[1] Brugger, J., Bettiol, A. A., Costa, S., et al., 2000a. Mapping REE Distribution in Scheelite Using Luminescence. Mineralogical Magazine, 64(5):891-903. https://doi.org/10.1180/002646100549724 doi:  10.1180/002646100549724
[2] Brugger, J., Lahaye, Y., Costa, S., et al., 2000b. Inhomogeneous Distribution of REE in Scheelite and Dynamics of Archaean Hydrothermal Systems (Mt. Charlotte and Drysdale Gold Deposits, Western Australia). Contributions to Mineralogy and Petrology, 139(3):251-264. https://doi.org/10.1007/s004100000135 doi:  10.1007/s004100000135
[3] Burt, D. M., 1989. Compositional And Phase-Relations Among Rare-Earth Element Minerals. Reviews in Mineralogy, 21:259-307 http://ci.nii.ac.jp/naid/10024654487
[4] Charvet, J., 2013. The Neoproterozoic-Early Paleozoic Tectonic Evolution of the South China Block:An Overview. Journal of Asian Earth Sciences, 74:198-209. https://doi.org/10.1016/j.jseaes.2013.02.015 doi:  10.1016/j.jseaes.2013.02.015
[5] Chen, C., Lü, X. B., Wu, C. M., et al., 2018. Origin and Geodynamic Implications of Concealed Granite in Shadong Tungsten Deposit, Xinjiang, China:Zircon U-Pb Chronology, Geochemistry, and Sr-Nd-Hf Isotope Constraint. Journal of Earth Science, 29(1):114-129. https://doi.org/10.1007/s12583-017-0808-7 doi:  10.1007/s12583-017-0808-7
[6] Chen, J. F., Foland, K. A., Xing, F. M., et al., 1991. Magmatism along the Southeast Margin of the Yangtze Block:Precambrian Collision of the Yangtze and Cathysia Blocks of China. Geology, 19(8):815-818. https://doi.org/10.1130/0091-7613(1991)019 < 0815:matsmo > 2.3.co; 2 doi:  10.1130/0091-7613(1991)019<0815:matsmo>2.3.co;2
[7] Chen, R. S., Li, J. W., Cao, K., et al., 2013. Zircon U-Pb and Molybdenite Re-Os Dating of the Shangfang Tungsten Deposit in Northern Fujian Province:Implication for Regional Mineralization. Earth Science, 22(2):289-303 (in Chinese with Englsh Abstract) https://pubmed.ncbi.nlm.nih.gov/30809363/
[8] Chen, S. A., Deng, X. H., Zhang, J., et al., 2018. Fluid Inclusions Constraints on the Origin of the Xiaobaishitou W-Mo Deposit in Hami, Xinjiang, NW China. Earth Science, 43(9):3086-3099 (in Chinese with Englsh Abstract)
[9] Cole, A., Wilkinson, J. J., Halls, C., et al., 2000. Geological Characteristics, Tectonic Setting and Preliminary Interpretations of the Jilau Gold-Quartz Vein Deposit, Tajikistan. Mineralium Deposita, 35(7):600-618. https://doi.org/10.1007/s001260050266 doi:  10.1007/s001260050266
[10] Ghaderi, M., Palin, J. M., Campbell, I. H., et al., 1999. Rare Earth Element Systematics in Scheelite from Hydrothermal Gold Deposits in the Kalgoorlie-Norseman Region, Western Australia. Economic Geology, 94(3):423-437. https://doi.org/10.2113/gsecongeo.94.3.423 doi:  10.2113/gsecongeo.94.3.423
[11] Gilder, S. A., Gill, J., Coe, R. S., et al., 1996. Isotopic and Paleomagnetic Constraints on the Mesozoic Tectonic Evolution of South China. Journal of Geophysical Research:Solid Earth, 101(B7):16137-16154. https://doi.org/10.1029/96jb00662 doi:  10.1029/96jb00662
[12] Guo, S., Chen, Y., Liu, C. Z., et al., 2016. Scheelite and Coexisting F-Rich Zoned Garnet, Vesuvianite, Fluorite, and Apatite in Calc-Silicate Rocks from the Mogok Metamorphic Belt, Myanmar:Implications for Metasomatism in Marble and the Role of Halogens in W Mobilization and Mineralization. Journal of Asian Earth Sciences, 117:82-106. https://doi.org/10.1016/j.jseaes.2015.12.004 doi:  10.1016/j.jseaes.2015.12.004
