Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 29 Issue 2
Mar 2018
Turn off MathJax
Article Contents
Rong-Guo Hu, Xiu-Juan Bai, Jan Wijbrans, Fraukje Brouwer, Yi-Lai Zhao, Hua-Ning Qiu. Occurrence of Excess 40Ar in Amphibole: Implications of 40Ar/39Ar Dating by Laser Stepwise Heating and in vacuo Crushing. Journal of Earth Science, 2018, 29(2): 416-426. doi: 10.1007/s12583-017-0947-x
Citation: Rong-Guo Hu, Xiu-Juan Bai, Jan Wijbrans, Fraukje Brouwer, Yi-Lai Zhao, Hua-Ning Qiu. Occurrence of Excess 40Ar in Amphibole: Implications of 40Ar/39Ar Dating by Laser Stepwise Heating and in vacuo Crushing. Journal of Earth Science, 2018, 29(2): 416-426. doi: 10.1007/s12583-017-0947-x

Occurrence of Excess 40Ar in Amphibole: Implications of 40Ar/39Ar Dating by Laser Stepwise Heating and in vacuo Crushing

doi: 10.1007/s12583-017-0947-x
More Information
  • The joint methods of 40Ar/39Ar laser stepwise heating and in vacuo crushing have been applied to date amphiboles from the North Qaidam ultra-high pressure metamorphic amphibolites. Two amphibole samples analyzed by laser heating yielded saddle-shaped age spectra with total gas ages of 574.5±2.5 and 562.5±2.5 Ma. These ages are much older than the reported zircon U-Pb ages (~495 Ma) from Yuka eclogite, indicating the presence of excess 40Ar. In order to decipher the occurrence of excess 40Ar and constrain the age of amphibolite-facies retrogression, two duplicate amphibole samples were further employed for 40Ar/39Ar in vacuo crushing analyses. Both samples exhibit similar monotonically declining release spectra, which are characterized by rapid decline of anomalously old apparent ages in the early steps. The data of the late steps yielded concordant apparent ages with plateau ages of 460.9±1.2 and 459.6±1.8 Ma. We interpret that gases released in the early steps derive from the significant excess 40Ar containing secondary fluid inclusions (SFIs) due to their distribution characteristics along cracks leading to be easily extracted, whereas those released in the later steps represent the contribution of the small primary fluid inclusions (PFIs).

     

  • loading
  • Bai, X. J., Wang, M., Jiang, Y. D., et al., 2013. Direct Dating of Tin-Tungsten Mineralization of the Piaotang Tungsten Deposit, South China, by 40Ar/39Ar Progressive Crushing. Geochimica et Cosmochimica Acta, 114: 1–12. https://doi.org/10.1016/j.gca.2013.03.022
    Blanckenburg, F. V., Villa, I. M., 1988. Argon Retentivity and Argon Excess in Amphiboles from the Garbenschists of the Western Tauern Window, Eastern Alps. Contributions to Mineralogy and Petrology, 100(1): 1–11. https://doi.org/10.1007/bf00399435
    Burgess, R., Kelley, S. P., Parsons, I., et al., 1992. 40Ar-39Ar Analysis of Perthite Microtextures and Fluid Inclusions in Alkali Feldspars from the Klokken Syenite, South Greenland. Earth and Planetary Science Letters, 109(1/2): 147–167. https://doi.org/10.1016/0012-821x(92)90080-f
    Chen, D. L., Sun, Y., Liu, L., et al., 2005. Metamorphic Evolution of the Yuka Eclogite in the North Qaidam, NW China: Evidences from the Compositional Zonation of Garnet and Reaction Texture in the Rock. Acta Petrologica Sinica, 21(4): 1039–1048 (in Chinese with English Abstract) http://d.wanfangdata.com.cn/Periodical_ysxb98200504002.aspx
