Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 29 Issue 3
Aug 2018
Turn off MathJax
Article Contents
Fuyuan An, Zhongping Lai, Xiangjun Liu, Yixuan Wang, Qiufang Chang, Baoliang Lu, Xiaoyun Yang. Luminescence Chronology and Radiocarbon Reservoir Age Determination of Lacustrine Sediments from the Heihai Lake, NE Qinghai-Tibetan Plateau and Its Paleoclimate Implications. Journal of Earth Science, 2018, 29(3): 695-706. doi: 10.1007/s12583-017-0972-9
Citation: Fuyuan An, Zhongping Lai, Xiangjun Liu, Yixuan Wang, Qiufang Chang, Baoliang Lu, Xiaoyun Yang. Luminescence Chronology and Radiocarbon Reservoir Age Determination of Lacustrine Sediments from the Heihai Lake, NE Qinghai-Tibetan Plateau and Its Paleoclimate Implications. Journal of Earth Science, 2018, 29(3): 695-706. doi: 10.1007/s12583-017-0972-9

Luminescence Chronology and Radiocarbon Reservoir Age Determination of Lacustrine Sediments from the Heihai Lake, NE Qinghai-Tibetan Plateau and Its Paleoclimate Implications

doi: 10.1007/s12583-017-0972-9
More Information
  • Corresponding author: Fuyuan An, dongzhu8@sina.com
  • Received Date: 24 Apr 2017
  • Accepted Date: 01 Sep 2017
  • Publish Date: 01 Jun 2018
  • The accurately determining the lake 14C reservoir age has a crucial significance for climatic reconstruction. In this study, the optically stimulated luminescence (OSL) dating method is employed to date samples from highstand lacustrine sediments, palaeoshoreline, fluvial terrace, and the alluvial fan of the Heihai Lake catchment. Accelerator mass spectrometry (AMS) 14C dating was also used to date fossil plants from highstand lacustrine sediments. Based on the calculations of linear regression with OSL against radiocarbon ages for same layers of two sections, the quantitative 14C reservoir ages were estimated to lie between 3 353 and 3 464 yr during the 1.8 to 2.4 ka, which showed temporal variation. The sources of old carbon are the dissolution of carbonate bedrocks distributed along the Kunlun Mountain. The OSL ages of the different members of the hydatogen sedimentary system at Heihai Lake catchment indicate that a stronger hydrologic condition occurred from 3.0±0.2 to 1.8±0.2 ka, with a maximum lake level of 9 m higher than present. This humid stage was widely recorded in different sediments on the QTP and Chinese Loess Plateau (CLP), indicating its broad synchronicity across the Asian Summer Monsoon region. The enhanced East Asian Summer Monsoon (EASM) and the Indian Summer Monsoon (ISM) resulted in the increase of moisture availability for the Heihai Lake area during this stage.

     

  • loading
  • Aitken, M. J., 1985. Thermoluminescence Dating. Academic Press, London
    Aitken, M. J., 1998. An introduction to Optical Dating. Oxford University Press, Oxford
    An, F. Y., Lai, Z. P., Liu, X. J., et al., 2018. Abnormal Rb/Sr Ratio in Lacustrine Sediments of Qaidam Basin, NE Qinghai-Tibetan Plateau: A Significant Role of Aeolian Dust Input. Quaternary International, 469: 44-57. https://doi.org/10.1016/j.quaint.2016.12.050
    An, F. Y., Ma, H. Z., Wei, H. C., et al., 2012. Distinguishing Aeolian Signature from Lacustrine Sediments of the Qaidam Basin in Northeastern Qinghai-Tibetan Plateau and Its Palaeoclimatic Implications. Aeolian Research, 4(6): 17-30. https://doi.org/10.1016/j.aeolia.2011.12.004
