Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 22 Issue 2
Apr 2011
Turn off MathJax
Article Contents
Xiaoming Xu, Hongyi Li, Meng Gong, Zhifeng Ding. Three-Dimensional S-Wave Velocity Structure in Eastern Tibet from Ambient Noise Rayleigh and Love Wave Tomography. Journal of Earth Science, 2011, 22(2): 195-204. doi: 10.1007/s12583-011-0172-y
Citation: Xiaoming Xu, Hongyi Li, Meng Gong, Zhifeng Ding. Three-Dimensional S-Wave Velocity Structure in Eastern Tibet from Ambient Noise Rayleigh and Love Wave Tomography. Journal of Earth Science, 2011, 22(2): 195-204. doi: 10.1007/s12583-011-0172-y

Three-Dimensional S-Wave Velocity Structure in Eastern Tibet from Ambient Noise Rayleigh and Love Wave Tomography

doi: 10.1007/s12583-011-0172-y
More Information
  • Corresponding author: Xiaoming XU, jhlzxxm@163.com
  • Received Date: 07 Sep 2010
  • Accepted Date: 15 Nov 2010
  • Publish Date: 01 Apr 2011
  • We apply ambient noise tomography to continuous three-component broadband seismic data between January 1, 2008 and December 31, 2008 from the regional networks of 76 stations deployed by China Earthquake Administration. Ambient noise cross-correlations were performed to produce the Green's functions of each station-pair. Within the period from 6 to 50 s, Rayleigh and Love wave dispersion curves were measured using the multiple filter analysis method. Then three-dimensional (3-D) S-wave velocity structures from the surface down to 70 km are inverted from both Rayleigh and Love wave dispersion results. The obtained S-wave velocity maps show strong lateral variations and correlate well with the distinct geological and tectonic features in the study area. The Sichuan basin displays low velocity in shallow depth due to thick sedimentary deposits but high velocity in the mid-lower crust; the eastern Tibetan plateau is clearly featured with a low-velocity zone in its mid-to-lower crust which is consistent with the crustal flow model proposed to explain the mechanism of uplift and pattern of deformation for the Tibetan plateau. Meanwhile, our results also exhibit that the crustal thickness decreased from the eastern Tibetan plateau to the Sichuan basin.

     

  • loading
  • Bai, D. H., Unsworth, M. J., Meju, M. A., et al., 2010. Crustal Deformation of the Eastern Tibetan Plateau Revealed by Magnetotelluric Imaging. Nature Geoscience, 3(5): 358–362 doi: 10.1038/ngeo830
    Bensen, G. D., Ritzwoller, M. H., Barmin, M. P., et al., 2007. Processing Seismic Ambient Noise Data to Obtain Reliable Broad-Band Surface Wave Dispersion Measurements. Geophys. J. Int. , 169(3): 1239–1260 doi: 10.1111/j.1365-246X.2007.03374.x
    Bensen, G. D., Ritzwoller, M. H., Shapiro, N. M., 2008. Broadband Ambient Noise Surface Wave Tomography across the United States. J. Geophys. Res. , 113(B5): B05306
    Brown, L. D., Zhao, W. J., Nelson, K. D., et al., 1996. Bright Spots, Structure, and Magmatism in Southern Tibet from INDEPTH Seismic Reflection Profiling. Science, 274(5293): 1688–1690 doi: 10.1126/science.274.5293.1688
    Campillo, M., 2006. Phase and Correlation in Random Seismic Fields and the Reconstruction of the Green Function. Pure Appl. Geophys. , 163(2–3): 475–502 doi: 10.1007/s00024-005-0032-8
    Campillo, M., Paul, A., 2003. Long-Range Correlations in the Diffuse Seismic Coda. Science, 299(5656): 547–549 http://epsc.wustl.edu/~ggeuler/reading/dispersion_analysis/noise_correlation/campillo_and_paul_2003-science-long-range_correlations_in_the_diffuse_seismic_coda.pdf
    Clark, M. K., Royden, L. H., 2000. Topographic Ooze: Building the Eastern Margin of Tibet by Lower Crustal Flow. Geology, 28: 703–706 doi: 10.1130/0091-7613(2000)28<703:TOBTEM>2.0.CO;2