    Chen, D. L., Liu, L., Sun, Y., et al., 2009. Geochemistry and Zircon U-Pb Dating and Its Implications of the Yukahe HP/UHP Terrane, the North Qaidam, NW China. Journal of Asian Earth Sciences, 35(3/4): 259–272. https://doi.org/10.1016/j.jseaes.2008.12.001
    Chen, R. X., Zheng, Y. F., Gong, B., et al., 2007. Origin of Retrograde Fluid in Ultrahigh-Pressure Metamorphic Rocks: Constraints from Mineral Hydrogen Isotope and Water Content Changes in Eclogite–gneiss Transitions in the Sulu Orogen. Geochimica et Cosmochimica Acta, 71(9): 2299–2325. https://doi.org/10.1016/j.gca.2007.02.012
    Cumbest, R. J., Johnson, E. L., Onstott, T. C., 1994. Argon Composition of Metamorphic Fluids: Implications for 40Ar/39Ar Geochronology. Geological Society of America Bulletin, 106(7): 942–951. https://doi.org/10.1130/0016-7606(1994)106<0942:acomfi>2.3.co;2 doi: 10.1130/0016-7606(1994)106<0942:acomfi>2.3.co;2
    Di Vincenzo, G., Palmeri, R., 2001. An 40Ar-39Ar Investigation of High-Pressure Metamorphism and the Retrogressive History of Mafic Eclogites from the Lanterman Range (Antarctica): Evidence against a Simple Temperature Control on Argon Transport in Amphibole. Contributions to Mineralogy and Petrology, 141(1): 15–35. https://doi.org/10.1007/s004100000226
    Dunlap, W., Kronenberg, A., 2001. Argon Loss during Deformation of Micas: Constraints from Laboratory Deformation Experiments. Contributions to Mineralogy and Petrology, 141(2): 174–185. https://doi.org/10.1007/s004100000217
    Frezzotti, M. L., Ferrando, S., Dallai, L., et al., 2007. Intermediate Alkali-Alumino-Silicate Aqueous Solutions Released by Deeply Subducted Continental Crust: Fluid Evolution in UHP OH-Rich Topaz-Kyanite Quartzites from Donghai (Sulu, China). Journal of Petrology, 48(6): 1219–1241. https://doi.org/10.1093/petrology/egm015
    Harrison, T. M., McDougall, I., 1981. Excess 40Ar in Metamorphic Rocks from Broken Hill, New South Wales: Implications for 40Ar/39Ar Age Spectra and the Thermal History of the Region. Earth and Planetary Science Letters, 55(1): 123–149. https://doi.org/10.1016/0012-821x(81)90092-3
    Hess, J., Lippolt, H., 1994. Compilation of K-Ar measurements on HD-B1 Standard Biotite 1994 Status Report. Phanerozoic Time Scale. In: Odin, G. S., ed., IGCP Project. Bulletin of Liaison and Informatics, 12: 19–23
    Holland, T., Blundy, J., 1994. Non-Ideal Interactions in Calcic Amphiboles and Their Bearing on Amphibole-Plagioclase Thermometry. Contributions to Mineralogy and Petrology, 116(4): 433–447. https://doi.org/10.1007/bf00310910
    Hu, R. G., Qiu, H. N., Wijbrans, J. R., et al., 2014. 40Ar/39Ar Geochronology Study and the Genesis of Extraneous 40Ar in Yuka HP/UHP Phengite, North Qaidam, NW China. Earth Science Frontiers, 21(1): 216–227 (in Chinese with English Abstract) https://www.researchgate.net/publication/258804538_Elemental_responses_to_subduction-zone_metamorphism_Constraints_from_the_North_Qilian_Mountain_NW_China
