et al., 2014. High Precision Landing Site Mapping and Rover Localization for Chang'e-3 Mission. Science China Physics, Mechanics & Astronomy, 58(1): 1-11. doi: 10.1007/s11433-014-5612-0
    Lucey, P. G., 2004. Mineral Maps of the Moon. Geophysical Research Letters, 31(8): L08701. doi: 10.1029/2003gl019406
    Lu, Y., Basilevsky, A., Abdrakhimov, A., 2014. Local Geology of Chang'e-3 Landing Site from Analysis of the CE-3 Descent Camera and LROC NAC Images. In: Proceedings of 45th Lunar and Planetary Science Conference, Woodlands, USA
    McGetchin, T. R., Settle, M., Head, J. W., 1973. Radial Thickness Variation in Impact Crater Ejecta: Implications for Lunar Basin Deposits. Earth and Planetary Science Letters, 20(2): 226-236. doi: 10.1016/0012-821x(73)90162-3
    Melosh, H. J., 1989. Impact Cratering: A Geologic Process. Oxford University Press, New York
    Morota, T., Haruyama, J., Ohtake, M., et al., 2011. Timing and Characteristics of the Latest Mare Eruption on the Moon. Earth and Planetary Science Letters, 302(3/4): 255-266 http://www.sciencedirect.com/science/article/pii/S0012821X10007909
    Nakamura, Y., Dorman, J., Duennebier, F., et al., 1975. Shallow Lunar Structure Determined from the Passive Seismic Experiment. The Moon, 13(1-3): 57-66. doi: 10.1007/bf00567507
    Oberbeck, V. R., Quaide, W. L., 1967. Estimated Thickness of a Fragmental Surface Layer of Oceanus Procellarum. Journal of Geophysical Research, 72(18): 4697-4704 doi: 10.1029/JZ072i018p04697
    Otake, H., Ohtake, M., Hirata, N., 2012. Lunar Iron and Titanium Abundance Algorithms Based on SELENE (Kaguya) Multiband Imager Data. In: Proceedings of 43rd Lunar and Planetary Science Conference, Woodlands, USA. Abstract 1905
    Ono, T., Kumamoto, A., Nakagawa, H., et al., 2009. Lunar Radar Sounder Observations of Subsurface Layers under the Nearside Maria of the Moon. Science, 323(5916): 909-912 doi: 10.1126/science.1165988
    Papike, J. J., Hodges, F. N., Bence, A. E., et al., 1976. Mare Basalts: Crystal Chemistry, Mineralogy, and Petrology. Reviews of Geophysics, 14(4): 475-540. doi: 10.1029/rg014i004p00475
    Pike, R. J., 1967. Schroeter's Rule and the Modification of Lunar Crater Impact Morphology. Journal of Geophysical Research, 72(8): 2099-2106. doi: 10.1029/jz072i008p02099
    Qiao, L., Xiao, L., Zhao, J. N., et al., 2014. Geological Features and Evolution History of Sinus Iridum, the Moon. Planetary and Space Science, 101: 37-52. doi: 10.1016/j.pss.2014.06.007
    Quaide, W. L., Oberbeck, V. R., 1968. Thickness Determinations of the Lunar Surface Layer from Lunar Impact Craters. Journal of Geophysical Research, 73(16): 5247-5270 doi: 10.1029/JB073i016p05247
    Schaber, G. G., 1973. Lava Flows in Mare Imbrium: Geologic Evaluation from Apollo Orbital Photography. In: Proceedings of 4th Lunar Science Conference, 73-92
    Shkuratov, Y. G., Bondarenko, N. V., 2001. Regolith Layer Thickness Mapping of the Moon by Radar and Optical Data. Icarus, 149(2): 329-338. doi: 10.1006/icar.2000.6545
    Simmons, G., 1974. Final Report on the Surface Electrical Properties Experiment. Apollo 17 Preliminary Science Report
    Snyder, J. P., 1987. Map Projections—A Working Manual. US Government Printing, Washington, D.C.
    Spudis, P., Pieters, C., 1991. Global and Regional Data about the Moon. In: Heiken, G. H., Vaniman, D. T., French, B. M., et al., eds., Lunar Sourcebook. Cambridge University Press, New York. 609-632
    Stöffler, D., Gault, D. E., Wedekind, J., et al., 1975. Experimental Hypervelocity Impact into Quartz Sand: Distribution and Shock Metamorphism of Ejecta. Journal of Geophysical Research, 80(29): 4062-4077. doi: 10.1029/jb080i029p04062
    Stöffler, D., Ryder, G., 2001. Stratigraphy and Isotope Ages of Lunar Geologic Units: Chronological Standard for the Inner Solar System. Space Science Reviews, 96(1-4): 9-54. doi: 10.1023/A:1011937020193
    Talwani, M., Thompson, G., Dent, B., et al. 1973. Traverse Gravimeter Experiment. Apollo 17 Preliminary Science Report
    Thomson, B. J., Grosfils, E. B., Bussey, D. B. J., et al., 2009. A New Technique for Estimating the Thickness of Mare Basalts in Imbrium Basin. Geophysical Research Letters, 36(12): L12201. doi: 10.1029/2009gl037600
    Wu, Y. Z., Head, J. W., Pieters, C. M., et al. 2014. Regional Geology of the Chang'e-3 Landing Zone. In: Proceedings of 45th Lunar and Planetary Science Conference, Woodlands, USA. Abstract 2613
    Xiao, L., 2014. China's Touch on the Moon. Nature Geoscience, 7(6): 391-392. doi: 10.1038/ngeo2175
    Xiao, L., Zhu, P. M., Fang, G. Y., et al., 2015. A Young Multilayered Terrane of the Northern Mare Imbrium Revealed by Chang'e-3 Mission. Science. 347: 1226-1229. doi: 10.1126/science.1259866
    Zhao, J. N., Huang, J., Qiao, L., et al., 2014. Geologic Characteristics of the Chang'E-3 Exploration Region. Science China Physics, Mechanics and Astronomy, 57(3): 569-576. doi: 10.1007/s11433-014-5399-z
    Zhao, N., Zhu, P. M., Yang, K. S., et al., 2014. The Preliminary Processing and Analysis of LPR Channel-2B Data from Chang'e-3. Science China Physics, Mechanics & Astronomy, 57(12): 2346-2353. doi: 10.1007/s11433-014-5590-2
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views(730) PDF downloads(191) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return