    Constable, S. C., Parker, R. L., Constable, C. G., 1987. Occam's Inversion: A Practical Algorithm for Generating Smooth Models from Electromagnetic Sounding Data. Geophysics, 52(3): 289–300 doi: 10.1190/1.1442303
    de Groot-Hedlin, C. D., Constable, S. C., 1990. Occam's Inversion to Generate Smooth, Two-Dimensional Models from Magnetotelluric Data. Geophysics, 55(12): 1613–1624 doi: 10.1190/1.1442813
    Dziewonski, A., Bloch, S., Landisman, M., 1969. A Technique for the Analysis of Transient Seismic Signals. Bull. Seismol. Soc. Am. , 59(1): 427–444 doi: 10.1785/BSSA0590010427
    England, P. C., Houseman, G., 1989. Extension during Continental Convergence with Application to the Tibetan Plateau. J. Geophys. Res. , 94(B12): 17561–17579 doi: 10.1029/JB094iB12p17561
    England, P., Molnar, P., 1997. Active Deformation of Asia: From Kinematics to Dynamics. Science, 278(5338): 647–650 doi: 10.1126/science.278.5338.647
    Gudmundsson, Ó., Khan, A., Voss, P., 2007. Rayleigh-Wave Group-Velocity of the Icelandic Crust from Correlation of Ambient Seismic Noise. Geophys. Res. Lett. , 34(14): L14314 doi: 10.1029/2007GL030215
    Herrmann, R. B., 1973. Some Aspects of Band-Pass Filtering of Surface Waves. Bull. Seismol. Soc. Am. , 63: 663–671 doi: 10.1785/BSSA0630020663
    Herrmann, R. B., Ammon, C. J., 2004. Surface Waves, Receiver Functions and Crustal Structure. Computer Programs in Seismology, Version 3.30. Saint Louis University. http://www.eas.slu.edu/People/RBHerrmann/CPS330.html
    Houseman, G., England, P., 1993. Crustal Thickening versus Lateral Expulsion in the Indian-Asian Continental Collision. J. Geophys. Res. , 98(B7): 12233–12249 doi: 10.1029/93JB00443
    Li, H. Y., Bernardi, F., Michelini, A., 2010a. Surface Wave Dispersion Measurements from Ambient Seismic Noise Analysis in Italy. Geophys. J. Int. , 180(3): 1242–1252 doi: 10.1111/j.1365-246X.2009.04476.x
    Li, H. Y., Su, W., Wang, C. Y., et al., 2010b. Ambient Noise Love Wave Tomography in the Eastern Margin of the Tibetan Plateau. Tectonophysics, 491(1–4): 194–204
    Li, H. Y., Su, W., Wang, C. Y., et al., 2009. Ambient Noise Rayleigh Wave Tomography in Western Sichuan and Eastern Tibet. Earth Planet. Sci. Lett. , 282(1–4): 201–211
    Lin, F. C., Moschetti, M. P., Ritzwoller, M. H., 2008. Surface Wave Tomography of the Western United States from Ambient Seismic Noise: Rayleigh and Love Wave Phase Velocity Maps. Geophys. J. Int. , 173(1): 281–298 doi: 10.1111/j.1365-246X.2008.03720.x
    Liu, M. J., Mooney, W. D., Li, S. L., et al., 2006. Crustal Structure of the Northeastern Margin of the Tibetan Plateau from the Songpan-Ganzi Terrane to the Ordos Basin. Tectonophysics, 420(1–2): 253–266 doi: 10.1016/j.tecto.2006.01.025
    Lobkis, O. I., Weaver, R. L., 2001. On the Emergence of the Green's Function in the Correlation of a Diffuse Field. J. Acoust. Soc. Am. , 110(6): 3011–3017 doi: 10.1121/1.1417528
    Molnar, P., Tapponnier, P., 1975. Cenozoic Tectonics of Asia: Effects of a Continental Collision. Science, 189(4201): 419–426 doi: 10.1126/science.189.4201.419
    Rippe, D., Unsworth, M., 2010. Quantifying Crustal Flow in Tibet with Magnetotelluric Data. Phys. Earth Planet. Inter. , 179(3–4): 107–121
    Ross, A. R., Brown, L. D., Pananont, P., et al., 2004. Deep Reflection Surveying in Central Tibet: Lower-Crustal Layering and Crustal Flow. Geophys. J. Int. , 156(1): 115–128 doi: 10.1111/j.1365-246X.2004.02119.x
    Rowley, D. B., 1996. Age of Initiation of Collision between India and Asia: A Review of Stratigraphic Data. Earth Planet. Sci. Lett. , 145(1–4): 1–13
    Royden, L. H., Burchfiel, B. C., van der Hilst, R. D., 2008. The Geological Evolution of the Tibetan Plateau. Science, 321(5892): 1054–1058 doi: 10.1126/science.1155371
    Royden, L. H., Burchfiel, B. C., King, R. W., et al., 1997. Surface Deformation and Lower Crustal Flow in Eastern Tibet. Science, 276(5313): 788–790 doi: 10.1126/science.276.5313.788
