Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 20 Issue 4
Aug 2009
Turn off MathJax
Article Contents
Rong Liu, Benren Zhang, Hongfei Zhang, Honglin Yuan. U-Pb Zircon Age, Geochemical and Sr-Nd-Hf Isotopic Compositions of Neoproterozoic Granitoids in Northwestern Margin of Yangtze Block (South China): Implications for Neoproterozoic Tectonic Evolution. Journal of Earth Science, 2009, 20(4): 659-680. doi: 10.1007/s12583-009-0058-4
Citation: Rong Liu, Benren Zhang, Hongfei Zhang, Honglin Yuan. U-Pb Zircon Age, Geochemical and Sr-Nd-Hf Isotopic Compositions of Neoproterozoic Granitoids in Northwestern Margin of Yangtze Block (South China): Implications for Neoproterozoic Tectonic Evolution. Journal of Earth Science, 2009, 20(4): 659-680. doi: 10.1007/s12583-009-0058-4

U-Pb Zircon Age, Geochemical and Sr-Nd-Hf Isotopic Compositions of Neoproterozoic Granitoids in Northwestern Margin of Yangtze Block (South China): Implications for Neoproterozoic Tectonic Evolution

doi: 10.1007/s12583-009-0058-4
Funds:

the National Natural Science Foundation of China 40773019

the National Natural Science Foundation of China 40821061

the Ministry of Education of China and the State Administration of Foreign Expert Affairs of China B07039

More Information
  • Corresponding author: Liu Rong, geofluid@cug.edu.cn
  • Received Date: 10 Dec 2008
  • Accepted Date: 12 Mar 2009
  • The widespread Neoproterozoic magmatism along the Yangtze block carries critical information for understanding the Neoproterozoic evolution of the Yangtze block. In the northwestern margin of the Yangtze block, the Hannan (汉南) intrusive complex includes the Wudumen (五堵门), Erliba (二里坝) and Zushidian (祖师殿) granitoids. Using LA-ICP-MS U-Pb zircon dating method, the Wudumen and Erliba granitoids yielded magma crystallization ages of 785±4 and 778±3 Ma, respectively. Samples from these three granitoids show variable SiO2 contents ranging from 58.8% to 72.6%. They are characterized by enrichment of Al2O3 (14.97%–17.87%), Na2O (3.80%–5.33%) and Sr (504 ppm–741 ppm), and depletion of Y (< 19 ppm) and HREE (e.g., Yb < 1.6 ppm), resulting in high Sr/Y (29–161) and (La/Yb)N (7.3–27.8) ratios. The geochemical features of the granitoids are comparable with those of adakite. The granitoids have zircon ɛHf(t) values of +3.65 to +10.05, whole-rock ɛNd(t) values of −0.09 to +2.98 and whole-rock initial 87Sr/86Sr ratios of 0.703 4–0.703 9, indicating that their magma was derived from a juvenile crustal source. Together with geochemical and Hf-Sr-Nd isotopic compositions, it is suggested that the granitoids formed in island-arc setting and originated from partial melting of a subducted oceanic slab. The results support a model that the Yangtze block was surrounded by ocean and arc magmatism in its northern and northwestern margins in Neoproterozoic.