    An, Z. S., Colman, S. M., Zhou, W. J., et al., 2012. Interplay between the Westerlies and Asian Monsoon Recorded in Lake Qinghai Sediments since 32 Ka. Scientific Reports, 2(8): 619-625. https://doi.org/10.1038/srep00619
    An, Z. S., Porter, S. C., Kutzbach, J. E., et al., 2000. Asynchronous Holocene Optimum of the East Asian Monsoon. Quaternary Science Reviews, 19(8): 743-762. https://doi.org/10.1016/S0277-3791(99)00031-1
    Bureau of Geology and Mineral Resources of Qinghai Province, 1991. Regional Geology of Qinghai Province. Geological Publishing House, Beijing (in Chinese with English Abstract)
    Chang, Q. F., Lai, Z. P., An, F. Y., et al., 2017. Chronology for Terraces of the Nalinggele River in the North Qinghai-Tibet Plateau and Implications for Salt Lake Resource Formation in the Qaidam Basin. Quaternary International, 430: 12-20. https://doi.org/10.1016/j.quaint.2016.02.022
    Chen, F. H., Li, J. J., Zhang, W. X., 1991. Loess Stratigraphy of the Lanzhou Profile and Its Comparison with Deep-Sea Sediment and Ice Core Record. GeoJournal, 24(2): 201-209. https://doi.org/10.1007/bf00186017
    Chen, F. H., Yu, Z. C., Yang, M. L., et al., 2008. Holocene Moisture Evolution in Arid Central Asia and Its Out-Of-Phase Relationship with Asian Monsoon History. Quaternary Science Reviews, 27(3/4): 351-364. https://doi.org/10.1016/j.quascirev.2007.10.017
    Clemens, S. C., Prell, W. L., Sun, Y. B., 2010. Orbital-Scale Timing and Mechanisms Driving Late Pleistocene Indo-Asian Summer Monsoons: Reinterpreting Cave Speleothem δ18O. Paleoceanography, 25(4): 545-558. https://doi.org/10.1029/2010pa001926
    Dong, G. H., Ren, L. L., Jia, X., et al., 2016. Chronology and Subsistence Strategy of Nuomuhong Culture in the Tibetan Plateau. Quaternary International, 426: 42-49. https://doi.org/10.1016/j.quaint.2016.02.031
    E, C. Y., Lai, Z. P., Hou, G. L., et al., 2015. Age Determination for a Neolithic Site in Northeastern Qinghai-Tibetan Plateau Using a Combined Luminescence and Radiocarbon Dating. Quaternary Geochronology, 30: 411-415. https://doi.org/10.1016/j.quageo.2015.01.007
    Fan, Q. S., Ma, H. Z., Cao, G. C., et al., 2012. Geomorphic and Chronometric Evidence for High Lake Level History in Gahai Lake and Toson Lake of North-Eastern Qaidam Basin, North-Eastern Qinghai-Tibetan Plateau. Journal of Quaternary Science, 27(8): 819-827. https://doi.org/10.1002/jqs.2572
    Fan, Q. S., Ma, H. Z., Wei, H. C., et al., 2014. Holocene Lake-Level Changes of Hurleg Lake on Northeastern Qinghai-Tibetan Plateau and Possible Forcing Mechanism. The Holocene, 24(3): 274-283. https://doi.org/10.1177/0959683613517399
    Gasse, F., Fontes, J. C., van Campo, E., et al., 1996. Holocene Environmental Changes in Bangong Co Basin (Western Tibet). Part 4: Discussion and Conclusions. Palaeogeography, Palaeoclimatology, Palaeoecology, 120(1/2): 79-92. https://doi.org/10.1016/0031-0182(95)00035-6
    Geyh, M. A., Krumbein, W. E., Kudrass, H. -R., 1974. Unreliable 14C Dating of Long-Stored Deep-Sea Sediments Due to Bacterial Activity. Marine Geology, 17(1): M45-M50. https://doi.org/10.1016/0025-3227(74)90043-7
    Geyh, M. A., Schotterer, U., Grosjean, M., 1997. Temporal Changes of the 14C Reservoir Effect in Lakes. Radiocarbon, 40(2): 921-931. https://doi.org/10.1017/s0033822200018890
