Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 27 Issue 5
Sep 2016
Turn off MathJax
Article Contents
Chuanqing Zhu, Nansheng Qiu, Huanyu Cao, Song Rao, Shengbiao Hu. Paleogeothermal reconstruction and thermal evolution modeling of source rocks in the Puguang gas field, northeastern Sichuan Basin. Journal of Earth Science, 2016, 27(5): 796-806. doi: 10.1007/s12583-016-0909-8
Citation: Chuanqing Zhu, Nansheng Qiu, Huanyu Cao, Song Rao, Shengbiao Hu. Paleogeothermal reconstruction and thermal evolution modeling of source rocks in the Puguang gas field, northeastern Sichuan Basin. Journal of Earth Science, 2016, 27(5): 796-806. doi: 10.1007/s12583-016-0909-8

Paleogeothermal reconstruction and thermal evolution modeling of source rocks in the Puguang gas field, northeastern Sichuan Basin

doi: 10.1007/s12583-016-0909-8
More Information
  • Corresponding author: Chuanqing Zhu, zhucq@cup.edu.cn
  • Received Date: 16 Mar 2015
  • Accepted Date: 14 Mar 2016
  • Publish Date: 01 Oct 2016
  • The thermal history and organic matter maturity evolution of the source rocks of boreholes in the Puguang gas field were reconstructed. An integrated approach based on vitrinite reflectance and apatite fission track data was used in the reconstruction. Accordingly, the geothermal conditions of gas accumulation were discussed in terms of the geological features of reservoirs in the northeastern Sichuan Basin. The strata reached their maximum burial depth in the Late Cretaceous era and were then uplifted and denuded continuously to the present day. The geothermal gradient and heat flow in the Late Cretaceous era were approximately 30.0 ℃/km and 66 mW/m2, respectively, which were both higher than those at present. The tectonothermal evolution from the Late Cretaceous era to the present is characterized by denudation and cooling processes with an erosion thickness of ~2.7 km. In addition to the Triassic era, the Jurassic era represents an important hydrocarbon generation period for both Silurian and Permian source rocks, and the organic matter maturity of these source rocks entered into a dry gas period after oil generation. The thermal conditions are advantageous to the accumulation of conventional and unconventional gas because the hydrocarbon generation process of the source rocks occurs after the formation of an effective reservoir cap. In particular, the high geothermal gradient and increasing temperature before the denudation in the Late Cretaceous era facilitated the generation of hydrocarbons, and the subsequent cooling process favored its storage.

     

  • loading
  • Armstrong, P. A., 2005. Thermochronometers in Sedimentary Basins. Reviews in Mineralogy and Geochemistry, 58(1): 499-525 doi: 10.2138/rmg.2005.58.19
    Braun, R. L., Burnham, A. K., 1987. Analysis of Chemical Reaction Kinetics Using A Distribution of Activation Energies and Simpler Models. Energy & Fuels, 1(2): 153-161
    Bray, R. J., Green, P. F., Duddy, I. R., 1992. Thermal History Reconstruction Using Apatite Fission Track Analysis and Vitrinite Reflectance: A Case Study from the UK East Midlands and Southern North Sea. Geological Society, London, Special Publications, 67(1): 3-25 doi: 10.1144/GSL.SP.1992.067.01.01
    Burnham, A. K., Braun, R. L., Gregg, H. R., et al., 1987. Comparison of Methods for Measureing Kerogen Pyrolysis Rates and Fitting Kinetic Parameters. Energy & Fuels, 1: 452-458 http://www.sciencedirect.com/science/article/pii/0146638088902367
    Burnham, A. K., Oh, M. S., Craford, R. W., 1989. Pyrolysis of Argonne Premium Coals: Activation Energy Distribution and Related Chemistry. Energy & Fuels, 3(1): 42-55 doi: 10.1021/ef00013a008
    Burnham, A. K., Sweeney, J. J., 1989. A Chemical Kinetic Model of Vitrinite Maturation and Reflectance. Geochimica et Cosmochimica Acta, 53(10): 2649-2657 doi: 10.1016/0016-7037(89)90136-1
