Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 28 Issue 1
Feb 2017
Turn off MathJax
Article Contents
Yixian Xu, Lupei Zhu, Qinyan Wang, Yinhe Luo, Jianghai Xia. Heat Shielding Effects in the Earth’s Crust. Journal of Earth Science, 2017, 28(1): 161-167. doi: 10.1007/s12583-017-0744-6
Citation: Yixian Xu, Lupei Zhu, Qinyan Wang, Yinhe Luo, Jianghai Xia. Heat Shielding Effects in the Earth’s Crust. Journal of Earth Science, 2017, 28(1): 161-167. doi: 10.1007/s12583-017-0744-6

Heat Shielding Effects in the Earth’s Crust

doi: 10.1007/s12583-017-0744-6
More Information
  • Knowledge of heat flow and associated variations of temperature with depth is crucial for understanding how the Earth functions. Here, we demonstrate possible heat shielding effects that result from the occurrence of mafic intrusions/layers (granulitic rocks) within a dominantly granitic middle crust and/or ultramafic intrusions/layers (peridotitic rocks) within a dominantly granulitic lower crust; heat shielding is a familiar phenomenon in heat engineering and thermal metamaterials. Simple one-dimensional calculations suggest that heat shielding due to the intercalation of granitic, granulitic and peridotitic rocks will increase Moho temperatures substantially. This study may lead to a rethinking of numerous proposed lower crustal processes.

     

  • loading
  • Artemieva, I. M., 2006. Global 1 × Thermal Model TC1 for the Continental Lithosphere: Implications for Lithosphere Secular Evolution. Tectonophysics, 416(1-4): 245-277. doi: 10.1016/j.tecto.2005.11.022
    Bailey, R. C., 1999. Gravity-Driven Continental Overflow and Archaean Tectonics. Nature, 398(6726): 413-415. doi: 10.1038/18866
    Bergantz, G. W., 1989. Underplating and Partial Melting: Implications for Melt Generation and Extraction. Science, 245(4922): 1093-1095. doi: 10.1126/science.245.4922.1093
    Bird, P., 1979. Continental Delamination and the Colorado Plateau. Journal of Geophysical Research, 84: 7561-7571 doi: 10.1029/JB084iB13p07561
    Carcione, J. M., Kosloff, D., Behle, A., 1991. Long-Wave Anisotropy in Stratified Media: A Numerical Test. Geophysics, 56(2): 245-254. doi: 10.1190/1.1443037
    Finlayson, D. M., Owen, A., Johnstone, D., et al., 1993. Moho and Petrologic Crust-Mantle Boundary Coincide under Southeastern Australia. Geology, 21(8): 707. doi:10.1130/0091-7613(1993)021<0707:mapcmb>2.3.co;2
    Furlong, K. P., Chapman, D. S., 2013. Heat Flow, Heat Generation, and the Thermal State of the Lithosphere. Annual Review of Earth and Planetary Sciences, 41(1): 385-410. doi: 10.1146/annurev.earth.031208.100051
    Gelman, S. E., Gutierrez, F. J., Bachmann, O., 2013. On the Longevity of Large Upper Crustal Silicic Magma Reservoirs. Geology, 41(7): 759-762. doi: 10.1130/g34241.1
    Hale, L. D., Thompson, G. A., 1982. The Seismic Reflection Character of the Continental Mohorovicic Discontinuity. Journal of Geophysical Research: Solid Earth, 87(B6): 4625-4635. doi: 10.1029/jb087ib06p04625
    Hasterok, D., 2013. A Heat Flow Based Cooling Model for Tectonic Plates. Earth and Planetary Science Letters, 361: 34-43. doi: 10.1016/j.epsl.2012.10.036
    Hasterok, D., Chapman, D. S., 2011. Heat Production and Geotherms for the Continental Lithosphere. Earth and Planetary Science Letters, 307(1/2): 59-70. doi: 10.1016/j.epsl.2011.04.034
    Jaupart, C., Mareschal, J. C., 2007. Heat Flow and Thermal Structure of the Lithosphere. In: Shubert, G., Watts, A., eds., Treatise on Geophysics: Crust and Lithospheric Dynamics, Vol. 6. Elsevier, San Francisco. 217-251
    Li, S. H., Unsworth, M. J., Booker, J. R., et al., 2003. Partial Melt or Aqueous Fluid in the Mid-Crust of Southern Tibet? Constraints from INDEPTH Magnetotelluric Data. Geophysical Journal International, 153(2): 289-304. doi: 10.1046/j.1365-246x.2003.01850.x
    Luo, Y. H., Xu, Y. X., Yang, Y. J., 2013. Crustal Radial Anisotropy beneath the Dabie Orogenic Belt from Ambient Noise Tomography. Geophysical Journal International, 195(2): 1149-1164. doi: 10.1093/gji/ggt281
    Luo, Y. H., Xu, Y. X., Yang, Y. J., 2012. Crustal Structure beneath the Dabie Orogenic Belt from Ambient Noise Tomography. Earth and Planetary Science Letters, 313/314: 12-22. doi: 10.1016/j.epsl.2011.11.0042.