     

  • loading
  • Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses that do not Report 204Pb. Chemical Geology, 192(1–2): 59–79
    Barnes, C. G., Petersen, S. W., Kistler, R. W., et al., 1996. Source and Tectonic Implications of Tonalite-Trondhjemite Magmatism in the Klamath Mountains. Contrib. Mineral. Petrol., 123(1): 40–60 doi: 10.1007/s004100050142
    Blichert-Toft, J., Albarede, F., 1997. The Lu-Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle-Crust System. Earth and Planetary Science Letters, 148(1–2): 243–258
    Castillo, P. R., 2006. An Overview of Adakite Petrogenesis. Chinese Science Bulletin, 51(3): 258–268
    Castillo, P. R., Janney, P. E., Solidum, R. U., 1999. Petrology and Geochemistry of Camiguin Island, Southern Philippines: Insights to the Source of Adakites and Other Lavas in a Complex Arc Setting. Contrib. Mineral. Petrol., 134(1): 33–51 doi: 10.1007/s004100050467
    Chen, J., Foland, K. A., Xing, F., et al., 1991. Magmatism along the Southeast Margin of the Yangtze Block: Precambrian Collision of the Yangtze and Cathysia Blocks of China. Geology, 19(8): 815–818 doi: 10.1130/0091-7613(1991)019<0815:MATSMO>2.3.CO;2
    Chu, N. C., Taylor, R. N., Chavagnac, V., et al., 2002. Hf Isotope Ratio Analysis Using Multi-collector Inductively Coupled Plasma Mass Spectrometry: An Evaluation of Isobaric Interference Corrections. J. Anal. Atom. Spectrom., 17: 1567–1574 doi: 10.1039/b206707b
    Chung, S. L., Liu, D. Y., Ji, J. Q., et al., 2003. Adakites from Continental Collision Zones: Melting of Thickened Lower Crust beneath Southern Tibet. Geology, 31(11): 1021–1024 doi: 10.1130/G19796.1
    Condie, K. C., 2005. TTGs and Adakites: Are They both Slab Melts? Lithos, 80(1–4): 33–44 http://www.onacademic.com/detail/journal_1000035066651210_80a5.html
    DeBievre, P., Taylor, P. D. P., 1993. Table of the Isotopic Composition of the Elements. Int. J. Mass. Spectrom. Ion Process, 123: 149 doi: 10.1016/0168-1176(93)87009-H
    Defant, M. J., Drummond, M. S., 1990a. Derivation of Some Modern Arc Magmas by the Melting of Young Subducted Lithosphere. Nature, 347(6294): 662–665 doi: 10.1038/347662a0
    Defant, M. J., Drummond, M. S., 1990b. Derivation of Some Modern Magmas through Melting of Young Subducted Lithosphere. EOS, Transactions, American Geophysical Union, 71(43): 1715 http://petrology.oxfordjournals.org/external-ref?access_num=10.1038/347662a0&link_type=DOI
    Defant, M. J., Jackson, T. E., Drummond, M. S., et al., 1992. The Geochemistry of Young Volcanism throughout Western Panama and Southeastern Costa-Rica: An Overview. Journal of the Geological Society, 149(4): 569–579 doi: 10.1144/gsjgs.149.4.0569
    Drummond, M. S., Defant, M. J., Kepezhinskas, P. K., 1996. Petrogenesis of Slab-Derived Trondhjemite-Tonalite-Dacite/Adakite Magmas. Transactions of the Royal Society of Edinburgh-Earth Sciences, 87: 205–215 http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=8345451&fulltextType=RA&fileId=S0263593300006611
    Gao, S., Ling, W. L., Qiu, Y. M., et al., 1999. Contrasting Geochemical and Sm-Nd Isotopic Compositions of Archean Metasediments from the Kongling High-Grade Terrain of the Yangtze Craton: Evidence for Cratonic Evolution and Redistribution of REE during Crustal Anatexis. Geochimica et Cosmochimica Acta, 63(13–14): 2071–2088
    Gao, S., Rudnick, R. L., Yuan, H. L., et al., 2005. Recycling Lower Continental Crust in the North China Craton. Nature, 432(7019): 892–897 http://www.geol.umd.edu/~rudnick/PDF/Gao_2004_Nature.pdf