    Cai, L. G., Rao, D., Pan, W. L., et al., 2005. The Evolution Model of the Puguang Gas Field in Northeast of Sichuan. Petroleum Geology & Experiment, 27(5): 462-467 (in Chinese with English Abstract) http://www.researchgate.net/publication/281477547_The_Evolution_Model_of_the_Puguang_Gas_Field_in_Northeast_of_Sichuan
    Corrigan, J., 1991. Inversion of Apatite Fission Track Data for Thermal History Information. Journal of Geophysical Research, 96: 347-360 http://adsabs.harvard.edu/abs/1991JGR....9610347C
    David, D., Antia, J., 1986. Kinetic Method for Modeling Vitrinite Reflectance. Geology, 14(7): 606-608 doi: 10.1130/0091-7613(1986)14<606:KMFMVR>2.0.CO;2
    Duddy, I. R., Green, P. F., Lastett, G. M., 1988. Thermal Annealing of Fission Tracks in Apatite, 3. Aariable Temperature Behaviour. Chemical Geology, 73: 25-38
    Feng, Y. Y., Chu, W., Sun, W. J., 2012. Adsorption Characteristics of Methane on Coal under Reservoir Temperatures. Journal of China Coal Society, 37(9): 1488-1492 (in Chinese with English Abstract) http://www.researchgate.net/publication/287539696_Adsorption_characteristics_of_methane_on_coal_under_reservoir_temperatures
    Fitzgerald, P. G., Gleadow, A. J. W., 1990. New Approaches in Fission Track Geochronology as a Tectonic Tool: Examples from the Transantarctic Mountains. International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements, 17(3): 351-357 doi: 10.1016/1359-0189(90)90057-5
    Fitzgerald, P. G., Stump, E., Redfield, T. F., 1993. Late Cenozoic Uplift of Denali and Its Relation to Relative Plate Motion and Fault Morphology. Science, 259(5094): 497-499 doi: 10.1126/science.259.5094.497
    Gallagher, K., 1995. Evolving Temperature Histories from Apatite Fission-Track Data. Earth and Planetary Science Letters, 136: 421-435 doi: 10.1016/0012-821X(95)00197-K
    Gleadow, A. J. W., Duddy, I. R., Green, P. F. et al., 1983. Fission Track Analysis: A New Tool for the Evaluation of Thermal Histories and Hydrocarbon Potential. Australian Petroleum Exploration Association Journal, 23: 93-102 http://www.publish.csiro.au/aj/AJ82009
    Gleadow, A. J. W., Fitzgerald, P. G., 1987. Uplift History and Structure of the Transantarctic Mountains: New Evidence from Fission Track Dating of Basement Apatites in the Dry Valleys Area Southern Victoria Land. Earth and Planetary Science Letters, 82(1-2): 1-14 doi: 10.1016/0012-821X(87)90102-6
    Gleadow, A. J. W., 1981. Fission-Track Dating Methods: What Are the Real Alternatives? Nuclear Tracks, 5(1-2): 3-14 doi: 10.1016/0191-278X(81)90021-4
    Gong, L., Wang, C. Y., Yang, Y. G., et al., 2014. Comparion of Reservoir-Forming Conditions and Objective Exploration Zones of Shale Gas in Lower Silurian Longmaxi Formation of Southwest and Northeast Sichuan Basin. Geological Science and Technology Information, 33(5): 128-133 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DZKQ201405018.htm
    Green, P. F., Duddy, I. R., Gleadow, A. J. W., et al., 1985. Fission Track Annealing IN Apatite: Track Length Measurements and the Form of the Arrhenius Plot. Nuclear Tracks, 10: 323-328 http://www.sciencedirect.com/science/article/pii/0735245X85901218
    Green, P. F., Duddy, I. R., Gleadow, A. J. W., et al., 1986. Thermal Annealing of Fission Tracks in Apatite, 1. A Qualitative Description. Chemical Geology, 59: 237-253
    He, L. J., Xu, H. H., Wang, J. Y., 2011. Thermal Evolution and Dynamic Mechanism of the Sichuan Basin during the Early Permian-Middle Triassic. Science China: Earth Sciences, 54(12): 1948-1954 doi: 10.1007/s11430-011-4240-z
    Hu, S. B., Fu, M. X., Yang, S. C., et al., 2007. Palaeogeothermal Response and Record of Late Mesozoic Lithospheric Thinning in the Eastern North China Craton. In: Zhai, M. G., Windley, B. F., Kusky, T. M., et al., eds., Mesozoic Sub-Continental Lithospheric Thinning under Eastern Asia. Geological Society, London, Special Publications, 280: 267-280
    Huang, J. Z., Chen, S. J., Song, J. R., et al., 1996. Hydrocarbon Source Systems and Formation of Gas Fields in Sichuan Basin. Science in China (Series D), 40(1): 32-42 (in Chinese with English Abstract)