    Makovsky, Y., Klemperer, S. L., 1999. Measuring the Seismic Properties of Tibetan Bright Spots: Evidence for Free Aqueous Fluids in the Tibetan Middle Crust. Journal of Geophysical Research: Solid Earth, 104(B5): 10795-10825. doi: 10.1029/1998jb900074
    Maldovan, M., 2013. Sound and Heat Revolutions in Phononics. Nature, 503(7475): 209-217. doi: 10.1038/nature12608
    McKenzie, D., Jackson, J., Priestley, K., 2005. Thermal Structure of Oceanic and Continental Lithosphere. Earth and Planetary Science Letters, 233(3/4): 337-349. doi: 10.1016/j.epsl.2005.02.005
    Merriman, J. D., Whittington, A. G., Hofmeister, A. M., et al., 2013. Thermal Transport Properties of Major Archean Rock Types to High Temperature and Implications for Cratonic Geotherms. Precambrian Research, 233: 358-372. doi: 10.1016/j.precamres.2013.05.009
    Mooney, W. D., 2007. Crust and Lithospheric Structure-Global Crustal Structure. In: Romanowicz, B., Dziewonski, A., eds., Treatise on Geophysics: Seismology and Structure of the Earth, Vol. 1. Elsevier, San Francisco. 361-417
    Narayana, S., Sato, Y., 2012. Heat Flux Manipulation with Engineered Thermal Materials. Phys. Res. Lett., 108: 214303. doi: 10.1103/physrevlett.108.214303
    Nelson, K. D., Zhao, W., Brown, L. D., et al., 1996. Partially Molten Middle Crust beneath Southern Tibet: Synthesis of Project INDEPTH Results. Science, 274: 1684-1688 doi: 10.1126/science.274.5293.1684
    Niu, F., James, D. E., 2002. Fine Structure of the Lowermost Crust beneath the Kaapvaal Craton and Its Implications for Crustal Formation and Evolution. Earth and Planetary Science Letters, 200(1/2): 121-130. doi.org/10.1016/S0012-821X(02)00584-8 http://www.academia.edu/9981905/Fine_structure_of_the_lowermost_crust_beneath_the_Kaapvaal_craton_and_its_implications_for_crustal_formation_and_evolution
    O'Reilly, S. Y., Griffin, W. L., 2013. Moho vs. Crust-Mantle Boundary: Evolution of an Idea. Tectonophysics, 609: 535-546. doi: 10.1016/j.tecto.2012.12.031
    O'Reilly, B. M., Hauser, F., Readman, P. W., 2010. The Fine-Scale Structure of Upper Continental Lithosphere from Seismic Waveform Methods: Insights into Phanerozoic Crustal Formation Processes. Geophys. J. Int., 180(1): 101-124. doi: 10.1111/j.1365-246x.2009.04420.x
    Petford, N., Cruden, A. R., McCaffrey, K. J., et al., 2000. Granite Magma Formation, Transport and Emplacement in the Earth's Crust. Nature, 408(6813): 669-673. doi: 10.1038/35047000
    Royden, L. H., Royden, L. H., Burchfiel, B. C., et al., 1997. Surface Deformation and Lower Crust Flow in Eastern Tibet. Science, 276: 788-790 doi: 10.1126/science.276.5313.788
    Rychert, C. A., Shearer, P. M., 2009. A Global View of the Lithosphere-Asthenosphere Boundary. Science, 324(5926): 495-498. doi: 10.1126/science.1169754
    Searle, M., 2013. Crustal Melting, Ductile Flow, and Deformation in Mountain Belts: Cause and Effect Relationships. Lithosphere, 5(6): 547-554. doi: 10.1130/rf.l006.1