    Gao, S., Zhang, B. R., Li, Z. X., 1990. Geochemical Evidence for Proterozoic Continental Arc and Continental-Margin Rift Magmatism along the Northern Margin of the Yangtze Craton, South China. Precambrian Research, 47(3–4): 205–221
    Garrison, J. M., Davidson, J. P., 2003. Dubious Case for Slab Melting in the Northern Volcanic Zone of the Andes. Geology, 31: 565–568 doi: 10.1130/0091-7613(2003)031<0565:DCFSMI>2.0.CO;2
    Griffin, W. L., Wang, X., Jackson, S. E., et al., 2002. Zircon Chemistry and Magma Mixing, SE China: In-situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes. Lithos, 61(3–4): 237–269 http://www.sciencedirect.com/science/article/pii/S0024493702000828
    Guo, L. Z., Shi, Y. S., Ma, R. S., 1980. The Geotectonic Framework and Crustal Evolution of South China. Scientific Paper on Geology for International Exchange. Geological Publishing House, Beijing (in Chinese with English Abstract)
    Gutscher, M. A., Maury, R., Eissen, J. P., et al., 2000. Can Slab Melting be Caused by Flat Subduction? Geology, 28(6): 535–538 doi: 10.1130/0091-7613(2000)28<535:CSMBCB>2.0.CO;2
    Hou, Z. Q., Gao, Y. F., Qu, X. M., et al., 2004. Origin of Adakitic Intrusives Generated during Mid-Miocene East-West Extension in Southern Tibet. Earth and Planetary Science Letters, 220(1–2): 139–155 http://www.onacademic.com/detail/journal_1000035461839310_7611.html
    Kay, R. W., Kay, S. M., 2002. Andean Adakites: Three Ways to Make Them. Acta Petrologica Sinica, 18(3): 303–311 http://qikan.cqvip.com/Qikan/Article/Detail?id=6649398
    Kay, S. M., Ramos, V. A., Marquez, M., 1993. Evidence in Cerro Pampa Volcanic Rocks for Slab-Melting Prior to Ridge-Trench Collision in Southern South America. Journal of Geology, 101(6): 703–714 doi: 10.1086/648269
    Kepezhinskas, P. K., McDermott, F., Defant, M. J., et al., 1997. Trace Element and Sr-Nd-Pb Isotopic Constraints on a Three-Component Model of Kamchatka Arc Petrogenesis. Geochimica et Cosmochimica Acta, 61(3): 577–600 doi: 10.1016/S0016-7037(96)00349-3
    Li, X. H., 1999. U-Pb Zircon Ages of Granites from the Southern Margin of the Yangtze Block: Timing of Neoproterozoic Jinning: Orogeny in SE China and Implications for Rodinia Assembly. Precambrian Research, 97(1–2): 43–57
    Li, X. H., Li, Z. X., Sinclair, J. A., et al., 2003a. Neoproterozoic Granitoids in South China: Crustal Melting above a Mantle Plume at ca. 825 Ma? Precambrian Research, 122(1–4): 45–83
    Li, X. H., Li, Z. X., Sinclair, J. A., et al., 2006. Revisiting the "Yanbian Terrane": Implications for Neoproterozoic Tectonic Evolution of the Western Yangtze Block, South China. Precambrian Research, 151(1–2): 14–30 http://www.onacademic.com/detail/journal_1000035432490410_59c4.html
    Li, X. H., Li, Z. X., Sinclair, J. A., et al., 2007. Reply to the Comment by Zhou et al. on: "Revisiting the "Yanbian Terrane": Implications for Neoproterozoic Tectonic Evolution of the Western Yangtze Block, South China" (Precambrian Research, 151: 14–30). Precambrian Research, 155(3–4): 318–323
    Li, X. H., Li, Z. X., Zhou, H. W., et al., 2002. U-Pb Zircon Geochronology, Geochemistry and Nd Isotopic Study of Neoproterozoic Bimodal Volcanic Rocks in the Kangdian Rift of South China: Implications for the Initial Rifting of Rodinia. Precambrian Research, 113(1–2): 135–154