[13] Guo, Z. J., Li, J. W., Xu, X. Y., et al., 2016. Sm-Nd Dating and REE Composition of Scheelite for the Honghuaerji Scheelite Deposit, Inner Mongolia, Northeast China. Lithos, 261:307-321. https://doi.org/10.1016/j.lithos.2016.03.006 doi:  10.1016/j.lithos.2016.03.006
[14] Hu, R. Z., Zhou, M. F., 2012. Multiple Mesozoic Mineralization Events in South China—an Introduction to the Thematic Issue. Mineralium Deposita, 47(6):579-588. https://doi.org/10.1007/s00126-012-0431-6 doi:  10.1007/s00126-012-0431-6
[15] Hua, R. M., Chen, P. R., Zhang, W. L., et al., 2003. Metallogenic Systems Related to Mesozoic and Cenozoic Granitoids in South China. Science in China Series D:Earth Sciences, 46(8):816-829. https://doi.org/10.1007/bf02879525 doi:  10.1007/bf02879525
[16] Hua, R. M., Chen, P. R., Zhang, W. L., et al., 2005. Metallogenesis Related to Mesozoic Granitoids in the Nanling Range, South China and Their Geodynamic Settings. Acta Geologica Sinica:English Edition, 79(6):810-820. https://doi.org/10.1111/j.1755-6724.2005.tb00936.x doi:  10.1111/j.1755-6724.2005.tb00936.x
[17] Huang, L. C., Jiang, S. Y., 2014. Highly Fractionated S-Type Granites from the Giant Dahutang Tungsten Deposit in Jiangnan Orogen, Southeast China:Geochronology, Petrogenesis and Their Relationship with W-Mineralization. Lithos, 202/203:207-226. https://doi.org/10.1016/j.lithos.2014.05.030 doi:  10.1016/j.lithos.2014.05.030
[18] Larsen, R. B., 1991. Tungsten Skarn Mineralizations in a Regional Metamorphic Terrain in Northern Norway:A Possible Metamorphic Ore Deposit. Mineralium Deposita, 26(4):281-289. https://doi.org/10.1007/bf00191075 doi:  10.1007/bf00191075
[19] Liu, L., Xu, X. S., Xia, Y., 2016. Asynchronizing Paleo-Pacific Slab Rollback beneath SE China:Insights from the Episodic Late Mesozoic Volcanism. Gondwana Research, 37:397-407. https://doi.org/10.1016/j.gr.2015.09.009 doi:  10.1016/j.gr.2015.09.009
[20] Li, X. H., Li, W. X., Li, Z. X., et al., 2009a. Amalgamation between the Yangtze and Cathaysia Blocks in South China:Constraints from SHRIMP U-Pb Zircon Ages, Geochemistry and Nd-Hf Isotopes of the Shuangxiwu Volcanic Rocks. Precambrian Research, 174(1/2):117-128. https://doi.org/10.1016/j.precamres.2009.07.004 doi:  10.1016/j.precamres.2009.07.004
[21] Li, X. H., Li, W. X., Wang, X. C., et al., 2009b. Role of Mantle-Derived Magma in Genesis of Early Yanshanian Granites in the Nanling Range, South China:In situ Zircon Hf-O Isotopic Constraints. Science in China Series D:Earth Sciences, 52(9):1262-1278. https://doi.org/10.1007/s11430-009-0117-9 doi:  10.1007/s11430-009-0117-9
[22] Li, X. Y., Gao, J. F., Zhang, R. Q., et al., 2018. Origin of the Muguayuan Veinlet-Disseminated Tungsten Deposit, South China:Constraints from in-situ Trace Element Analyses of Scheelite. Ore Geology Reviews, 99:180-194. https://doi.org/10.1016/j.oregeorev.2018.06.005 doi:  10.1016/j.oregeorev.2018.06.005
[23] Li, Z. X., Li, X. H., 2007. Formation of the 1300-Km-Wide Intracontinental Orogen and Postorogenic Magmatic Province in Mesozoic South China:A Flat-Slab Subduction Model. Geology, 35(2):179. https://doi.org/10.1130/g23193a.1 doi:  10.1130/g23193a.1
[24] Li, Z., Qiu, J. S., Yang, X. M., 2014. A Review of the Geochronology and Geochemistry of Late Yanshanian (Cretaceous) Plutons along the Fujian Coastal Area of Southeastern China:Implications for Magma Evolution Related to Slab Break-Off and Rollback in the Cretaceous. Earth-Science Reviews, 128:232-248. https://doi.org/10.1016/j.earscirev.2013.09.007 doi:  10.1016/j.earscirev.2013.09.007