    Hu, R. G., Wijbran J. R., Brouwer F. M., et al., 2015a. Fluid Inclusions Study and Direct 40Ar/39Ar Dating by in vacuo Crushing of Quartz Veins within UHP Metamorphic Rocks from Yuka Terrane, North Qaidam Orogen, China. Geochemical Journal, 49(2): 139–155. https://doi.org/10.2343/geochemj.2.0337
    Hu, R. G., Wijbrans, J., Brouwer, F., et al., 2015b. Retrograde Metamorphism of the Eclogite in North Qaidam, Western China: Constraints by Joint 40Ar/39Ar in vacuo Crushing and Stepped Heating. Geoscience Frontiers, 6(5): 759–770. https://doi.org/10.13039/501100001722
    Hu, R. G., Wijbrans, J. R., Brouwer, F. M., et al., 2016. 40Ar/39Ar Thermochronological Constraints on the Retrogression and Exhumation of Ultra-High Pressure (UHP) Metamorphic Rocks from Xitieshan Terrane, North Qaidam, China. Gondwana Research, 36: 157–175. https://doi.org/10.1016/j.gr.2016.04.009
    Jiang, Y. D., Qiu, H. N., Xu, Y. G., 2012. Hydrothermal Fluids, Argon Isotopes and Mineralization Ages of the Fankou Pb-Zn Deposit in South China: Insights from Sphalerite 40Ar/39Ar Progressive Crushing. Geochimica et Cosmochimica Acta, 84: 369–379. https://doi.org/10.1016/j.gca.2012.01.044
    Kelley, S., Turner, G., Butterfield, A. W., et al., 1986. The Source and Significance of Argon Isotopes in Fluid Inclusions from Areas of Mineralization. Earth and Planetary Science Letters, 79(3/4): 303–318. https://doi.org/10.1016/0012-821x(86)90187-1
    Kelley, S., 2002. Excess Argon in K-Ar and Ar-Ar Geochronology. Chemical Geology, 188(1/2): 1–22. https://doi.org/10.1016/s0009-2541(02)00064-5
    Kendrick, M. A., Burgess, R., Pattrick, R. A. D., et al., 2001. Halogen and Ar-Ar Age Determinations of Inclusions within Quartz Veins from Porphyry Copper Deposits Using Complementary Noble Gas Extraction Techniques. Chemical Geology, 177(3/4): 351–370. https://doi.org/10.1016/s0009-2541(00)00419-8
    Kendrick, M. A., Phillips, D., 2009a. Discussion of 'the Paleozoic Metamorphic History of the Central Orogenic Belt of China from 40Ar/39Ar Geochronology of Eclogite Garnet Fluid Inclusions by Qiu Hua-Ning and Wijbrans J. R. '. Earth and Planetary Science Letters, 279(3/4): 392–394. https: //doi. org/10. 1016/j. epsl. 2008. 12. 047
    Kendrick, M. A., Phillips, D., 2009b. New Constraints on the Release of Noble Gases during in Vacuo Crushing and Application to Scapolite Br-Cl-I and 40Ar/39Ar Age Determinations. Geochimica et Cosmochimica Acta, 73(19): 5673–5692. https://doi.org/10.1016/j.gca.2009.06.032
    Kendrick, M. A., Phillips, D., Wallace, M., et al., 2011. Halogens and Noble Gases in Sedimentary Formation Waters and Zn-Pb Deposits: A Case Study from the Lennard Shelf, Australia. Applied Geochemistry, 26(12): 2089–2100. https://doi.org/10.1016/j.apgeochem.2011.07.007
    Koppers, A. A. P., 2002. ArArCALC—Software for 40Ar/39Ar Age Calculations. Computers & Geosciences, 28(5): 605–619. https://doi.org/10.1016/s0098-3004(01)00095-4
    Lanphere, M. A., Brent Dalrymple, G., 1976. Identification of Excess 40Ar by the 40Ar/39Ar Age Spectrum Technique. Earth and Planetary Science Letters, 32(2): 141–148. https://doi.org/10.1016/0012-821x(76)90052-2
