Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 29 Issue 3
Aug 2018
Turn off MathJax
Article Contents
Benjun Ma, Shiguo Wu, Lijun Mi, Thomas Lüdmann, Jinwei Gao, Wei Gao. Mixed Carbonate-Siliciclastic Deposits in a Channel Complex in the Northern South China Sea. Journal of Earth Science, 2018, 29(3): 707-720. doi: 10.1007/s12583-018-0830-4
Citation: Benjun Ma, Shiguo Wu, Lijun Mi, Thomas Lüdmann, Jinwei Gao, Wei Gao. Mixed Carbonate-Siliciclastic Deposits in a Channel Complex in the Northern South China Sea. Journal of Earth Science, 2018, 29(3): 707-720. doi: 10.1007/s12583-018-0830-4

Mixed Carbonate-Siliciclastic Deposits in a Channel Complex in the Northern South China Sea

doi: 10.1007/s12583-018-0830-4
More Information
  • Corresponding author: Shiguo Wu, swu@idsse.ac.cn
  • Received Date: 28 May 2017
  • Accepted Date: 22 Sep 2017
  • Publish Date: 01 Jun 2018
  • New high-resolution 3D seismic data image a submarine channel complex in the northern slope of the South China Sea. The channel complex stretches hundreds of kilometers across the slope and flows into the deepsea from the siliciclastic shelf margin, linking neritic environment to the pelagic plain. The evolution of the channel complex developed two sedimentary stages, stage Ⅰ (19.1–18.5 Ma) and stage Ⅱ (18.5–17.5 Ma), separated by erosional surfaces. In the first stage, the complex was filled with pure siliciclastic sediments, forming thick-massive sandstone intercalated by thin layers of mudstone. During the stage Ⅱ, the channel complex was deposited five carbonate-siliciclastic cycles. The unexpected channel-fill carbonate deposits present allochthonous characteristics, suggesting the siliciclastic channel was surprisingly used to transport carbonate sediment from the adjacent neritic carbonate platform. By analyzing the periodical carbonate sedimentary process in the siliciclastic channel complex, we infer that it was related to the in situ carbonate production of the neritic carbonate platform and was most likely to be controlled by the relative sea-level changes. Unlike line-source carbonate slope aprons or small-sized carbonate channels, the large-sized siliciclastic channel complex links directly neritic carbonate platform to deepwater basin and can transport large volumes of neritic carbonates to the pelagic environment in a short period. The new findings help to estimate the contributions of neritic siliciclastic shelf and carbonate platform to deepwater slope more accurately. This study suggests that channel systems are more complex than expected and have significant implications on the conceptual models describing the deepwater sedimentary theory.

     

  • loading
  • Abreu, V., Sullivan, M., Pirmez, C., et al., 2003. Lateral Accretion Packages (LAPs): An Important Reservoir Element in Deep Water Sinuous Channels. Marine and Petroleum Geology, 20(6/7/8): 631-648. https://doi.org/10.1016/j.marpetgeo.2003.08.003
    Basilone, L., Sulli, A., 2016. A Facies Distribution Model Controlled by a Tectonically Inherited Sea Bottom Topography in the Carbonate Rimmed Shelf of the Upper Tithonian-Valanginian Southern Tethyan Continental Margin (NW Sicily, Italy). Sedimentary Geology, 342: 91-105. https://doi.org/10.1016/j.sedgeo.2016.06.013