[25] Liang, W., Zhang, L., Xia, X., et al., 2018. Geology and Preliminary Mineral Genesis of the Cuonadong W-Sn Polymetallic Deposit, Southern Tibet, China. Earth Science, 43(8):2742-2754 (in Chinese with Englsh Abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201808016.htm
[26] Ling, W. L., Gao, S., Zhang, B. R., et al., 2003. Neoproterozoic Tectonic Evolution of the Northwestern Yangtze Craton, South China:Implications for Amalgamation and Break-Up of the Rodinia Supercontinent. Precambrian Research, 122(1/2/3/4):111-140. https://doi.org/10.1016/s0301-9268(02)00222-x doi:  10.1016/s0301-9268(02)00222-x
[27] Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1/2):34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004 doi:  10.1016/j.chemgeo.2008.08.004
[28] Ma, Y., Jiang, S. Y., Chen, R. S., et al., 2019. Hydrothermal Evolution and Ore Genesis of the Zhaiping Ag-Pb-Zn Deposit in Fujian Province of Southeast China:Evidence from Stable Isotopes (H, O, C, S) and Fluid Inclusions. Ore Geology Reviews, 104:246-265. https://doi.org/10.1016/j.oregeorev.2018.11.010 doi:  10.1016/j.oregeorev.2018.11.010
[29] Mao, J. W., Xie, G. Q., Li, X. F., et al., 2006. Mesozoic Large-Scale Mineralization and Multiple Lithospheric Extensions in South China. Acta Geologica Sinica:English Edition, 80(3):420-431. https://doi.org/10.1111/j.1755-6724.2006.tb00259.x doi:  10.1111/j.1755-6724.2006.tb00259.x
[30] Mao, J. W., Chen, M. H., Yuan, S. D., 2011. Geological Characteristics of the Qinhang (or Shihang) Metallogenic Belt in South China and Spatial-Temporal Distribution Regularity of Mineral Deposits. Acta Geologica Sinica, 85(5):636-658 (in Chinese with Englsh Abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DZXE201105006.htm
[31] Mao, J. W., Xiong, B. K., Liu, J., et al., 2017. Molybdenite Re/Os Dating, Zircon U-Pb Age and Geochemistry of Granitoids in the Yangchuling Porphyry W-Mo Deposit (Jiangnan Tungsten Ore Belt), China:Implications for Petrogenesis, Mineralization and Geodynamic Setting. Lithos, 286-287:35-52. https://doi.org/10.1016/j.lithos.2017.05.023 doi:  10.1016/j.lithos.2017.05.023
[32] Mao, Z. H., Cheng, Y. B., Liu, J. J., et al., 2013. Geology and Molybdenite Re-Os Age of the Dahutang Granite-Related Veinlets-Disseminated Tungsten Ore Field in the Jiangxin Province, China. Ore Geology Reviews, 53:422-433. https://doi.org/10.1016/j.oregeorev.2013.02.005 doi:  10.1016/j.oregeorev.2013.02.005
[33] Nassau, K., Loiacono, G. M., 1963. Calciumt Ungstate-Ⅲ:Trivalent Rare Earths Substitution. Journal of Physics and Chemistry of Solids, 24:1503-1510 doi:  10.1016/0022-3697(63)90090-8
[34] Peng, N. J., Jiang, S. Y., Xiong, S. F., et al., 2018. Fluid Evolution and Ore Genesis of the Dalingshang Deposit, Dahutang W-Cu Ore Field, Northern Jiangxi Province, South China. Mineralium Deposita, 53(8):1079-1094. https://doi.org/10.1007/s00126-018-0796-2 doi:  10.1007/s00126-018-0796-2
[35] Raimbault, L., Baumer, A., Dubru, M., et al., 1993. REE Fractionation between Scheelite and Apatite in Hydrothermal Conditions. American Mineralogist, 78(11/12):1275-1285 http://gateway.proquest.com/openurl?res_dat=xri:pqm&ctx_ver=Z39.88-2004&rfr_id=info:xri/sid:baidu&rft_val_fmt=info:ofi/fmt:kev:mtx:article&genre=article&jtitle=American%20Mineralogist&atitle=Ree%20Fractionation%20Between%20Scheelite%20and%20Apatite%20in%20Hydrothermal%20Conditions