    Huang, J. Z., 2012. Prospect of Source Rock Gas Based on Shale Gas Accumulation Patterns: A Cas Study from the Low Permian in the Sichuan Basin. Natural Gas Industry, 32(11): 4-9 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRQG201211003.htm
    Jarvie, D. M., Hill, R. J., Ruble, T. E., et al., 2007. Unconventional Shale-Gas Systems: The Mississippian Barnett Shale of North-Central Texas as One Model for Thermogenic Shale-Gas Assessment. AAPG Bulletin, 91(4): 475-499 doi: 10.1306/12190606068
    Ketcham, R. A., Donelick, R. A., Carlson, W. D., 1999. Variabilityof Apatitefission Track Annealing Kinetics: Ⅲ. Extrapolation to Geological Timescales. American Mineralogist, 84(9): 1235-1255 http://adsabs.harvard.edu/abs/1999AmMin..84.1224D
    Ketcham, R. A., 2005. Forward and Inverse Modeling of Low Temperature Thermochronometry Data. Reviews in Mineralogy and Geochemistry, 58: 275-314 doi: 10.2138/rmg.2005.58.11
    Ketcham, R. A., Carter, A., Donelick, R. A., et al., 2007. Improved Modeling of Fission-Track Annealing in Apatite. American Mineralogist, 92: 799-810 doi: 10.2138/am.2007.2281
    Larter, S., 1989. Chemical Models of Vitrinite Reflectance Evolution. Geologische Rundschau, 78(1): 349-359 doi: 10.1007/BF01988369
    Lerche, I., Yarzab, R. F., Kendall, C. G., 1984. Determination of Paleoheat Flux from Vitrinite Reflectance Data. AAPG Bulletin, 68(11): 1704-1717 http://aapgbull.geoscienceworld.org/content/68/11/1704
    Lerche, I., 1990. Basin Analysis: Quantitative Methods Volume Ⅰ. Academic Press Inc., San Diego. 74-96 http://www.researchgate.net/publication/248516455_Basin_analysis_quantitative_methods_volume_2
    Liang, D. G., Guo, T. L., Chen, J. P., et al., 2008. Distribution of Four Suits of Regional Marine Source Rocks. Marine Origin Petroleum Geology, 13(2): 1-16 (in Chinese)
    Liu, D. H., Xiao, X. M., Tian, H., et al., 2013. Multiple Types of High Density Methane Inclusions and their Relationships with Exploration and Assessment of Oil-Cracked Gas and Shale Gas Discovered in NE Sichuan. Earth Science Frontiers, 20(1): 64-71 (in Chinese with English Abstract)
    Loucks, R. G., Reed, R. M., Ruppel, S. C., et al., 2009. Morphology, Genesis, and Distribution of Nanometer-Scale Pores in Siliceous Mudstones of the Mississippian Barnett Shale. Journal of Sedimentary Research, 79(12): 848-861 doi: 10.2110/jsr.2009.092
    Lu, Q. Z., Hu, S. B., Guo, T. L., et al., 2005. The Background of the Geothermal Field for Formation of Abnormal High Pressure in the Northeastern Sichuan Basin. Chinese Journal of Geophysics, 48: 1110-1116 (in Chinese with English Abstract) http://d.wanfangdata.com.cn/periodical/dqwlxb200505019
    Lutz, T. M., Omar, G., 1991. Inverse Methods of Modeling Thermal Histories from Apatite Fission Track Data. Earth and Planetary Science Letters, 104: 181-195 doi: 10.1016/0012-821X(91)90203-T
    Ma, Y. S., Cai, X. Y., Guo, T. L., et al., 2007a. The Controlling Factors of Oil and Gas Charging and Accumulation of Puguang Gas Field in the Sichuan Basin. Chinese Science Bulletin, 52 (Suppl. Ⅰ): 193-200 (in Chinese with English Abstract)
    Ma, Y. S., Guo, X. S., Guo, T. L., et al., 2007b. The Puguang Gas Field: New Giant Discovery in the Mature Sichuan Basin, Southwest China. AAPG Bulletin, 91: 627-643 doi: 10.1306/11030606062
    Ma, Y. S., 2010. Formation Mechanism of Deep-Buried Carbonate Reservoir and Its Model of Three-Element Controlling Reservoir: A Case Study from the Puguang Oil Field in Sichuan. Acta Geologica Sinica, 84(8): 1087-1094 (in Chinese with English Abstract) http://www.cnki.com.cn/Article/CJFDTotal-DZXE201008002.htm
    Mei, L. F., Liu, Z. Q., Tang, J. G., et al., 2010. Mesozoic Intra-Continental Progressive Deformation in Western Hunan-Hubei Eastern Sichuan Provinces of China: Evidence from Apatite Fission Track and Balanced Cross-Section. Earth Science〞Journal of China University of Geosciences, 35(2): 161-174 (in Chinese with English Abstract) doi: 10.3799/dqkx.2010.017