    Sabra, K. G., Gerstoft, P., Roux, P., et al., 2005. Extracting Time-Domain Green's Function Estimates from Ambient Seismic Noise. Geophys. Res. Lett. , 32(3): L03310 doi: 10.1029/2004GL021862
    Saygin, E., Kennett, B. L. N., 2010. Ambient Seismic Noise Tomography of Australian Continent. Tectonophysics, 481(1–4): 116–125 http://www.sciencedirect.com/science/article/pii/S0040195108005787
    Shapiro, N. M., Campillo, M., 2004. Emergence of Broadband Rayleigh Waves from Correlations of the Ambient Seismic Noise. Geophys. J. Int. , 31(7): L07614 doi: 10.1029/2004gl019491
    Shapiro, N. M., Campillo, M., Stehly, L., et al., 2005. High-Resolution Surface Wave Tomography from Ambient Seismic Noise. Science, 307(5715): 1615–1618 doi: 10.1126/science.1108339
    Tapponnier, P., Xu, Z. Q., Roger, F., et al., 2001. Oblique Stepwise Rise and Growth of the Tibet Plateau. Science, 294(5547): 1671–1677 doi: 10.1126/science.105978
    Wang, C. Y., Chan, W. W., Mooney, W. D., 2003. Three-Dimensional Velocity Structure of Crust and Upper Mantle in Southwestern China and Its Tectonic Implications. J. Geophys. Res. , 108(B9): 2442 doi: 10.1029/2002jb001973
    Wang, C. Y., Han, W. B., Wu, J. P., et al., 2007. Crustal Structure beneath the Eastern Margin of the Tibetan Plateau and Its Tectonic Implications. J. Geophys. Res. , 112(B7): B07307 doi: 10.1029/2005jb003873/full
    Wang, Q., Zhang, P. Z., Jeffrey, T., et al., 2001. Present-Day Crustal Deformation in China Constrained by Global Positioning System Measurements. Science, 249(5542): 574–577 http://onlinelibrary.wiley.com/resolve/reference/PMED?id=11641493
    Wapenaar, K., 2004. Retrieving the Elastodynamic Green's Function of an Arbitrary Inhomogeneous Medium by Cross Correlation. Phys. Rev. Lett. , 93(25): 254301 doi: 10.1103/PhysRevLett.93.254301
    Weaver, R. L., 2005. Information from Seismic Noise. Science, 307(5715): 1568–1569 doi: 10.1126/science.1109834
    Wei, W. B., Unsworth, M., Jones, A., et al., 2001. Detection of Widespread Fluids in the Tibetan Crust by Magnetotelluric Studies. Science, 292(5517): 716–718 doi: 10.1126/science.1010580
    Xu, Y., Li, Z. W., Huang, R. Q., et al., 2010. Seismic Structure of the Longmen Shan Region from S-Wave Tomography and Its Relationship with the Wenchuan Ms 8.0 Earthquake on 12 May 2008, Southwestern China. Geophys. Res. Lett. , 37: L02304 http://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ201101002063.htm
    Yang, Y. J., Ritzwoller, M. H., Levshin, A. L., et al., 2007. Ambient Noise Rayleigh Wave Tomography across Europe. Geophys. J. Int. , 168(1): 259–274 doi: 10.1111/j.1365-246X.2006.03203.x
    Yao, H. J., Beghein, C., ven der Hilst, R. D., 2008. Surface Wave Array Tomography in SE Tibet from Ambient Seismic Noise and Two-Station Analysis—II, Crustal and Upper-Mantle Structure. Geophys. J. Int. , 173(1): 205–219 doi: 10.1111/j.1365-246X.2007.03696.x
    Zhang, Z. J., Yuan, X. H., Chen, Y., et al., 2010. Seismic Signature of the Collision between the East Tibetan Escape Flow and the Sichuan Basin. Earth Planet. Sci. Lett. , 292(3–4): 254–264 doi: 10.1016/j.epsl.2010.01.046
    Zheng, S. H., Sun, X. L., Song, X. D., et al., 2008. Surface Wave Tomography of China from Ambient Seismic Noise Correlation. Geochem., Geophys., Geosyst. , 9: Q05020
    Zheng, X. F., Ouyang, B., Zhang, D. N., et al., 2009. Technical System Construction of Data Backup Centre for China Seismograph Network and the Data Support to Researches on the Wenchuan Earthquake. Chinese J. Geophys. , 52(5): 1412–1417 (in Chinese with English Abstract) http://www.oalib.com/paper/1569047
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views(920) PDF downloads(25) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return