[36] Schulz, K. J., DeYoung, J. H., Seal, R. R., et al., 2018. Critical Mineral Resources of the United States:Economic and Environmental Geology and Prospects for Future Supply. U.S. Geological Survey Professional Paper, 1802:A1-A14. https://doi.org/10.3133/pp1802 doi:  10.3133/pp1802
[37] Sciuba, M., Beaudoin, G., Grzela, D., et al., 2019. Trace Element Composition of Scheelite in Orogenic Gold Deposits. Mineralium Deposita. https://doi.org/10.1007/s00126-019-00913-4 doi:  10.1007/s00126-019-00913-4
[38] Singoyi, B., Zaw, K., 2001. A Petrological and Fluid Inclusion Study of Magnetite-Scheelite Skarn Mineralization at Kara, Northwestern Tasmania:Implications for Ore Genesis. Chemical Geology, 173(1/2/3):239-253. https://doi.org/10.1016/s0009-2541(00)00278-3 doi:  10.1016/s0009-2541(00)00278-3
[39] Song, G., Qin, K., Li, G., et al., 2014. Scheelite Elemental and Isotopic Signatures:Implications for the Genesis of Skarn-Type W-Mo Deposits in the Chizhou Area, Anhui Province, Eastern China. American Mineralogist, 99(2/3):303-317. https://doi.org/10.2138/am.2014.4431 doi:  10.2138/am.2014.4431
[40] Song, S. W., Mao, J. W., Zhu, Y. F., et al., 2018. Partial-Melting of Fertile Metasedimentary Rocks Controlling the Ore Formation in the Jiangnan Porphyry-Skarn Tungsten Belt, South China:A Case Study at the Giant Zhuxi W-Cu Skarn Deposit. Lithos, 304-307:180-199. https://doi.org/10.1016/j.lithos.2018.02.002 doi:  10.1016/j.lithos.2018.02.002
[41] Souza Neto, J. A., Legrand, J. M., Volfinger, M., et al., 2008. W-Au Skarns in the Neo-Proterozoic Seridó Mobile Belt, Borborema Province in Northeastern Brazil:An Overview with Emphasis on the Bonfim Deposit. Mineralium Deposita, 43(2):185-205. https://doi.org/10.1007/s00126-007-0155-1 doi:  10.1007/s00126-007-0155-1
[42] Sun, K. K., Chen, B., 2017. Trace Elements and Sr-Nd Isotopes of Scheelite:Implications for the W-Cu-Mo Polymetallic Mineralization of the Shimensi Deposit, South China. American Mineralogist, 102(5):1114-1128. https://doi.org/10.2138/am-2017-5654 doi:  10.2138/am-2017-5654
[43] Sun, K. K., Chen, B., Deng, J., 2019. Ore Genesis of the Zhuxi Supergiant W-Cu Skarn Polymetallic Deposit, South China:Evidence from Scheelite Geochemistry. Ore Geology Reviews, 107:14-29. https://doi.org/10.1016/j.oregeorev.2019.02.017 doi:  10.1016/j.oregeorev.2019.02.017
[44] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 doi:  10.1144/gsl.sp.1989.042.01.19
[45] Sun, T., Zhou, X. M., Chen, P. R., et al., 2005. Strongly Peraluminous Granites of Mesozoic in Eastern Nanling Range, Southern China:Petrogenesis and Implications for Tectonics. Science in China Series D, 48(2):165-174. https://doi.org/10.1360/03yd0042 doi:  10.1360/03yd0042
[46] Sylvester, P. J., Ghaderi, M., 1997. Trace Element Analysis of Scheelite by Excimer Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (ELA-ICP-MS) Using a Synthetic Silicate Glass Standard. Chemical Geology, 141(1/2):49-65. https://doi.org/10.1016/s0009-2541(97)00057-0 doi:  10.1016/s0009-2541(97)00057-0
[47] Wang, G. G., Ni, P., Yao, J., et al., 2015. The Link between Subduction-Modified Lithosphere and the Giant Dexing Porphyry Copper Deposit, South China:Constraints from High-Mg Adakitic Rocks. Ore Geology Reviews, 67:109-126. https://doi.org/10.1016/j.oregeorev.2014.12.004 doi:  10.1016/j.oregeorev.2014.12.004