    Naeser, C. W., 1979. Thermal History of Sedimentary Basins: Fission Track Dating of Subsurface Rocks. In: Scholle, P. A. Schluger, P. R., eds., Aspects of Diagenesis. Society of Economic Paleotologists and Mineralogists Special Publication, 26: 109-112
    O'Sullivan, P. B., 1999. Thermochronology, Denudation and Variations in Palaeosurface Temperature: A Case Study from the North Slope Foreland Basin, Alaska. Basin Research, 11: 191-204 doi: 10.1046/j.1365-2117.1999.00094.x
    Rao, S., Tang, X. Y., Zhu, C. Q., et al., 2011. The Application of Sensitivity Analysis in the Source Rock Maturity History Simulation: An Example from Palaozioc Marine Source Rock of Puguang-5 Well in the Northeast of Sichuan Basin. Chinese Journal of Geology, 46(1): 213-225 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DZKX201101018.htm
    Qiu, N. S., Qin, J. Z., Brent, I. A. M., 2008. Tectonothermal Evolution of the Northeastern Sichuan Basin: Constraints from Apatite and Zircon (U-Th)/He Ages and Vitrinite Reflectance Data. Geological Journal of Chinese Universities, 14: 223-230 (in Chinese with English Abstract)
    Rao, S., Zhu, C. Q., Wang, Q., et al., 2013. Thermal Evolution Patterns of the Sinian-Lower Paleozoic Source Rocks in the Sichuan Basin, Sourthwest China. Chinese Journal of Geophysics, 56(5): 1549-1559 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX201305014.htm
    Ross, D. J. K., Bustin, R. M., 2007. Shale Gas Potential of the Lower Jurassic Gordondale Member, Northeastern British Columbia, Canada. Bulletin of Canadian Petroleum Geology, 55(1): 51-75 doi: 10.2113/gscpgbull.55.1.51
    Schieber, J., 2011. Shale Microfabrics and Pore Development: An Overview with Emphasis on the Importance of Depositional Processes: Canadian Society of Petroleum Geologists, Canadian Society of Exploration Geophysicists, and Canadian Well Logging Society Joint Annual Convention. Calgary, Alberta. 4 http://www.researchgate.net/publication/284463528_Shale_microfabrics_and_pore_development_-_an_overview_with_emphasis_on_the_importance_of_depositional_processes
    Shen, C. B., Mei, L. F., Guo, T. L., 2007. Fission Track Analysis of Mesozoic-Cenozoic Thermal History in Northeast Sichuan Basin. Natural Gas Industry, 27: 24-26 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRQG200707010.htm
    Sweeney, J. J., Burnham, A. K., 1990. Evaluation of a Simple Model of Vitrinite Reflectance Based on Chemical Kinetics. AAPG Bulletin, 74: 1559-1570 http://www.researchgate.net/publication/255005110_Evaluation_of_a_simple_model_of_vitrinite_reflectance_based_on_Chemical_kinetics
    Tenger, Liu, W. H., Qin, J. Z., et al., 2012. Dynamic Transformation Mechanism For Hydrocarbon Generation from Multiple Sources in Deep-Buried Marine Carbonates in the Northeastern Sichuan Basin: A Case Study from the Puguang Gas Field. Acta Petrologica Sinica, 28(3): 895-904 (in Chinese with English Abstract) http://www.oalib.com/paper/1474714
    Tenger, Qin, J. Z., Fu, X. D., et al., 2010. Hydrocarbon Source Rocks Evaluation of the Upper Permian Wujiaping Formation in Northeast Sichuan Area. Journal of Palaeogeography, 12(3): 1-12 (in Chinese with English Abstract) http://www.cqvip.com/QK/84020X/201003/34265370.html
    Tian, Y. T., Zhu, C. Q., Xu, M., et al., 2011. Post-Early Cretaceous Denudation History of the Northeastern Sichuan Basin: Constraints from Low-Temperature Thermochronology Profiles. Chinese Journal Geophysics, 54(3): 807-816 (in Chinese with English Abstract)
    Tian, Y. T., Kohn, B. P., Zhu, C. Q., et al., 2012. Post-Orogenic Evolution of the Mesozoic Micang Shan Foreland Basin System, Central China. Basin Research, 24: 70-90 doi: 10.1111/j.1365-2117.2011.00516.x
    Tissot, B. P., Pelect, R. U., 1987. Thermal History of Sedimentary Basin Maturation Indices and Kinetics of Oil and Gas Generation. AAPG Bulletin, 71: 1445-1466
    Tissot, B. P., Welte, D. H., 1984. Petroleum Formation and Occurrence. Springer Verlag, NewYork.