    Gu, Z. Y., Liu, J. Q., Yuan, B. Y., et al., 1993. Monsoon Variations of the Qinghai-Xizang Plateau during the Last 12, 000 Years—Geochemical Evidence from the Sediments in the Siling Lake. Chinese Science Bulletin, 38(7): 577-581 (in Chinese with English Abstract) http://www.cqvip.com/QK/86894X/199307/4001507675.html
    Herzschuh, U., 2006. Palaeo-Moisture Evolution in Monsoonal Central Asia during the Last 50 000 Years. Quaternary Science Reviews, 25(1/2): 163-178. https://doi.org/10.1016/j.quascirev.2005.02.006
    Hong, Y. T., Hong, B., Lin, Q. H., et al., 2003. Correlation between Indian Ocean Summer Monsoon and North Atlantic Climate during the Holocene. Earth and Planetary Science Letters, 211(3/4): 371-380. https://doi.org/10.1016/s0012-821x(03)00207-3
    Hou, J. Z., D'Andrea, W. J., Liu, Z. H., 2012a. The Influence of 14C Reservoir Age on Interpretation of Paleolimnological Records from the Tibetan Plateau. Quaternary Science Reviews, 48: 67-79. https://doi.org/10.1016/j.quascirev.2012.06.008
    Hou, J. Z., D'Andrea, W. J., Liu, Z. H., 2012b. Geochronological Limitations for Interpreting the Paleoclimatic History of the Tibetan Plateau. Quaternary Sciences, 32 (3): 441-452. https://doi.org/10.3969/j.issn.1001-7410.2012.03.10 (in Chinese with English Abstract)
    Hou, J. Z., Huang, Y. S., Zhao, J., et al., 2016. Large Holocene Summer Temperature Oscillations and Impact on the Peopling of the Northeastern Tibetan Plateau. Geophysical Research Letters, 43(3): 1323-1330. https://doi.org/10.1002/2015gl067317
    Kenworthy, M. K., Rittenour, T. M., Pierce, J. L., et al., 2014. Luminescence Dating without Sand Lenses: An Application of OSL to Coarse-Grained Alluvial Fan Deposits of the Lost River Range, Idaho, USA. Quaternary Geochronology, 23(10): 9-25. https://doi.org/10.1016/j.quageo.2014.03.004
    Lai, Z. P., 2010. Chronology and the Upper Dating Limit for Loess Samples from Luochuan Section in the Chinese Loess Plateau Using Quartz OSL SAR Protocol. Journal of Asian Earth Sciences, 37(2): 176-185. https://doi.org/10.1016/j.jseaes.2009.08.003
    Lai, Z. P., Brückner, H., 2008. Effects of Feldspar Contamination on Equivalent Dose and the Shape of Growth Curve for OSL of Silt-Sized Quartz Extracted from Chinese Loess. Geochronometria, 30(1): 49-53. https://doi.org/10.2478/v10003-008-0010-0
    Lai, Z. P., Wintle, A. G., 2006. Locating the Boundary between the Pleistocene and the Holocene in Chinese Loess Using Luminescence. The Holocene, 16(6): 893-899. https://doi.org/10.1191/0959683606hol980rr
    Lai, Z. P., Zöller, L., Fuchs, M., et al., 2008. Alpha Efficiency Determination for OSL of Quartz Extracted from Chinese Loess. Radiation Measurements, 43(2/3/4/5/6): 767-770. https://doi.org/10.1016/j.radmeas.2008.01.022
    Lehmkuhl, F., 1997. Late Pleistocene, Late-Glacial and Holocene Glacier Advances on the Tibetan Plateau. Quaternary International, 38/39: 77-83. https://doi.org/10.1016/s1040-6182(96)00025-0
    Liu, H., Liu, W. G., 2016. N-Alkane Distributions and Concentrations in Algae, Submerged Plants and Terrestrial Plants from the Qinghai-Tibetan Plateau. Organic Geochemistry, 99: 10-22. https://doi.org/10.1016/j.orggeochem.2016.06.003
    Liu, K., Lai, Z. P., 2012. Chronology of Holocene Sediments from the Archaeological Salawusu Site in the Mu Us Desert in China and Its Palaeoenvironmental Implications. Journal of Asian Earth Sciences, 45(4): 247-255. https://doi.org/10.1016/j.jseaes.2011.11.002