    Shen, X. J., Zhang, W. R., Yang, S. Z., et al., 1990. Heat Flow Evidence for the Differentiated Crust-Mantle Thermal Structures of the Northern and Southern Terranes of the Qinghai-Xizang Plateau. Bulletin of the Chinese Academy of Geological Sciences, 21: 203-214 (in Chinese)
    Stratford, W., Thybo, H., 2011. Crustal Structure and Composition of the Oslo Graben, Norway. Earth and Planetary Science Letters, 304(3/4): 431-442. doi: 10.1016/j.epsl.2011.02.021
    Teng, J. W., Zhang, Z. J., Zhang, X. K., et al., 2013. Investigation of the Moho Discontinuity beneath the Chinese Mainland Using Deep Seismic Sounding Profiles. Tectonophysics, 609(8): 202-216. doi: 10.1016/j.tecto.2012.11.024
    Thompson, A. B., 1999. Integrating New and Classical Techniques. In: Castro, A., Fernandez, C., Vigneresse, J. L., eds., Understanding Granites. Geol. Soc. London Special Publ., 158: 7-25
    Thybo, H., Nielsen, C. A., 2009. Magma-Compensated Crustal Thinning in Continental Rift Zones. Nature, 457(7231): 873-876. doi: 10.1038/nature07688
    Thybo, H., Artemieva, I. M., 2013. Moho and Magmatic Underplating in Continental Lithosphere.Tectonophysics, 609(8): 605-619. doi: 10.1016/j.tecto.2013.05.032
    Unsworth, M. J., Jones, A. G., Wei, W., et al., 2005. Crustal Rheology of the Himalaya and Southern Tibet Inferred from Magnetotelluric Data. Nature, 438(7064): 78-81. doi: 10.1038/nature04154
    van den Berg, A. P. V. D., Yuen, D. A., 2002. Delayed Cooling of the Earth's Mantle due to Variable Thermal Conductivity and the Formation of a Low Conductivity Zone. Earth and Planetary Science Letters, 199(3/4): 403-413. doi: 10.1016/s0012-821x(02)00531-9
    Wei, W. B., Jin, S., Ye, G. F., et al., 2006. Conductivity Structure of Crust and Upper Mantle beneath the Northern Tibetan Plateau: Results of Super-Wide Band Magnetotelluric Sounding. Chinese J. Geophys., 49: 1215-1225 (in Chinese with English Abstract)
    Wei, W., Unsworth, M., Jones, A. G., et al., 2001. Detection of Widespread Fluids in the Tibetan Crust by Magnetotelluric Studies. Science, 292(5517): 716-719. doi: 10.1126/science.1010580
    Whittington, A. G., Hofmeister, A. M., Nabelek, P. I., 2009. Temperature-Dependent Thermal Diffusivity of the Earth's Crust and Implications for Magmatism. Nature, 458(7236): 319-321. doi: 10.1038/nature07818
    Yang, W. C., 2009. The Crust and Upper Mantle of the Sulu UHPM Belt. Tectonophysics, 475(2): 226-234. doi: 10.1016/j.tecto.2009.02.048
    Yuan, X. C., Klemperer, S. L., Tang, W., et al., 2003. Crustal Structure and Exhumation of the Dabie Shan Ultrahigh-Pressure Orogen, Eastern China, from Seismic Reflection Profiling. Geology, 31: 435-438. doi:10.1130/0091-7613(2003)031<0435:csaeot>2.0.co;2
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views(865) PDF downloads(417) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return