    Beaufort, L., Lancelot, Y., Camberlin, P., et al., 1997. Insolation Cycles as a Major Control of Equatorial Indian Ocean Primary Production. Science, 278(5342): 1451-1454. https://doi.org/10.1126/science.278.5342.1451
    Betzler, C., Fürstenau, J., Lüdmann, T., et al., 2012. Sea-Level and Ocean-Current Control on Carbonate-Platform Growth, Maldives, Indian Ocean. Basin Research, 25(2): 172-196. https://doi.org/10.1111/j.1365-2117.2012.00554.x
    Betzler, C., Hübscher, C., Lindhorst, S., et al., 2009. Monsoon-Induced Partial Carbonate Platform Drowning (Maldives, Indian Ocean). Geology, 37(10): 867-870. https://doi.org/10.1130/g25702a.1
    Boardman, M. R., Neumann, A. C., 1984. Sources of Periplatform Carbonates: Northwest Providence Channel, Bahamas: REPLY. SEPM Journal of Sedimentary Research, 55: 1110-1123. https://doi.org/10.1306/212f885f-2b24-11d7-8648000102c1865d
    Braga, J. C., Martin, J. M., Wood, J. L., 2001. Submarine Lobes and Feeder Channels of Redeposited, Temperate Carbonate and Mixed Siliciclastic-Carbonate Platform Deposits (Vera Basin, Almeria, Southern Spain). Sedimentology, 48(1): 99-116. https://doi.org/10.1046/j.1365-3091.2001.00353.x
    Brandano, M., Ronca, S., 2014. Depositional Processes of the Mixed Carbonate-Siliciclastic Rhodolith Beds of the Miocene Saint-Florent Basin, Northern Corsica. Facies, 60(1): 73-90. https://doi.org/10.1007/s10347-013-0367-z
    Brandano, M., Tomassetti, L., Bosellini, F., et al., 2010. Depositional Model and Paleodepth Reconstruction of a Coral-Rich, Mixed Siliciclastic-Carbonate System: The Burdigalian of Capo Testa (northern Sardinia, Italy). Facies, 56(3): 433-444. https://doi.org/10.1007/s10347-009-0209-1
    Brenchley, P. J., Carden, G. A., Hints, L., et al., 2003. High-Resolution Stable Isotope Stratigraphy of Upper Ordovician Sequences: Constraints on the Timing of Bioevents and Environmental Changes Associated with Mass Extinction and Glaciation. Geological Society of America Bulletin, 115(1): 89-104. https://doi.org/10.1130/0016-7606(2003)115<0089:hrsiso>2.0.co;2 doi: 10.1130/0016-7606(2003)115<0089:hrsiso>2.0.co;2
    Camacho, H., Busby, C.J., Kneller, B., 2002. A New Depositional Model for the Classical Turbidite Locality at San Clemente State Beach, California. AAPG Bulletin, 86: 1543-1560. https://doi.org/10.1306/61eedcf6-173e-11d7-8645000102c1865d
    Chen, D. X., Wu, S. G., Völker, D., et al., 2015. Tectonically Induced, Deep-Burial Paleo-Collapses in the Zhujiang Miocene Carbonate Platform in the Northern South China Sea. Marine Geology, 364: 43-52. https://doi.org/10.13039/501100001809
    Chen, J. S., Xu, S. C., Sang, J. Y., 1994. The Depositional Characteristics and Oil Potential of Paleo Pearl River Delta Systems in the Pearl River Mouth Basin, South China Sea. Tectonophysics, 235(1/2): 1-11. https://doi.org/10.1016/0040-1951(94)90013-2
    Clark, J. D., Pickering, K. T., 1996. Submarine Channels: Process and Architecture. Vallies Press, London. 13-172
    Clift, P. D., 2006. Controls on the Erosion of Cenozoic Asia and the Flux of Clastic Sediment to the Ocean. Earth and Planetary Science Letters, 241(3/4): 571-580. https://doi.org/10.1016/j.epsl.2005.11.028