    Li, X. H., Li, Z. X., Zhou, H. W., et al., 2003b. SHRIMP U-Pb Zircon Age, Geochemistry and Nd Isotope of the Guandaoshan Pluton in SW Sichuan: Petrogenesis and Tectonic Significance. Science in China (Series D), 46(S1): 73–83 http://d.old.wanfangdata.com.cn/Periodical/zgkx-ed2003z1007
    Li, X. H., McCulloch, M. T., 1996. Secular Variation in the Nd Isotopic Composition of Neoproterozoic Sediments from the Southern Margin of the Yangtze Block: Evidence for a Proterozoic Continental Collision in Southeast China. Precambrian Research, 76(1–2): 67–76 http://www.sciencedirect.com/science/article/pii/0301926895000240
    Li, Z. X., 1999. 830–820 Ma Mafic to Felsic Igneous Activity in South China and the Breakup of Rodinia. Gondwana Research, 2(4): 591 doi: 10.1016/S1342-937X(05)70208-2
    Li, Z. X., Li, X. H., Kinny, P. D., et al., 1999. The Breakup of Rodinia: Did It Start with a Mantle Plume beneath South China? Earth and Planetary Science Letters, 173(3): 171–181 doi: 10.1016/S0012-821X(99)00240-X
    Li, Z. X., Li, X. H., Kinny, P. D., et al., 2003. Geochronology of Neoproterozoic Syn-rift Magmatism in the Yangtze Craton, South China and Correlations with Other Continents: Evidence for a Mantle Superplume that Broke up Rodinia. Precambrian Research, 122(1–4): 85–109 http://www.sciencedirect.com/science/article/pii/S0301926802002085/
    Li, Z. X., Li, X. H., Zhou, H. W., et al., 2002. Grenvillian Continental Collision in South China: New SHRIMP U-Pb Zircon Results and Implications for the Configuration of Rodinia. Geology, 30(2): 163–166 doi: 10.1130/0091-7613(2002)030<0163:GCCISC>2.0.CO;2
    Li, Z. X., Zhang, L., Powell, C. M., 1995. South China in Rodinia: Part of the Missing Link between Australia-East-Antarctica and Laurentia. Geology, 23: 407–410 doi: 10.1130/0091-7613(1995)023<0407:SCIRPO>2.3.CO;2
    Ling, W. L., Gao, S., Zhang, B. R., et al., 2003. Neoproterozoic Tectonic Evolution of the Northwestern Yangtze Craton, South China: Implications for Amalgamation and Break-up of the Rodinia Supercontinent. Precambrian Research, 122(1–4): 111–140 http://www.sciencedirect.com/science/article/pii/S030192680200222X
    Ling, W. L., Gao, S., Cheng, J. P., et al., 2006. Neoproterozoic Magmatic Events within the Yangtze Continental Interior and along Its Northern Margin and Their Tectonic Implication: Constraint from the ELA-ICPMS U-Pb Geochronology of Zircons from the Mangling and Hannan Complexes. Acta Petrologica Sinica, 22(2): 387–396 (in Chinese with English Abstract)
    Lo'pez, S., Castro, A., 2001. Determination of the Fluid-Absent Solidus and Supersolidus Phase Relationships of MORB-Derived Amphibolites in the Range 4–14 kbar. Am. Mineral., 86: 1396–1403 doi: 10.2138/am-2001-11-1208
    Lo'pez, S., Castro, A., Garcia-Casco, A., 2005. Production of Granodiorite Melt by Interaction between Hydrous Mafic Magma and Tonalitic Crust: Experimental Constraints and Implications for the Generation of Archaean TTG Complexes. Lithos, 79(1–2): 229–250 http://www.sciencedirect.com/science/article/pii/S0024493704002774
    Ludwig, K. R., 2003. ISOPLOT 3.0: A Geochronological Toolkit for Microsoft Excel, 4. Berkeley Geochronology Center Special Publication
    Martin, H., Smithies, R. H., Rapp, R., et al., 2005. An Overview of Adakite, Tonalite-Trondhjemite-Granodiorite (TTG), and Sanukitoid: Relationships and Some Implications for Crustal Evolution. Lithos, 79(1–2): 1–24 http://www.sciencedirect.com/science/article/pii/S002449370400266X