    Tissot, B., Espitalie, J., 1975. L'Evolution Thernique de la Matiere Organique des Sediments: Applications Dune Simulation Mathematique. Oil & Gas Science and Technology, 30: 743-778 http://ci.nii.ac.jp/naid/80013359346
    Wu, Q., Peng, J. N., 2013. Burial and Thermal Histories of Northeastern Sichuan Basin: A Case Study of Well Puguang 2. Petroleum Geology & Experiment, 35(2): 133-138 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD201302007.htm
    Xu, M., Zhu, C. Q., Tian, Y. T., et al., 2011. Well Temperature Logging and Characteristics of Subsurface Temperature in Sichuan Basin. Chinese Journal of Geophysics, 54: 1052-1060 (in Chinese with English Abstract)
    Zhang, G. C., 2014. Analysis of the Regular Distribution of Oil and Gas Fields in China Based on the Theory of Hydrocarbon Generation Controlled by Source Rocks and Geothermal Heat. Natural Gas Industry, 34(5): 1-28 (in Chinese with English Abstract) http://www.researchgate.net/publication/285994122_Analysis_of_the_regular_distribution_of_oil_and_gas_fields_in_China_based_on_the_theory_of_hydrocarbon_generation_controlled_by_source_rocks_and_geothermal_heat
    Zhang, G. C., 2012. Co-Control of Source and Heat: The Generation and Distribution of Hydrocarbons Controlled by Source Rocks and Heat. Acta Petrolei Sinica, 33(5): 723-738 (in Chinese with English Abstract) http://www.researchgate.net/publication/282990240_Co-control_of_source_and_heat_The_generation_and_distribution_of_hydrocarbons_controlled_by_source_rocks_and_heat
    Zheng, R. C., Geng, W., Zheng, C., et al., 2008. Genesis of Dolostone Reservoir of Feixianguan Formation in Lower Triassic of Northeast Sichuan Basin. Acta Petrolei Sinica, 29(6): 815-821 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB200806006.htm
    Zhou, Y., Jin, Z. J., Zhu, D. Y., et al., 2013b. Current Status and Progress in Research of Hydrocarbon Cap Rocks. Petroleum Geology & Experiment, 34(3): 234-245 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD201203001.htm
    Zhu, C. Q., Xu, M., Yuan, Y. S., et al., 2010a. Paleogeothermal Response and Record of the Effusing of Emeishan Basalts in the Sichuan Basin. Chinese Science Bulletin, 55(10): 949-956 doi: 10.1007/s11434-009-0490-y
    Zhu, C. Q., Tian, Y. T., Xu, M., et al., 2010b. The Effect of Emeishan Supper Mantle Plume to the Thermal Evolution of Source Rocks in the Sichuan Basin. Chinese Journal of Geophysics, 53(1): 119-127 (in Chinese with English Abstract) doi: 10.1002/cjg2.1475
    Zhu, C. Q., Hu S. B., Qiu, N. S., et al., 2016. Thermal History of the Sichuan Basin, SW China: Evidence from Deep Boreholes. Science China: Earth Sciences, 59(1): 70-82 doi: 10.1007/s11430-015-5116-4
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views(541) PDF downloads(94) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return