    Clift, P. D., Lee, J. I., Clark, M. K., et al., 2002. Erosional Response of South China to Arc Rifting and Monsoonal Strengthening: A Record from the South China Sea. Marine Geology, 184(3/4): 207-226. https://doi.org/10.1016/s0025-3227(01)00301-2
    Cronin, B. T., Hurst, A., Celik, H., et al., 2000. Superb Exposure of a Channel, Levee and Overbank Complex in an Ancient Deep-Water Slope Environment. Sedimentary Geology, 132(3/4): 205-216. https://doi.org/10.1016/s0037-0738(00)00008-7
    Cronin, B. T., Kidd, R. B., 1998. Heterogeneity and Lithotype Distribution in Ancient Deep-Sea Canyons: Point Lobos Deep-Sea Canyon as a Reservoir Analogue. Sedimentary Geology, 115(1/2/3/4): 315-349. https://doi.org/10.1016/s0037-0738(97)00099-7
    De Garidel-Thoron, T., Beaufort, L., Linsley, B. K., et al., 2001. Millennial-Scale Dynamics of the East Asian Winter Monsoon during the Last 200 000 Years. Paleoceanography, 16(5): 491-502. https://doi.org/10.1029/2000pa000557
    Deptuck, M. E., Sylvester, Z., Pirmez, C., et al., 2007. Migration-Aggradation History and 3-D Seismic Geomorphology of Submarine Channels in the Pleistocene Benin-Major Canyon, Western Niger Delta Slope. Marine and Petroleum Geology, 24(6/7/8/9): 406-433. https://doi.org/10.1016/j.marpetgeo.2007.01.005
    Di Celma, C., 2011. Sedimentology, Architecture, and Depositional Evolution of a Coarse-Grained Submarine Canyon Fill from the Gelasian (Early Pleistocene) of the Peri-Adriatic Basin, Offida, Central Italy. Sedimentary Geology, 238(3/4): 233-253. https://doi.org/10.1016/j.sedgeo.2011.05.003
    Dong, D. D., Wu, S. G., Li, J. B., et al., 2013. Tectonic Contrast between the Conjugate Margins of the South China Sea and the Implication for the Differential Extensional Model. Science China Earth Sciences, 57(6): 1415-1426. https://doi.org/10.1007/s11430-013-4740-0
    Dong, D. D., Zhang, G. C., Zhong, K., et al., 2009. Tectonic Evolution and Dynamics of Deepwater Area of Pearl River Mouth Basin, Northern South China Sea. Journal of Earth Science, 20(1): 147-159. https://doi.org/10.1007/s12583-009-0016-1
    Droxler, A. W., Schlager, W., 1985. Glacial Versus Interglacial Sedimentation Rates and Turbidite Frequency in the Bahamas. Geology, 13(11): 799. https://doi.org/10.1130/0091-7613(1985)13<799:gvisra>2.0.co;2 doi: 10.1130/0091-7613(1985)13<799:gvisra>2.0.co;2
    Droxler, A. W., Schlager, W., Whallon, C. C., 1983. Quaternary Aragonite Cycles and Oxygen-Isotope Record in Bahamian Carbonate Ooze. Geology, 11(4): 235. https://doi.org/10.1130/0091-7613(1983)11<235:qacaor>2.0.co;2 doi: 10.1130/0091-7613(1983)11<235:qacaor>2.0.co;2
    Erlich, R.N., Barrett, S.F., Ju, G.B., 1990. Seismic and Geologic Characteristics of Drowning Events on Carbonate Platforms: ABSTRACT. AAPG Bulletin, 74: 1523-1537. https://doi.org/10.1306/44b4b068-170a-11d7-8645000102c1865d
    Feng, Z., Zheng, W., 1982. Tectonic Evolution of Zhujiangkou (Pearl-River-Mouth) Basin and Origin of South China Sea. Acta Geologica Sinica, 56: 212-222 https://www.researchgate.net/publication/284040929_Tectonic_evolution_of_Zhujiangkou_Pearl_River_Mouth_basin_and_origin_of_South_China_Sea
    Ferro, C. E., Droxler, A. W., Anderson, J. B., et al. 1999. Late Quaternary Shift of Mixed Siliciclastic-Carbonate Environments Induced by Glacial Eustatic Sea-Level Fluctuations in Belize. 385-411. https://doi.org/10.2110/pec.99.11.0385.