    Liu, X. J., Lai, Z. P., Fan, Q. S., et al., 2010. Timing for High Lake Levels of Qinghai Lake in the Qinghai-Tibetan Plateau since the Last Interglaciation Based on Quartz OSL Dating. Quaternary Geochronology, 5(2/3): 218-222. https://doi.org/10.1016/j.quageo.2009.03.010
    Liu, X. J., Lai, Z. P., Madsen, D., et al., 2011. Lake Level Variations of Qinghai Lake in Northeastern Qinghai-Tibetan Plateau since 3.7 ka Based on OSL Dating. Quaternary International, 236(1/2): 57-64. https://doi.org/10.1016/j.quaint.2010.08.009
    Liu, X. J., Lai, Z. P., Madsen, D., et al., 2015. Last Deglacial and Holocene Lake Level Variations of Qinghai Lake, North-Eastern Qinghai-Tibetan Plateau. Journal of Quaternary Science, 30(3): 245-257. https://doi.org/10.1002/jqs.2777
    Liu, X. Q., Dong, H. L., Yang, X. D., et al., 2009. Late Holocene Forcing of the Asian Winter and Summer Monsoon as Evidenced by Proxy Records from the Northern Qinghai-Tibetan Plateau. Earth and Planetary Science Letters, 280(1/2/3/4): 276-284. https://doi.org/10.1016/j.epsl.2009.01.041
    Lockot, G., Ramisch, A., Wünnemann, B., et al., 2015. A Process- and Provenance-Based Attempt to Unravel Inconsistent Radiocarbon Chronologies in Lake Sediments: An Example from Lake Heihai, North Tibetan Plateau (China). Radiocarbon, 57(5): 1003-1019. https://doi.org/10.2458/azu_rc.57.18221
    Long, H., Lai, Z. P., Wang, N. A., et al., 2011. A Combined Luminescence and Radiocarbon Dating Study of Holocene Lacustrine Sediments from Arid Northern China. Quaternary Geochronology, 6(1): 1-9. https://doi.org/10.1016/j.quageo.2010.06.001
    Marcott, S. A., Shakun, J. D., Clark, P. U., et al., 2013. A Reconstruction of Regional and Global Temperature for the Past 11, 300 Years. Science, 339(6124): 1198-1201. https://doi.org/10.1126/science.1228026
    Mischke, S., Aichner, B., Diekmann, B., et al., 2010. Ostracods and Stable Isotopes of a Late Glacial and Holocene Lake Record from the NE Tibetan Plateau. Chemical Geology, 276(1/2): 95-103. https://doi.org/10.1016/j.chemgeo.2010.06.003
    Mischke, S., Weynell, M., Zhang, C. J., et al., 2013. Spatial Variability of 14C Reservoir Effects in Tibetan Plateau Lakes. Quaternary International, 313/314: 147-155. https://doi.org/10.1016/j.quaint.2013.01.030
    Mügler, I., Gleixner, G., Günther, F., et al., 2009. A Multi-Proxy Approach to Reconstruct Hydrological Changes and Holocene Climate Development of Nam Co, Central Tibet. Journal of Paleolimnology, 43(4): 625-648. https://doi.org/10.1007/s10933-009-9357-0
    Murray, A. S., Wintle, A. G., 2000. Luminescence Dating of Quartz Using an Improved Single-Aliquot Regenerative-Dose Protocol. Radiation Measurements, 32(1): 57-73. https://doi.org/10.1016/s1350-4487(99)00253-x
    Murray, A. S., Wintle, A. G., 2003. The Single Aliquot Regenerative Dose Protocol: Potential for Improvements in Reliability. Radiation Measurements, 37(4/5): 377-381. https://doi.org/10.1016/s1350-4487(03)00053-2
    Prescott, J. R., Hutton, J. T., 1994. Cosmic Ray Contributions to Dose Rates for Luminescence and ESR Dating: Large Depths and Long-Term Time Variations. Radiation Measurements, 23(2/3): 497-500. https://doi.org/10.1016/1350-4487(94)90086-8