    Muir, R. J., Weaver, S. D., Bradshaw, J. D., et al., 1995. The Cretaceous Separation Point Batholith, New Zealand: Granitoid Magmas Formed by Melting of Mafic Lithosphere. Journal of the Geological Society of London, 152(Part 4): 689–701 http://www.onacademic.com/detail/journal_1000037423196210_5eb0.html
    O'Connor, J. T., 1965. A Classification for Quartz-Rich Igneous Rocks Based on Feldspar Ratios. U. S. Geol. Surv. Prof. Pap., 525-B: 79–84
    Peacock, S. M., Rushmer, T., Thompson, A. B., 1994. Partial Melting of Subducting Oceanic Crust. Earth and Planetary Science Letters, 121(1–2): 227–244 http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-0012821X94900426&originContentFamily=serial&_origin=article&_ts=1432907648&md5=29bea8893b3f8f3c207debe70cd03220
    Petford, N., Atherton, M., 1996. Na-Rich Partial Melts from Newly Underplated Basaltic Crust: The Cordillera Blanca Batholith, Peru. J. Petrol., 37(6): 1491–1521 doi: 10.1093/petrology/37.6.1491
    Prouteau, G., Maury, R. C., Pubellier, M., et al., 2001. Post-Collisional Magmatism from NW Borneo: Evidence for Melting of an Oceanic Crust Deliver within the Upper Mantle. Bulletin de la Societe Geologique de France, 172(3): 319–332 doi: 10.2113/172.3.319
    Prouteau, G., Scaillet, B., 2003. Experimental Constraints on the Origin of the 1991 Pinatubo Dacite. J. Petrol., 44(12): 2203–2241 doi: 10.1093/petrology/egg075
    Rapp, R. P., Shimizu, N., Norman, M. D., et al., 1999. Reaction between Slab-Derived Melts and Peridotite in the Mantle Wedge: Experimental Constraints at 3.8 GPa. Chemical Geology, 160(4): 335–356 doi: 10.1016/S0009-2541(99)00106-0
    Rapp, R. P., Watson, E. B., 1995. Dehydration Melting of Metabasalt at 8–32 kbar: Implications for Continental Growth and Crust Mantle Recycling. J. Petrol., 36(4): 891–931 doi: 10.1093/petrology/36.4.891
    Sajona, F. G., Maury, R. C., Pubellier, M., et al., 2000. Magmatic Source Enrichment by Slab-Derived Melts in a Young Post-Collision Setting, Central Mindanao (Philippines). Lithos, 54(3–4): 173–206 http://www.onacademic.com/detail/journal_1000035101590310_1370.html
    Scherer, E., Munker, C., Mezger, K., 2001. Calibration of the Lutetium-Hafnium Clock. Science, 293(5530): 683–687 doi: 10.1126/science.1061372
    Smithies, R. H., 2000. The Archaean Tonalite-Trondhjemite-Granodiorite (TTG) Series is not an Analogue of Cenozoic Adakite. Earth and Planetary Science Letters, 182(1): 115–125 doi: 10.1016/S0012-821X(00)00236-3
    Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. In: Sunders, A. D., Norry, M. J., eds., Magmatism in the Ocean Basins. Geological Society of London Special Publication, 42: 313–345
    Takahashi, Y., Kagashima, S. I., Mikoshiba, M. U., 2005. Geochemistry of Adakitic Quartz Diorite in the Yamizo Mountains, Central Japan: Implications for Early Cretaceous Adakitic Magmatism in the Inner Zone of Southwest Japan. Island Arc, 14(2): 150–164 doi: 10.1111/j.1440-1738.2005.00465.x
    Vervoort, J. D., Blichert-Toft, J., 1999. Evolution of the Depleted Mantle: Hf Isotope Evidence from Juvenile Rocks through Time. Geochimica et Cosmochimica Acta, 63(3–4): 533–556 http://www.sciencedirect.com/science/article/pii/S0016703798002749
    Wang, J., Li, Z. X., 2003. History of Neoproterozoic Rift Basins in South China: Implications for Rodinia Break-up. Precambrian Research, 122(1–4): 141–158 http://www.sciencedirect.com/science/article/pii/S0301926802002097