    Francis, J. M., Daniell, J. J., Droxler, A. W., et al., 2008. Deep Water Geomorphology of the Mixed Siliciclastic-Carbonate System, Gulf of Papua. Journal of Geophysical Research, 113(F1): 1-22. https://doi.org/10.1029/2007jf000851
    Glaser, K. S., Droxler, A. W., 1991. High Production and Highstand Shedding from Deeply Submerged Carbonate Banks, Northern Nicaragua Rise. Journal of Sedimentary Research, 61(1): 128-142. https://doi.org/10.1306/d42676a4-2b26-11d7-8648000102c1865d
    Gong, C. L., Steel, R. J., Wang, Y. M., et al., 2016a. Grain Size and Transport Regime at Shelf Edge as Fundamental Controls on Delivery of Shelf-Edge Sands to Deepwater. Earth-Science Reviews, 157: 32-60. https://doi.org/10.13039/501100001809
    Gong, C. L., Wang, Y. M., Steel, R. J., et al., 2016b. Flow Processes and Sedimentation in Unidirectionally Migrating Deep-Water Channels: from a Three-Dimensional Seismic Perspective. Sedimentology, 63(3): 645-661. https://doi.org/10.13039/501100001809
    Gong, C. L., Wang, Y. M., Zhu, W. L., et al., 2013. Upper Miocene to Quaternary Unidirectionally Migrating Deep-Water Channels in the Pearl River Mouth Basin, Northern South China Sea. AAPG Bulletin, 97(2): 285-308. https://doi.org/10.1306/07121211159
    Gong, C. L., Wang, Y. M., Zhu, W., et al., 2011. The Central Submarine Canyon in the Qiongdongnan Basin, Northwestern South China Sea: Architecture, Sequence Stratigraphy, and Depositional Processes. Marine and Petroleum Geology, 28: 1690-1702. https://doi.org/10.1016/j.marpetgeo.2011.06.005
    Gong, Z., Jin, Q., Qiu, Z., et al., 1989. Geology, Tectonics and Evolution of the Pearl River Mouth Basin. Chinese Sedimentary Basins. Elsevier, Amsterdam. 181-196
    Grossman, E. L., Ku, T. L., 1986. Oxygen and Carbon Isotope Fractionation in Biogenic Aragonite: Temperature Effects. Chemical Geology: Isotope Geoscience section, 59: 59-74. https://doi.org/10.1016/0168-9622(86)90057-6
    Hanebuth, T. J. J., Stattegger, K., Schimanski, A., et al., 2003. Late Pleistocene Forced-Regressive Deposits on the Sunda Shelf (Southeast Asia). Marine Geology, 199(1/2): 139-157. https://doi.org/10.1016/s0025-3227(03)00129-4
    Harris, D. L., Webster, J. M., Vila-Concejo, A., et al., 2015. Late Holocene Sea-Level Fall and Turn-Off of Reef Flat Carbonate Production: Rethinking Bucket Fill and Coral Reef Growth Models. Geology, 43(2): 175-178. https://doi.org/10.1130/g35977.1
    Hopley, D., 1982. The Geomorphology of the Great Barrier Reef: Quaternary Development of Coral Reefs. Wiley, New York
    Iryu, Y., Nakamori, T., Matsuda, S., et al., 1995. Distribution of Marine Organisms and Its Geological Significance in the Modern Reef Complex of the Ryukyu Islands. Sedimentary Geology, 99(3/4): 243-258. https://doi.org/10.1016/0037-0738(95)00047-c
    Jorry, S. J., Droxler, A. W., Francis, J. M., 2010. Deepwater Carbonate Deposition in Response to Re-Flooding of Carbonate Bank and Atoll-Tops at Glacial Terminations. Quaternary Science Reviews, 29(17/18): 2010-2026. https://doi.org/10.1016/j.quascirev.2010.04.016