    Ramisch, A., Lockot, G., Haberzettl, T., et al., 2016. A Persistent Northern Boundary of Indian Summer Monsoon Precipitation over Central Asia during the Holocene. Scientific Reports, 6(1): 25791. https://doi.org/10.1038/srep25791
    Ran, M., Feng, Z. D., 2013. Holocene Moisture Variations across China and Driving Mechanisms: A Synthesis of Climatic Records. Quaternary International, 313/314: 179-193. https://doi.org/10.1016/j.quaint.2013.09.034
    Reimer, P. J., Baillie, M. G. L., Bard, E., et al., 2004. IntCal04 Terrestrial Radiocarbon Age Calibration, 0-26 Cal Kyr BP. Radiocarbon, 46(3): 1029-1058. https://doi.org/10.1017/s0033822200032999
    Shen, Z. X., Bloemendal, J., Mauz, B., et al., 2008. Holocene Environmental Reconstruction of Sediment-Source Linkages at Crummock Water, English Lake District, Based on Magnetic Measurements. The Holocene, 18(1): 129-140. https://doi.org/10.1177/0959683607085604
    Stauch, G., Schulte, P., Ramisch, A., et al., 2017. Landscape and Climate on the Northern Tibetan Plateau during the Late Quaternary. Geomorphology, 286: 78-92. https://doi.org/10.1016/j.geomorph.2017.03.008
    Thomas, P. J., Murray, A. S., Sandgren, P., 2003. Age Limit and Age Underestimation Using Different OSL Signals from Lacustrine Quartz and Polymineral Fine Grains. Quaternary Science Reviews, 22(10/11/12/13): 1139-1143. https://doi.org/10.1016/s0277-3791(03)00045-3
    Tian, L., Yao, T., MacClune, K., et al., 2007. Stable Isotopic Variations in West China: A Consideration of Moisture Sources. Journal of Geophysical Research: Atmospheres, 112(D10): 185-194. https://doi.org/10.1029/2006jd007718
    Wang, A., Smith, J. A., Wang, G. C., et al., 2009. Late Quaternary River Terrace Sequences in the Eastern Kunlun Range, Northern Tibet: A Combined Record of Climatic Change and Surface Uplift. Journal of Asian Earth Sciences, 34(4): 532-543. https://doi.org/10.1016/j.jseaes.2008.09.003
    Wang, W., Feng, Z., Ran, M., et al., 2013. Holocene Climate and Vegetation Changes Inferred from Pollen Records of Lake Aibi, Northern Xinjiang, China: A Potential Contribution to Understanding of Holocene Climate Pattern in East-Central Asia. Quaternary International, 311: 54-62. https://doi.org/10.1016/j.quaint.2013.07.034
    Wang, X., Zhou, A., Sun, Z., 2016. Spatial and Temporal Dynamics of Lakes in Nam Co Basin, 1991-2011. Journal of Earth Science, 27(1): 130-138. https://doi.org/10.1007/s12583-016-0634-3
    Wang, Y., Shen, J., Wu, J. L., et al., 2007. Hard-Water Effect Correction of Lacustrine Sediment Ages Using the Relationship between 14C Levels in Lake Waters and in the Atomosphere: The Case of Lake Qinghai. Journal of Lake Sciences, 19(5): 504-508. https://doi.org/10.18307/2007.0502 (in Chinese with English Abstract)
    Watanabe, T., Matsunaka, T., Nakamura, T., et al., 2010. Changes of Organic Matter Sources in Sediment Cores from a High-Altitude Lake (Pumoyum Co, Southeastern Tibetan Plateau) over the Last 19 000 Years. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 268(7/8): 1070-1072. https://doi.org/10.1016/j.nimb.2009.10.100
    Wintle, A. G., Murray, A. S., 2006. A Review of Quartz Optically Stimulated Luminescence Characteristics and Their Relevance in Single-Aliquot Regeneration Dating Protocols. Radiation Measurements, 41(4): 369-391. https://doi.org/10.1016/j.radmeas.2005.11.001