    Leake, B. E., Woolley, A. R., Arps, C. E. S., et al., 1997. Nomenclature of Amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. American Mineralogist, 82(9/10): 1019–1037 https://www.researchgate.net/publication/216831518_Nomenclature_of_amphiboles_Report_of_the_Subcommittee_on_Amphiboles_of_the_International_Mineralogical_Association_Commission_on_New_Minerals_and_Mineral_Names
    McDougall, I., Harrison, M., 1999. Geochronology and Thermochronology by the 40Ar/39Ar Method. Oxford University Press, New York. 269
    Menold, C. A., Grove, M., Sievers, N. E., et al., 2016. Argon, Oxygen, and Boron Isotopic Evidence Documenting 40ArE Accumulation in Phengite during Water-Rich High-Pressure Subduction Metasomatism of Continental Crust. Earth and Planetary Science Letters, 446: 56–67. https://doi.org/10.13039/100000001
    Qiu, H. N., Wijbrans, J. R., 2009. Reply to Comment by M. A. Kendrick and D. Phillips (2009) on "The Paleozoic Metamorphic History of the Central Orogenic Belt of China from 40Ar/39Ar Geochronology of Eclogite Garnet Fluid Inclusions" by Hua-Ning Qiu and J. R. Wijbrans (2008) [Earth Planet. Sci. Lett. 268 (2008) 501–514]. Earth and Planetary Science Letters, 279(3/4): 395–397. https: //doi. org/10. 1016/j. epsl. 2009. 01. 012
    Qiu, H. N., Wijbrans, J. R., 2006. Paleozoic Ages and Excess 40Ar in Garnets from the Bixiling Eclogite in Dabieshan, China: New Insights from 40Ar/39Ar Dating by Stepwise Crushing. Geochimica et Cosmochimica Acta, 70(9): 2354–2370. https://doi.org/10.1016/j.gca.2005.11.030
    Qiu, H. N., Wijbrans, J. R., 2008. The Paleozoic Metamorphic History of the Central Orogenic Belt of China from 40Ar/39Ar Geochronology of Eclogite Garnet Fluid Inclusions. Earth and Planetary Science Letters, 268(3/4): 501–514. https://doi.org/10.1016/j.epsl.2008.01.042
    Renne, P. R., Swisher, C. C., Deino, A. L., et al., 1998. Intercalibration of Standards, Absolute Ages and Uncertainties in 40Ar/39Ar Dating. Chemical Geology, 145(1/2): 117–152. https://doi.org/10.1016/S0009-2541(97)00159-9
    Schneider, B., Kuiper, K., Postma, O., et al., 2009. 40Ar/39Ar Geochronology Using a Quadrupole Mass Spectrometer. Quaternary Geochronology, 4(6): 508–516. https://doi.org/10.1016/j.quageo.2009.08.003
    Smye, A. J., Warren, C. J., Bickle, M. J., 2013. The Signature of Devolatisation: Extraneous 40Ar Systematics in High-Pressure Metamorphic Rocks. Geochimica et Cosmochimica Acta, 113: 94–112. https://doi.org/10.1016/j.gca.2013.03.018
    Song, S. G., Zhang, L. F., Niu, Y. L., et al., 2005. Evolution from Oceanic Subduction to Continental Collision: A Case Study from the Northern Tibetan Plateau Based on Geochemical and Geochronological Data. Journal of Petrology, 47(3): 435–455. https://doi.org/10.1093/petrology/egi080
    Song, S. G., Niu, Y. L., Su, L., et al., 2014. Continental Orogenesis from Ocean Subduction, Continent Collision/subduction, to Orogen Collapse, and Orogen Recycling: The Example of the North Qaidam UHPM Belt, NW China. Earth-Science Reviews, 129: 59–84. https://doi.org/10.13039/501100001809
    Turner, G., Wang, S. S., 1992. Excess Argon, Crustal Fluids and Apparent Isochrons from Crushing K-Feldspar. Earth and Planetary Science Letters, 110(1/2/3/4): 193–211. https://doi.org/10.1016/0012-821x(92)90048-z