    Kane, I. A., Kneller, B. C., Dykstra, M., et al., 2007. Anatomy of a Submarine Channel-levee: An Example from Upper Cretaceous Slope Sediments, Rosario Formation, Baja California, Mexico. Marine and Petroleum Geology, 24(6/7/8/9): 540-563. https://doi.org/10.1016/j.marpetgeo.2007.01.003
    Kier, J. S., Pilkey, O. H., 1971. The Influence of Sea Level Changes on Sediment Carbonate Mineralogy, Tongue of the Ocean, Bahamas. Marine Geology, 11(3): 189-200. https://doi.org/10.1016/0025-3227(71)90006-5
    Kolla, V., Posamentier, H. W., Wood, L. J., 2007. Deep-Watand Fluvial Sinuous Channels—Characteristics, Similarities and Dissimilarities, and Modes of Formation. Marine and Petroleum Geology, 24(6/7/8/9): 388-405. https://doi.org/10.1016/j.marpetgeo.2007.01.007
    Kominz, M. A., Browning, J. V., Miller, K. G., et al., 2008. Late Cretaceous to Miocene Sea-Level Estimates from the New Jersey and Delaware Coastal Plain Coreholes: An Error Analysis. Basin Research, 20(2): 211-226. https://doi.org/10.1111/j.1365-2117.2008.00354.x
    Kreisa, R. D., 1981. Storm-Generated Sedimentary Structures in Subtidal Marine Facies with Examples from the Middle and Upper Ordovician of Southwestern Virginia. SEPM Journal of Sedimentary Research, 51: 823-848. https://doi.org/10.1306/212f7dbf-2b24-11d7-8648000102c1865d
    Leyla, B. H., Ren, J. Y., Zhang, J., et al., 2015. En Echelon Faults and Basin Structure in Huizhou Sag, South China Sea: Implications for the Tectonics of the SE Asia. Journal of Earth Science, 26(5): 690-699. https://doi.org/10.1007/s12583-015-0588-x
    Lüdmann, T., Wong, H. K., 1999. Neotectonic Regime on the Passive Continental Margin of the Northern South China Sea. Tectonophysics, 311(1/2/3/4): 113-138. https://doi.org/10.1016/s0040-1951(99)00155-9
    Lantzsch, H., Roth, S., Reijmer, J. J. G., et al., 2007. Sea-Level Related Resedimentation Processes on the Northern Slope of Little Bahama Bank (Middle Pleistocene to Holocene). Sedimentology, 54(6): 1307-1322. https://doi.org/10.1111/j.1365-3091.2007.00882.x
    Li, T. G., Zhao, J. T., Nan, Q. Y., et al., 2011. Palaeoproductivity Evolution in the Centre of the Western Pacific Warm Pool during the Last 250 ka. Journal of Quaternary Science, 26(5): 478-484. https://doi.org/10.1002/jqs.1471
    Li, T. G., Zhao, J. T., Sun, R. T., et al., 2010. The Variation of Upper Ocean Structure and Paleoproductivity in the Kuroshio Source Region during the Last 200 kyr. Marine Micropaleontology, 75(1/2/3/4): 50-61. https://doi.org/10.1016/j.marmicro.2010.02.005
    Lubeseder, S., Redfern, J., Boutib, L., 2009. Mixed Siliciclastic-Carbonate Shelf Sedimentation—Lower Devonian Sequences of the SW Anti-Atlas, Morocco. Sedimentary Geology, 215(1/2/3/4): 13-32. https://doi.org/10.1016/j.sedgeo.2008.12.005
    Ma, B. J., Wu, S. G., Sun, Q. L., et al., 2015. The Late Cenozoic Deep-Water Channel System in the Baiyun Sag, Pearl River Mouth Basin: Development and Tectonic Effects. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 122: 226-239. https://doi.org/10.13039/501100001809
    McHargue, T., Pyrcz, M. J., Sullivan, M. D., et al., 2011. Architecture of Turbidite Channel Systems on the Continental Slope: Patterns and Predictions. Marine and Petroleum Geology, 28(3): 728-743. https://doi.org/10.1016/j.marpetgeo.2010.07.008