    Wu, Y. H., Wang, S. M., Zhou, L. P., 2011. Possible Factors Causing Older Radiocarbon Age for Bulk Organic Matter in Sediment from Daihai Lake, North China. Radiocarbon, 53(2): 359-366. https://doi.org/10.1017/s0033822200056617
    Yan, D. D., Wünnemann, B., 2014. Late Quaternary Water Depth Changes in Hala Lake, Northeastern Tibetan Plateau, Derived from Ostracod Assemblages and Sediment Properties in Multiple Sediment Records. Quaternary Science Reviews, 95: 95-114. https://doi.org/10.1016/j.quascirev.2014.04.030
    Yang, B., Qin, C., Wang, J., et al., 2014. A 3 500-Year Tree-Ring Record of Annual Precipitation on the Northeastern Tibetan Plateau. Proceedings of the National Academy of Sciences, 111(8): 2903-2908. https://doi.org/10.1073/pnas.1319238111
    Yang, K., Wu, H., Qin, J., et al., 2014. Recent Climate Changes over the Tibetan Plateau and Their Impacts on Energy and Water Cycle: A Review. Global and Planetary Change, 112: 79-91. https://doi.org/10.1016/j.gloplacha.2013.12.001
    Yu, L. P., Lai, Z. P., 2012. OSL Chronology and Palaeoclimatic Implications of Aeolian Sediments in the Eastern Qaidam Basin of the Northeastern Qinghai-Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 337/338: 120-129. https://doi.org/10.1016/j.palaeo.2012.04.004
    Yu, L. P., Lai, Z. P., 2014. Holocene Climate Change Inferred from Stratigraphy and OSL Chronology of Aeolian Sediments in the Qaidam Basin, Northeastern Qinghai-Tibetan Plateau. Quaternary Research, 81(3): 488-499. https://doi.org/10.1016/j.yqres.2013.09.006
    Zeng, F. M., Liang, M. Y., Peng, S. Z., et al., 2015. Sr-Nd-Pb Isotopic Compositions of the Neogene Eolian Deposits in the Xining Basin and Implications for Their Dust Sources. Journal of Earth Science, 26(5): 669-676. https://doi.org/10.1007/s12583-015-0575-2
    Zeng, F. M., Xiang, S. Y., 2017. Geochronology and Mineral Composition of the Pleistocene Sediments in Xitaijinair Salt Lake Region, Qaidam Basin: Preliminary Results. Journal of Earth Science, 28(4): 622-627. https://doi.org/10.1007/s12583-016-0712-6
    Zhang, J., Chen, F., Holmes, J. A., et al., 2011. Holocene Monsoon Climate Documented by Oxygen and Carbon Isotopes from Lake Sediments and Peat Bogs in China: A Review and Synthesis. Quaternary Science Reviews, 30(15/16): 1973-1987. https://doi.org/10.1016/j.quascirev.2011.04.023
    Zhang, W. Y., Mischke, S., Zhang, C. J., et al., 2013. Ostracod Distribution and Habitat Relationships in the Kunlun Mountains, Northern Tibetan Plateau. Quaternary International, 313/314: 38-46. https://doi.org/10.1016/j.quaint.2013.06.020
    Zhao, Y., Yu, Z. C., Chen, F. H., et al., 2007. Holocene Vegetation and Climate History at Hurleg Lake in the Qaidam Basin, Northwest China. Review of Palaeobotany and Palynology, 145(3/4): 275-288. https://doi.org/10.1016/j.revpalbo.2006.12.002
    Zhou, A. F., Chen, F. H., Wang, Z. L., et al., 2009. Temporal Change of Radiocarbon Reservoir Effect in Sugan Lake, Northwest China during the Late Holocene. Radiocarbon, 51(2): 529-535. https://doi.org/10.1017/s0033822200055909
    Zhu, L. P., Wu, Y. H., Wang, J. B., et al., 2008. Environmental Changes since 8.4 Ka Reflected in the Lacustrine Core Sediments from Nam Co, Central Tibetan Plateau, China. The Holocene, 18(5): 831-839. https://doi.org/10.1177/0959683608091801
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views(532) PDF downloads(36) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return