[48] Wang, G. G., Ni, P., Zhao, C., et al., 2016. Spatiotemporal Reconstruction of Late Mesozoic Silicic Large Igneous Province and Related Epithermal Mineralization in South China:Insights from the Zhilingtou Volcanic-Intrusive Complex. Journal of Geophysical Research:Solid Earth, 121(11):7903-7928. https://doi.org/10.1002/2016jb013060 doi:  10.1002/2016jb013060
[49] Wang, L. J., Yu, J. H., Xu, X. S., et al., 2007. Formation Age and Origin of the Gutian-Xiaotao Granitic Complex in the Southwestern Fujian Province, China. Acta Petrologica Sinica, 23(6):1470-1484 (in Chinese with Englsh Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200706021.htm
[50] Wang, L. J., Yu, J. H., O'Reilly, S. Y., et al., 2008. Grenvillian Orogeny in the Southern Cathaysia Block:Constraints from U-Pb Ages and Lu-Hf Isotopes in Zircon from Metamorphic Basement. Science Bulletin, 53(19):3037-3050. https://doi.org/10.1007/s11434-008-0262-0 doi:  10.1007/s11434-008-0262-0
[51] Wang, S., Zhang, D., Wu, G. G., et al., 2018. Late Mesozoic Tectonic Evolution of Southwestern Fujian Province, South China:Constraints from Magnetic Fabric, Zircon U-Pb Geochronology and Structural Deformation. Journal of Earth Science, 29(2):391-407. https://doi.org/10.1007/s12583-017-0968-5 doi:  10.1007/s12583-017-0968-5
[52] Wang, Y. J., Fan, W. M., Sun, M., et al., 2007. Geochronological, Geochemical and Geothermal Constraints on Petrogenesis of the Indosinian Peraluminous Granites in the South China Block:A Case Study in the Hunan Province. Lithos, 96(3/4):475-502. https://doi.org/10.1016/j.lithos.2006.11.010 doi:  10.1016/j.lithos.2006.11.010
[53] Wang, Y. Y., van den Kerkhof, A., Xiao, Y. L., et al., 2017. Geochemistry and Fluid Inclusions of Scheelite-Mineralized Granodiorite Porphyries from Southern Anhui Province, China. Ore Geology Reviews, 89:988-1005. https://doi.org/10.1016/j.oregeorev.2017.08.004 doi:  10.1016/j.oregeorev.2017.08.004
[54] Xie, X. H., Chen, W. F., Zhao, K. D., et al., 2008. Geochemical characteristics and geochronology of the Douzhashan granite, Northeastern Guangxi Province, China. Acta Petrologica Sinica, 24(6):1302-1312 (in Chinese with Englsh Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200806014.htm
[55] Xiong, Y. Q., Shao, Y. J., Zhou, H. D., et al., 2017. Ore-Forming Mechanism of Quartz-Vein-Type W-Sn Deposits of the Xitian District in SE China:Implications from the Trace Element Analysis of Wolframite and Investigation of Fluid Inclusions. Ore Geology Reviews, 83:152-173. https://doi.org/10.1016/j.oregeorev.2016.12.007 doi:  10.1016/j.oregeorev.2016.12.007
[56] Yu, J. H., Zhou, X. M., O'Reilly, Y. S., et al., 2005a. Formation History and Protolith Characteristics of Granulite Facies Metamorphic Rock in Central Cathaysia Deduced from U-Pb and Lu-Hf Isotopic Studies of Single Zircon Grains. Science Bulletin, 50(18):2080-2089. https://doi.org/10.1007/bf03322805 doi:  10.1007/bf03322805
[57] Yu, J. H., Zhou, X. M., Zhao, L., et al., 2005b. Mantle-Crust Interaction Generating the Wuping Granites:Evidenced from Sr-Nd-Hf-U-Pb Isotopes. Acta Petrologica Sinica, 21(3):651-664 (in Chinese with Englsh Abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB200503008.htm
[58] Yu, J. H., O'Reilly, S. Y., Zhou, M. F., et al., 2012. U-Pb Geochronology and Hf-Nd Isotopic Geochemistry of the Badu Complex, Southeastern China:Implications for the Precambrian Crustal Evolution and Paleogeography of the Cathaysia Block. Precambrian Research, 222/223:424-449. https://doi.org/10.1016/j.precamres.2011.07.014 doi:  10.1016/j.precamres.2011.07.014