    Wang, Q., McDermott, F., Xu, J. F., et al., 2005. Cenozoic K-Rich Adakitic Volcanic Rocks in the Hohxil Area, Northern Tibet: Lower-Crustal Melting in an Intracontinental Setting. Geology, 33(6): 465–468 doi: 10.1130/G21522.1
    Wang, Q., Xu, J. F., Jian, P., et al., 2006. Petrogenesis of Adakitic Porphyries in an Extensional Tectonic Setting, Dexing, South China: Implications for the Genesis of Porphyry Copper Mineralization. Journal of Petrology, 47(1): 119–144 doi: 10.1093/petrology/egi070
    Wang, X. L., Zhou, J. C., Qiu, J. S., et al., 2004a. Comment on "Neoproterozoic Granitoids in South China: Crustal Melting above a Mantle Plume at ca. 825 Ma?" by Xian-Hua Li et al. (Precambrian Research, 122: 45–83). Precambrian Research, 132(4): 401–403
    Wang, X. L., Zhou, J. C., Qiu, J. S., et al., 2004b. Geochemistry of the Meso- to Neoproterozoic Basic-Acid Rocks from Hunan Province, South China: Implications for the Evolution of the Western Jiangnan Orogen. Precambrian Research, 135(1–2): 79–103 http://www.onacademic.com/detail/journal_1000035432982910_8f2a.html
    Wang, X. L., Zhou, J. C., Qiu, J. S., et al., 2003. Geochemistry of the Meso-Neoproterozoic Volcanic-Intrusive Rocks from Hunan Province and Its Petrogenic Significances. Acta Petrologica Sinica, 19(1): 49–60 (in Chinese with English Abstract)
    White, A. J. R., Chappell, B. W., 1977. Ultrametamorphism and Granitoid Genesis. Tectonophysics, 43(1–2): 7–22 http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-0040195177900038&originContentFamily=serial&_origin=article&_ts=1483630830&md5=90d0b6a6e7e1bfd2265b927028adf09e
    Winther, K. T., 1996. An Experimentally Based Model for the Origin of Tonalitic and Trondhjemitic Melts. Chem. Geol., 127(1–3): 43–59 http://www.sciencedirect.com/science/article/pii/0009254195000879
    Wu, F. Y., Yang, Y. H., Xie, L. W., et al., 2006. Hf Isotopic Compositions of the Standard Zircons and Baddeleyites Used in U-Pb Geochronology. Chem. Geol., 234(1–2): 105–126 http://www10215.cnki6.com/biaozhun/wu%202006.pdf
    Wu, R. X., Zheng, Y. F., Wu, Y. B., et al., 2006. Reworking of Juvenile Crust: Element and Isotope Evidence from Neoproterozoic Granodiorite in South China. Precambrian Research, 146(3–4): 179–212 http://www.onacademic.com/detail/journal_1000035431939510_d047.html
    Xiao, L., Zhang, H. F., Ni, P. Z., et al., 2007. LA-ICP-MS U-Pb Zircon Geochronology of Early Neoproterozoic Mafic-Intermediate Intrusions from NW Margin of the Yangtze Block, South China: Implication for Tectonic Evolution. Precambrian Research, 154(3–4): 221–235
    Xu, J. F., Shinjo, R., Defant, M. J., et al., 2002. Origin of Mesozoic Adakitic Intrusive Rocks in the Ningzhen Area of East China: Partial Melting of Delaminated Lower Continental Crust? Geology, 30(12): 1111–1114 doi: 10.1130/0091-7613(2002)030<1111:OOMAIR>2.0.CO;2
    Yan, D. P., Zhou, M. F., Wang, C. Y., et al., 2006. Structural and Geochronological Constraints on the Tectonic Evolution of the Dulong-Song Chay Tectonic Dome in Yunnan Province, SW China. Journal of Asian Earth Sciences, 28(4–6): 332–353 http://www.researchgate.net/profile/Dan-Ping_Yan/publication/222559810_Structural_and_geochronological_constraints_on_the_tectonic_evolution_of_the_Dulong-Song_Chay_tectonic_dome_in_Yunnan_Province_SW_China/links/574956ec08ae2e0dd3016c8a.pdf
    Yan, Z., 1985. Granite of Shaanxi Province. Xi'an Jiaotong University Press, Xi'an. 59–63 (in Chinese)
