Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 29 Issue 2
Mar 2018
Turn off MathJax
Article Contents
Wei Du, Li Li, Donald J. Weidner. Time Scale of Partial Melting of KLB-1 Peridotite: Constrained from Experimental Observation and Thermodynamic Models. Journal of Earth Science, 2018, 29(2): 245-254. doi: 10.1007/s12583-018-0839-8
Citation: Wei Du, Li Li, Donald J. Weidner. Time Scale of Partial Melting of KLB-1 Peridotite: Constrained from Experimental Observation and Thermodynamic Models. Journal of Earth Science, 2018, 29(2): 245-254. doi: 10.1007/s12583-018-0839-8

Time Scale of Partial Melting of KLB-1 Peridotite: Constrained from Experimental Observation and Thermodynamic Models

doi: 10.1007/s12583-018-0839-8
More Information
  • Corresponding author: Wei Du, duwei@vip.gyig.ac.cn
  • Received Date: 21 Apr 2017
  • Accepted Date: 08 Jan 2018
  • Publish Date: 01 Apr 2018
  • Partial melting experiments were carried on KLB-1 peridotite, a xenolith sample from the Earth's upper mantle, at 1.5 GPa and temperatures from 1 300 to 1 600 ℃, with heating time varies from 1 to 30 min. We quantify the axial temperature gradient in the deformation-DIA apparatus (D-DIA) and constrain the time scale of partial melting by comparing experimental observations with calculated result from pMELTS program. The compositions of the liquid phase and the coexisting solid phases (clinopyroxene, orthopyroxene, and olivine) agree well with those calculated from pMELTS program, suggesting that local chemical equilibrium achieves during partial melting, although longer heating time is required to homogenize the bulk sample. The Mg# (=Mg/(Mg+Fe) mol.%) of olivines from the 1-minute heating experiment changed continuously along the axial of the graphite capsule. A thermal gradient of 50 ℃/mm was calculated by comparing the Mg# of olivine grains with the output of pMELTS program. Olivine grains at the hot end of the graphite capsule from the three experiments heated at 1 400 ℃ but with different annealing time show consistence on Mg#, indicating that partitioning of Fe2+ between the olivine grains and the silicate melt happened fast, and partial melting occurs in seconds.

     