[59] Zhang, Q., Zhang, R. Q., Gao, J. F., et al., 2018. In-situ LA-ICP-MS Trace Element Analyses of Scheelite and Wolframite:Constraints on the Genesis of Veinlet-Disseminated and Vein-Type Tungsten Deposits, South China. Ore Geology Reviews, 99:166-179. https://doi.org/10.1016/j.oregeorev.2018.06.004 doi:  10.1016/j.oregeorev.2018.06.004
[60] Zhao, J. H., Zhou, M. F., Yan, D. P., et al., 2011. Reappraisal of the Ages of Neoproterozoic Strata in South China:No Connection with the Grenvillian Orogeny. Geology, 39(4):299-302. https://doi.org/10.1130/g31701.1 doi:  10.1130/g31701.1
[61] Zhao, W. W., Zhou, M. F., Li, Y. H. M., et al., 2017. Genetic Types, Mineralization Styles, and Geodynamic Settings of Mesozoic Tungsten Deposits in South China. Journal of Asian Earth Sciences, 137:109-140. https://doi.org/10.1016/j.jseaes.2016.12.047 doi:  10.1016/j.jseaes.2016.12.047
[62] Zhao, W. W., Zhou, M. F., Williams-Jones, A. E., et al., 2018. Constraints on the Uptake of REE by Scheelite in the Baoshan Tungsten Skarn Deposit, South China. Chemical Geology, 477:123-136. https://doi.org/10.1016/j.chemgeo.2017.12.020 doi:  10.1016/j.chemgeo.2017.12.020
[63] Zhou, M. F., Yan, D. P., Wang, C. L., et al., 2006. Subduction-Related Origin of the 750 Ma Xuelongbao Adakitic Complex (Sichuan Province, China):Implications for the Tectonic Setting of the Giant Neoproterozoic Magmatic Event in South China. Geochimica et Cosmochimica Acta, 70(18):A752. https://doi.org/10.1016/j.gca.2006.06.1355 doi:  10.1016/j.gca.2006.06.1355
[64] Zhou, M. F., Gao, J. F., Zhao, Z., et al., 2018. Introduction to the Special Issue of Mesozoic W-Sn Deposits in South China. Ore Geology Reviews, 101:432-436. https://doi.org/10.1016/j.oregeorev.2018.07.023 doi:  10.1016/j.oregeorev.2018.07.023
[65] Zhou, X. M., Li, W. X., 2000. Origin of Late Mesozoic Igneous Rocks in Southeastern China:Implications for Lithosphere Subduction and Underplating of Mafic Magmas. Tectonophysics, 326(3/4):269-287. https://doi.org/10.1016/s0040-1951(00)00120-7 doi:  10.1016/s0040-1951(00)00120-7
[66] Zhou, X. M., Sun, T., Shen, W. Z., et al., 2006. Petrogenesis of Mesozoic Granitoids and Volcanic Rocks in South China:A Response to Tectonic Evolution. Episodes, 29(1):26-33. https://doi.org/10.18814/epiiugs/2006/v29i1/004 doi:  10.18814/epiiugs/2006/v29i1/004
[67] Zhu, L. Y., Liu, Y. S., Hu, Z. C., et al., 2013. Simultaneous Determination of Major and Trace Elements in Fused Volcanic Rock Powders Using a Hermetic Vessel Heater and LA-ICP-MS. Geostandards and Geoanalytical Research, 37(2):207-229. https://doi.org/10.1111/j.1751-908x.2012.00181.x doi:  10.1111/j.1751-908x.2012.00181.x
[68] Zhu, L. Y., Jiang, S. Y., Chen, R. S., et al., 2019. Origin of the Shangfang Tungsten Deposit in the Fujian Province of Southeast China:Evidence from Scheelite Sm-Nd Geochronology, H-O Isotopes and Fluid Inclusions Studies. Minerals, 9(11):713. https://doi.org/10.3390/min9110713 doi:  10.3390/min9110713
[69] Zhu, L. Y., Zhang, G. L., Liu, Y. S., et al., 2019. Improved in-situ Determination of Sr Isotope Ratio in Silicate Samples Using LA-MC-ICP-MS and Its Wider Application for Fused Rock Powder. Journal of Earth Science, 31(4):262-270. https://doi.org/10.1007/s12583-019-1214-0 doi:  10.1007/s12583-019-1214-0