    Uunk, B., Postma, O., Wijbrans, J., et al., 2017. Direct 40Ar/39Ar Age Determination of Fluid Inclusions Using in-vacuo Stepwise Crushing—Example of Garnet from the Cycladic Blueschist Unit on Syros. 19th EGU General Assembly. 15117
    Villa, I. M., 2001. Radiogenic Isotopes in Fluid Inclusions. Lithos, 55(1/2/3/4): 115–124. https://doi.org/10.1016/s0024-4937(00)00041-4
    Wartho, J. A., Rex, D. C., Guise, P. G., 1996. Excess Argon in Amphiboles Linked to Greenschist Facies Alteration in the Kamila Amphibolite Belt, Kohistan Island Arc System, Northern Pakistan: Insights from 40Ar/39Ar Step-Heating and Acid Leaching Experiments. Geological Magazine, 133(5): 595–609. https://doi.org/10.1017/s0016756800007871
    Wijbrans, J. R., Pringle, M. S., Koppers, A. A. P., et al., 1995. Argon Geochronology of Small Samples Using the Vulkaan Argon Laserprobe. Proceedings Koninklijke Nederlandse Akademie van Wetenschappen, 98(2): 185–218 https://www.infona.pl/resource/bwmeta1.element.elsevier-d8ff0690-dc7f-37b6-9583-1f3e6680f3ba
    Yang, J. S., Xu, Z. Q., Song, S. G., et al., 2001. Discovery of Coesite in the North Qaidam Early Palaeozoic Ultrahigh Pressure (UHP) Metamorphic Belt, NW China. Comptes Rendus de l'Académie des Sciences-Series IIA-Earth and Planetary Science, 333(11): 719–724. https://doi.org/10.1016/s1251-8050(01)01718-9
    Zeitler, P. K., Fitz Gerald, J. D., 1986. Saddle-Shaped Age Spectra from Young, Microstructurally Complex Potassium Feldspars. Geochimica et Cosmochimica Acta, 50(6): 1185–1199. https://doi.org/10.1016/0016-7037(86)90401-1
    Zhang, G. B., Zhang, L. F., Christy, A. G., 2013. From Oceanic Subduction to Continental Collision: An Overview of HP-UHP Metamorphic Rocks in the North Qaidam UHP Belt, NW China. Journal of Asian Earth Sciences, 63: 98–111. https://doi.org/10.1016/j.jseaes.2012.07.014
    Zhang, G. B., Ellis, D. J., Christy, A. G., et al., 2009. UHP Metamorphic Evolution of Coesite-Bearing Eclogite from the Yuka Terrane, North Qaidam UHPM Belt, NW China. European Journal of Mineralogy, 21(6): 1287–1300. https://doi.org/10.1127/0935-1221/2009/0021-1989
    Zhang, J. X., Yang, J. S., Mattinson, C. G., et al., 2005. Two Contrasting Eclogite Cooling Histories, North Qaidam HP/UHP Terrane, Western China: Petrological and Isotopic Constraints. Lithos, 84(1/2): 51–76. https://doi.org/10.1016/j.lithos.2005.02.002
    Zheng, Y. F., Fu, B., Gong, B., et al., 2003. Stable Isotope Geochemistry of Ultrahigh Pressure Metamorphic Rocks from the Dabie–Sulu Orogen in China: Implications for Geodynamics and Fluid Regime. Earth-Science Reviews, 62(1/2): 105–161. https://doi.org/10.1016/s0012-8252(02)00133-2
    Zheng, Y. F., 2004. Fluid Activity during Exhumation of Deep-Subducted Continental Plate. Chinese Science Bulletin, 49(10): 985–998. https://doi.org/10.1007/bf03184025
    Zong, K. Q., Liu, Y. S., Hu, Z. C., et al., 2010. Melting-Induced Fluid Flow during Exhumation of Gneisses of the Sulu Ultrahigh-Pressure Terrane. Lithos, 120(3/4): 490–510. https://doi.org/10.1016/j.lithos.2010.09.013
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article Metrics

    Article views(443) PDF downloads(49) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return