  • loading
  • Agee, C. B., Walker, D., 1990. Aluminum Partitioning between Olivine and Ultrabasic Silicate Liquid to 6 GPa. Contributions to Mineralogy and Petrology, 105(3): 243-254. https://doi.org/10.1007/bf00306537
    Anderson, D. L., Sammis, C., 1970. Partial Melting in the Upper Mantle. Physics of the Earth and Planetary Interiors, 3: 41-50. https://doi.org/10.1016/0031-9201(70)90042-7
    Asimow, P. D., Ghiorso, M. S., 1998. Algorithmic Modifications Extending MELTS to Calculate Subsolidus Phase Relations. American Mineralogist, 83(9/10): 1127-1132. https://doi.org/10.2138/am-1998-9-1022
    Dasgupta, R., Hirschmann, M. M., Smith, N. D., 2007. Partial Melting Experiments of Peridotite+CO2 at 3 GPa and Genesis of Alkalic Ocean Island Basalts. Journal of Petrology, 48(11): 2093-2124. https://doi.org/10.1093/petrology/egm053
    Davis, F. A., Hirschmann, M. M., Humayun, M., 2011. The Composition of the Incipient Partial Melt of Garnet Peridotite at 3 GPa and the Origin of OIB. Earth and Planetary Science Letters, 308(3/4): 380-390. https://doi.org/10.1016/j.epsl.2011.06.008
    Davis, F. A., Tangeman, J. A., Tenner, T. J., et al., 2009. The Composition of KLB-1 Peridotite. American Mineralogist, 94(1): 176-180. https://doi.org/10.2138/am.2009.2984
    Donovan, J. J., 2012. Probe for EPMA: Acquisition, Automation and Analysis. Enterprise Edition Probe Software Inc., Eugene
    Du, W., Li, L., Weidner, D. J., 2014. Experimental Observation on Grain Boundaries Affected by Partial Melting and Garnet Forming Phase Transition in KLB-1 Peridotite. Physics of the Earth and Planetary Interiors, 228: 287-293. https://doi.org/10.1016/j.pepi.2013.11.011
    Ghiorso, M. S., Hirschmann, M. M., Reiners, P. W., et al., 2002. The pMELTS: A Revision of MELTS for Improved Calculation of Phase Relations and Major Element Partitioning Related to Partial Melting of the Mantle to 3 GPa. Geochemistry, Geophysics, Geosystems, 3(5): 1-35. https://doi.org/10.1029/2001gc000217
    Ghiorso, M. S., Sack, R. O., 1995. Chemical Mass Transfer in Magmatic Processes Ⅳ. A Revised and Internally Consistent Thermodynamic Model for the Interpolation and Extrapolation of Liquid-Solid Equilibria in Magmatic Systems at Elevated Temperatures and Pressures. Contributions to Mineralogy and Petrology, 119(2/3): 197-212. https://doi.org/10.1007/s004100050036
    Harmon, N., Forsyth, D. W., Weeraratne, D. S., 2009. Thickening of Young Pacific Lithosphere from High-Resolution Rayleigh Wave Tomography: A Test of the Conductive Cooling Model. Earth and Planetary Science Letters, 278(1/2): 96-106. https://doi.org/10.1016/j.epsl.2008.11.025
    Herzberg, C., Gasparik, T., Sawamoto, H., 1990. Origin of Mantle Peridotite: Constraints from Melting Experiments to 16.5 GPa. Journal of Geophysical Research, 95(B10): 15779-15803. https://doi.org/10.1029/jb095ib10p15779
    Herzberg, C., Raterron, P., Zhang, J. Z., 2000. New Experimental Observations on the Anhydrous Solidus for Peridotite KLB-1. Geochemistry, Geophysics, Geosystems, 1(11): 1-15. https://doi.org/10.1029/2000gc000089
    Herzberg, C., Zhang, J. Z., 1996. Melting Experiments on Anhydrous Peridotite KLB-1: Compositions of Magmas in the Upper Mantle and Transition Zone. Journal of Geophysical Research: Solid Earth, 101(B4): 8271-8295. https://doi.org/10.1029/96jb00170
    Hirose, K., 1997. Melting Experiments on Lherzolite KLB-1 under Hydrous Conditions and Generation of High-Magnesian Andesitic Melts. Geology, 25(1): 42-44. https://doi.org/10.1130/0091-7613(1997)025<0042:meolku>2.3.co;2 doi: 10.1130/0091-7613(1997)025<0042:meolku>2.3.co;2
    Hirose, K., Fei, Y. W., 2002. Subsolidus and Melting Phase Relations of Basaltic Composition in the Uppermost Lower Mantle. Geochimica et Cosmochimica Acta, 66(12): 2099-2108. https://doi.org/10.1016/s0016-7037(02)00847-5
    Hirose, K., Kushiro, I., 1993. Partial Melting of Dry Peridotites at High Pressures: Determination of Compositions of Melts Segregated from Peridotite Using Aggregates of Diamond. Earth and Planetary Science Letters, 114(4): 477-489. https://doi.org/10.1016/0012-821X(93)90077-M
    Hirschmann, M. M., 2000. Mantle Solidus: Experimental Constraints and the Effects of Peridotite Composition. Geochemistry, Geophysics, Geosystems, 1(10): 1042. https://doi.org/10.1029/2000gc000070
    Hirschmann, M. M., 2010. Partial Melt in the Oceanic Low Velocity Zone. Physics of the Earth and Planetary Interiors, 179(1/2): 60-71. https://doi.org/10.1016/j.pepi.2009.12.003