    Yuan, H. L., Gao, S., Liu, X. M., et al., 2004. Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry. Geostandards and Geoanalytical Research, 28(3): 353–370 doi: 10.1111/j.1751-908X.2004.tb00755.x
    Zhang, Z. Q., Zhang, G. W., Tang, S. H., et al., 2001. Geochronology of the Hannan Intrusive Complex to Adjoin the Qinling Orogen and Its Rapid Cooling Reason. Chinese Science Bulletin, 46(8): 685–689 doi: 10.1007/BF03182837
    Zheng, Y. F., Wu, Y. B., Chen, F. K., et al., 2004. Zircon U-Pb and Oxygen Isotope Evidence for a Large-Scale 18O Depletion Event in Igneous Rocks during the Neoproterozoic. Geochimica et Cosmochimica Acta, 68(20): 4145–4165 doi: 10.1016/j.gca.2004.01.007
    Zheng, Y. F., Wu, Y. B., Gong, B., et al., 2007a. Tectonic Driving of Neoproterozoic Glaciations: Evidence from Extreme Oxygen Isotope Signature of Meteoric Water in Granite. Earth and Planetary Science Letters, 256(1–2): 196–210 http://www.onacademic.com/detail/journal_1000035379740110_acec.html
    Zheng, Y. F., Zhang, S. B., 2007. Formation and Evolution of Precambrian Continental Crust in South China. Chinese Science Bulletin, 52(1): 1–12 doi: 10.1007/s11434-007-0015-5
    Zheng, Y. F., Zhang, S. B., Zhao, Z. F., et al., 2007b. Contrasting Zircon Hf and O Isotopes in the Two Episodes of Neoproterozoic Granitoids in South China: Implications for Growth and Reworking of Continental Crust. Lithos, 96(1–2): 127–150 http://www.sciencedirect.com/science/article/pii/S002449370600288X
    Zhou, J. C., Wang, X. L., Qiu, J. S., et al., 2003. Lithogeochemistry of Meso- and Neoproterozoic Mafic-Ultramafic Rocks from Northern Guangxi. Acta Petrologica Sinica, 19(1): 9–18 (in Chinese with English Abstract) http://www.researchgate.net/publication/258419192_Lithogeochemistry_of_Meso-_and_Neoproterozoic_mafic-ultramafic_rocks_from_northern_Guangxi
    Zhou, J. C., Wang, X. L., Qiu, J. S., et al., 2004. Geochemistry of Meso- and Neoproterozoic Mafic-Ultramafic Rocks from Northern Guangxi, China: Arc or Plume Magmatism? Geochemical Journal, 38(2): 139–152 doi: 10.2343/geochemj.38.139
    Zhou, M. F., Kennedy, A. K., Sun, M., et al., 2002a. Neoproterozoic Arc-Related Mafic Intrusions along the Northern Margin of South China: Implications for the Accretion of Rodinia. Journal of Geology, 110(5): 611–618 doi: 10.1086/341762
    Zhou, M. F., Ma, Y., Yan, D. P., et al., 2006a. The Yanbian Terrane (Southern Sichuan Province, SW China): A Neoproterozoic Arc Assemblage in the Western Margin of the Yangtze Block. Precambrian Research, 144(1–2): 19–38 http://www.onacademic.com/detail/journal_1000035432895610_b292.html
    Zhou, M. F., Yan, D. P., Kennedy, A. K., et al., 2002b. SHRIMP U-Pb Zircon Geochronological and Geochemical Evidence for Neoproterozoic Arc-Magmatism along the Western Margin of the Yangtze Block, South China. Earth and Planetary Science Letters, 196(1–2): 51–67 http://www.sciencedirect.com/science/article/pii/S0012821X01005957
    Zhou, M. F., Yan, D. P., Wang, C. L., et al., 2006b. Subduction-Related Origin of the 750 Ma Xuelongbao Adakitic Complex (Sichuan Province, China): Implications for the Tectonic Setting of the Giant Neoproterozoic Magmatic Event in South China. Earth and Planetary Science Letters, 248(1–2): 286–300
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(4)

    Article Metrics

    Article views(909) PDF downloads(31) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return