    Mellere, D., Plink-Bjorklund, P., Steel, R., 2002. Anatomy of Shelf Deltas at the Edge of a Prograding Eocene Shelf Margin, Spitsbergen. Sedimentology, 49(6): 1181-1206. https://doi.org/10.1046/j.1365-3091.2002.00484.x
    Miller, K. G., Kominz, M. A., Browning, J. V., et al., 2005. The Phanerozoic Record of Global Sea-Level Change. Science, 310: 1293-1298. http://www.jstor.org/stable/3843203
    Mitchum, R. M. Jr., Vail, P. R., Thompson ⅲ, S., 1977. Seismic Stratigraphy and Global Changes of Sea levEl: Part 2. The Depositional Sequence as a Basic Unit for Stratigraphic Analysis: Section 2. Application of Seismic Reflection Configuration to Stratigraphic Interpretation. AAPG Special Volumes, 165: 53-62 http://archives.datapages.com/data/specpubs/seismic1/data/a165/a165/0001/0050/0053.htm
    Mount, J. F., 1984. Mixing of Siliciclastic and Carbonate Sediments in Shallow Shelf Environments. Geology, 12(7): 432. https://doi.org/10.1130/0091-7613(1984)12<432:mosacs>2.0.co;2 doi: 10.1130/0091-7613(1984)12<432:mosacs>2.0.co;2
    Mutti, E., Normark, W. R., 1991. An Integrated Approach to the Study of Turbidite Systems. Springer, New York. 75-106
    Lancelot, Y., Beaufort, L., 1997. Insolation Cycles as a Major Control of Equatorial Indian Ocean Primary Production. Science 278: 1451-1454 doi: 10.1126/science.278.5342.1451
    Normark, W. R., 1978. Fan Valleys, Channels, and Depositional Lobes on Modern Submarine Fans: Characters for Recognition of Sandy Turbidite Environments. AAPG Bulletin, 62: 912-931. https://doi.org/10.1306/c1ea4f72-16c9-11d7-8645000102c1865d
    Normark, W. R., Piper, D. J. W., 1969. Deep-Sea Fan-Valleys, Past and Present. Geological Society of America Bulletin, 80(9): 1859. https://doi.org/10.1130/0016-7606(1969)80[1859:dfpap]2.0.co;2
    Pang, X., Chen, C. M., Peng, D. J., et al., 2007. Sequence Stratigraphy of Deep-Water Fan System of Pearl River, South China Sea. Earth Science Frontiers, 14(1): 220-229. https://doi.org/10.1016/s1872-5791(07)60010-4
    Payros, A., Pujalte, V., 2008. Calciclastic Submarine Fans: An Integrated Overview. Earth-Science Reviews, 86(1/2/3/4): 203-246. https://doi.org/10.1016/j.earscirev.2007.09.001
    Porębski, S. J., Steel, R. J., 2003. Shelf-Margin Deltas: Their Stratigraphic Significance and Relation to Deepwater Sands. Earth-Science Reviews, 62(3/4): 283-326. https://doi.org/10.1016/s0012-8252(02)00161-7
    Puga-Bernabéu, Á., Webster, J. M., Beaman, R. J., et al., 2011. Morphology and Controls on the Evolution of a Mixed Carbonate-siliciclastic Submarine Canyon System, Great Barrier Reef Margin, North-Eastern Australia. Marine Geology, 289(1/2/3/4): 100-116. https://doi.org/10.1016/j.margeo.2011.09.013
    Reading, H. G., Richards, M. T., 1994. The Classification of Deep-Water Siliciclastic Depositional Systems by Grain Size and Feeder Systems. AAPG Bulletin, 78: 792-822 http://www.doc88.com/p-319747621107.html
    Sattler, U., Immenhauser, A., Schlager, W., et al., 2009. Drowning History of a Miocene Carbonate Platform (Zhujiang Formation, South China Sea). Sedimentary Geology, 219(1/2/3/4): 318-331. https://doi.org/10.1016/j.sedgeo.2009.06.001