    Hirschmann, M. M., Ghiorso, M. S., Wasylenki, L. E., et al., 1998. Calculation of Peridotite Partial Melting from Thermodynamic Models of Minerals and Melts. I. Review of Methods and Comparison with Experiments. Journal of Petrology, 39(6): 1091-1115. https://doi.org/10.1093/petroj/39.6.1091
    Ito, K., Kennedy, G. C., 1967. Melting and Phase Relations in a Natural Peridotite to 40 Kilobars. American Journal of Science, 265(6): 519-538. https://doi.org/10.2475/ajs.265.6.519
    Kato, T., Ringwood, A. E., Irifune, T., 1988. Constraints on Element Partition Coefficients between MgSiO3 Perovskite and Liquid Determined by Direct Measurements. Earth and Planetary Science Letters, 90(1): 65-68 doi: 10.1016/0012-821X(88)90111-2
    Lesher, C. E., Pickering-Witter, J., Baxter, G., et al., 2003. Melting of Garnet Peridotite: Effects of Capsules and Thermocouples, and Implications for the High-Pressure Mantle Solidus. American Mineralogist, 88(8/9): 1181-1189. https://doi.org/10.2138/am-2003-8-901
    Lesher, C. E., Walker, D., 1988. Cumulate Maturation and Melt Migration in a Temperature Gradient. Journal of Geophysical Research: Solid Earth, 93(B9): 10295-10311. https://doi.org/10.1029/jb093ib09p10295
    Li, L., 2009. Studies of Mineral Properties at Mantle Condition Using Deformation Multi-Anvil Apparatus. Progress in Natural Science, 19(11): 1467-1475. https://doi.org/10.1016/j.pnsc.2009.06.001
    Li, L., Weidner, D. J., 2013. Effect of Dynamic Melting on Acoustic Velocities in a Partially Molten Peridotite. Physics of the Earth and Planetary Interiors, 222: 1-7. https://doi.org/10.1016/j.pepi.2013.06.009
    Li, L., Weidner, D. J., 2014. Detection of Melting by X-Ray Imaging at High Pressure. Review of Scientific Instruments, 85(6): 065104. https://doi.org/10.13039/100000001
    Munro, R. G., 1997. Evaluated Material Properties for a Sintered Alpha-Alumina. Journal of the American Ceramic Society, 80(8): 1919-1928. https://doi.org/10.1111/j.1151-2916.1997.tb03074.x
    Ohtani, E., 1979. Melting Relation of Fe2SiO4 up to about 200 Kbar. Journal of Physics of the Earth, 27(3): 189-208. https://doi.org/10.4294/jpe1952.27.189
    Raterron, P., Merkel, S., Holyoke, C. W. III, 2013. Axial Temperature Gradient and Stress Measurements in the Deformation-DIA Cell Using Alumina Pistons. Review of Scientific Instruments, 84(4): 043906. https://doi.org/10.13039/100000015
    Smith, P. M., Asimow, P. D., 2005. Adiabat_1ph: A New Public Front-End to the MELTS, PMELTS, and PHMELTS Models. Geochemistry, Geophysics, Geosystems, 6(2): 1-8. https://doi.org/10.1029/2004gc000816
    Takahashi, E., 1986. Melting of a Dry Peridotite KLB-1 up to 14 GPa: Implications on the Origin of Peridotitic Upper Mantle. Journal of Geophysical Research, 91(B9): 9367-9382. https://doi.org/10.1029/jb091ib09p09367
    Takahashi, E., Shimazaki, T., Tsuzaki, Y., et al., 1993. Melting Study of a Peridotite KLB-1 to 6.5 GPa, and the Origin of Basaltic Magmas. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 342(1663): 105-120. https://doi.org/10.1098/rsta.1993.0008
    Walker, D., DeLong, S. E., 1982. Soret Separation of Mid-Ocean Ridge Basalt Magma. Contributions to Mineralogy and Petrology, 79(3): 231-240. https://doi.org/10.1007/bf00371514
    Walter, M., 1998. Melting of Garnet Peridotite and the Origin of Komatiite and Depleted Lithosphere. Journal of Petrology, 39(1): 29-60. https://doi.org/10.1093/petrology/39.1.29
    Weidner, D. J., Li, L., 2015. Kinetics of Melting in Peridotite from Volume Strain Measurements. Physics of the Earth and Planetary Interiors, 246: 25-30. https://doi.org/10.13039/100000015
    Yoshino, T., Takei, Y., Wark, D. A., et al., 2005. Grain Boundary Wetness of Texturally Equilibrated Rocks, with Implications for Seismic Properties of the Upper Mantle. Journal of Geophysical Research, 110(B8): 1-16. https://doi.org/10.1029/2004jb003544
    Zhang, J. Z., Herzberg, C., 1994. Melting Experiments on Anhydrous Peridotite KLB-1 from 5.0 to 22.5 GPa. Journal of Geophysical Research: Solid Earth, 99(B9): 17729-17742. https://doi.org/10.1029/94jb01406
    Zhu, W., Gaetani, G. A., Fusseis, F., et al., 2011. Microtomography of Partially Molten Rocks: Three-Dimensional Melt Distribution in Mantle Peridotite. Science, 332(6025): 88-91. https://doi.org/10.13039/100006151
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(4)

    Article Metrics

    Article views(606) PDF downloads(122) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return