    Sattler, U., Zampetti, V., Schlager, W., et al., 2004. Late Leaching under Deep Burial Conditions: A Case Study from the Miocene Zhujiang Carbonate Reservoir, South China Sea. Marine and Petroleum Geology, 21(8): 977-992. https://doi.org/10.1016/j.marpetgeo.2004.05.005
    Shanmugam, G., 2000. 50 Years of the Turbidite Paradigm (1950s-1990s): Deep-Water Processes and Facies Models—A Critical Perspective. Marine and Petroleum Geology, 17(2): 285-342. https://doi.org/10.1016/s0264-8172(99)00011-2
    Su, N., He, Z., 1987. The Characteristics of Fault Activities in the Pearl River Mouth Basin and Their Control of Hydrocarbons, Collection of Papers from the International Petroleum Geological Convention, Northern South China Sea Continental Shelf, China. China Oil Magazine (Hong Kong). 2: 191-216 https://www.researchgate.net/publication/279574926_Geological_characteristics_and_exploration_objectives_of_hydrocarbons_in_the_northern_continental_margin_basin_of_South_China_Sea
    Sun, Q. L., Wu, S. G., Cartwright, J., et al., 2012. Shallow Gas and Focused Fluid Flow Systems in the Pearl River Mouth Basin, Northern South China Sea. Marine Geology, 315-318: 1-14. https://doi.org/10.1016/j.margeo.2012.05.003
    Sun, Q. L., Wu, S. G., Cartwright, J., et al., 2014. Neogene Igneous Intrusions in the Northern South China Sea: Evidence from High-Resolution Three Dimensional Seismic Data. Marine and Petroleum Geology, 54: 83-95. https://doi.org/10.1016/j.marpetgeo.2014.02.014
    Sun, Q. L., Alves, T., Xie, X. N., et al., 2017. Free Gas Accumulations in Basal Shear Zones of Mass-Transport Deposits (Pearl River Mouth Basin, South China Sea): An Important Geohazard on Continental Slope Basins. Marine and Petroleum Geology, 81: 17-32. https://doi.org/10.1016/j.marpetgeo.2016.12.029
    Tcherepanov, E. N., Droxler, A. W., Lapointe, P., et al., 2008. Neogene Evolution of the Mixed Carbonate-Siliciclastic System in the Gulf of Papua, Papua New Guinea. Journal of Geophysical Research, 113(F1): 1-15. https://doi.org/10.1029/2006jf000684
    Tcherepanov, E. N., Droxler, A. W., Lapointe, P., et al., 2010. Siliciclastic Influx and Burial of the Cenozoic Carbonate System in the Gulf of Papua. Marine and Petroleum Geology, 27(2): 533-554. https://doi.org/10.1016/j.marpetgeo.2009.09.002
    Turner, N. L., 1990. The Lower Miocene Liuhua Carbonate Reservoir, Pearl River Mouth Basin, Offshore Peoples Republic of China: Abstract. AAPG Bulletin, 74: 1006-1007. https://doi.org/10.1306/44b4bea0-170a-11d7-8645000102c1865d
    Vail, P. R., Mitchum Jr, R. M., Thompson ⅲ, S., 1977. Seismic Stratigraphy and Global Changes of Sea Level: Part 4. Global Cycles of Relative Changes of Sea Level: Section 2. Application of Seismic Reflection Configuration to Stratigraphic Interpretation. 83-97
    Valladares, M. I., 1995. Siliciclastic-Carbonate Slope Apron in an Immature Tensional Margin (Upper Precambrian-Lower Cambrian), Central Iberian Zone, Salamanca, Spain. Sedimentary Geology, 94(3/4): 165-186. https://doi.org/10.1016/0037-0738(94)00085-9
    Van Wagoner, J. C., Posamentier, H. W., Mitchum, R. M., 1988. An Overview of the Fundamentals of Sequence Stratigraphy and Key Definitions. Sea-Level Changes—An Integrated Approach SEPM Special Publication, 42: 39-45. https://doi.org/10.2110/pec.88.01.0039
    Vecsei, A., Sanders, D. G. K., 1997. Sea-Level Highstand and Lowstand Shedding Related to Shelf Margin Aggradation and Emersion, Upper Eocene-Oligocene of Maiella Carbonate Platform, Italy. Sedimentary Geology, 112(3/4): 219-234. https://doi.org/10.1016/s0037-0738(97)00044-4
    Vigorito, M., Murru, M., Simone, L., 2005. Anatomy of a Submarine Channel System and Related Fan in a Foramol/Rhodalgal Carbonate Sedimentary Setting: A Case History from the Miocene Syn-Rift Sardinia Basin, Italy. Sedimentary Geology, 174(1/2): 1-30. https://doi.org/10.1016/j.sedgeo.2004.10.003
    Vigorito, M., Murru, M., Simone, L., 2006. Architectural Patterns in a Multistorey Mixed Carbonate-siliciclastic Submarine Channel, Porto Torres Basin, Miocene, Sardinia, Italy. Sedimentary Geology, 186(3/4): 213-236. https://doi.org/10.1016/j.sedgeo.2005.11.017
    Wan, S. M., Clift, P. D., Li, A. C., et al., 2010a. Geochemical Records in the South China Sea: Implications for East Asian Summer Monsoon Evolution over the Last 20 Ma. Geological Society, London, Special Publications, 342(1): 245-263. https://doi.org/10.1144/sp342.14
    Wan, S. M., Li, A. C., Clift, P. D., et al., 2010b. Increased Contribution of Terrigenous Supply from Taiwan to the Northern South China Sea since 3 Ma. Marine Geology, 278(1/2/3/4): 115-121. https://doi.org/10.1016/j.margeo.2010.09.008
    Wang, G. H., Wang, H., Gan, H. J., et al., 2016. Paleogene Tectonic Evolution Controls on Sequence Stratigraphic Patterns in the Fushan Sag, Northern South China Sea. Journal of Earth Science, 27(4): 654-669. https://doi.org/10.1007/s12583-015-0645-5
    Wilson, P. A., Roberts, H. H., 1992. Carbonate-Periplatform Sedimentation by Density Flows: A Mechanism for Rapid Off-Bank and Vertical Transport of Shallow-Water Fines. Geology, 20(8): 713. https://doi.org/10.1130/0091-7613(1992)020<0713:cpsbdf>2.3.co;2 doi: 10.1130/0091-7613(1992)020<0713:cpsbdf>2.3.co;2
    Wilson, P. A., Roberts, H. H., 1995. Density Cascading: Off-Shelf Sediment Transport, Evidence and Implications, Bahama Banks. SEPM Journal of Sedimentary Research, 65A: 45-56. https://doi.org/10.1306/d426801d-2b26-11d7-8648000102c1865d
    Xie, H., Zhou, D., Li, Y. P., et al., 2014. Cenozoic Tectonic Subsidence in Deepwater Sags in the Pearl River Mouth Basin, Northern South China Sea. Tectonophysics, 615/616: 182-198. https://doi.org/10.1016/j.tecto.2014.01.010
    Zhou, D., Sun, Z., Liao, J., et al., 2009. Filling History and Post-Breakup Acceleration of Sedimentation in Baiyun Sag, Deepwater Northern South China Sea. Journal of Earth Science, 20(1): 160-171. https://doi.org/10.1007/s12583-009-0015-2
    Zhu, M. Z., Graham, S., Pang, X., et al., 2010. Characteristics of Migrating Submarine Canyons from the Middle Miocene to Present: Implications for Paleoceanographic Circulation, Northern South China Sea. Marine and Petroleum Geology, 27(1): 307-319. https://doi.org/10.1016/j.marpetgeo.2009.05.005
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views(771) PDF downloads(37) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return