[1] Abe, Y., Matsui, T., 1988. Evolution of an Impact-Generated H2O-CO2 Atmosphere and Formation of a Hot Proto-Ocean on Earth. Journal of the Atmospheric Sciences, 45(21): 3081-3101. doi:10.1175/1520-0469(1988)045<3081:eoaigh>2.0.co;2
[2] Arcay, D., Tric, E., Doin, M. P., 2005. Numerical Simulations of Subduction Zones: Effect of Slab Dehydration on the Mantle Wedge Dynamics. Physics of the Earth and Planetary Interiors, 149(1/2): 133-153. doi: 10.1016/j.pepi.2004.08.020
[3] Arthur, M. A., Cole, D. R., 2014. Unconventional Hydrocarbon Resources: Prospects and Problems. Elements, 10(4): 257-264. doi: 10.2113/gselements.10.4.257
[4] Aubaud, C., Hirschmann, M. M., Withers, A. C., et al., 2008. Hydrogen Partitioning between Melt, Clinopyroxene, and Garnet at 3 GPa in a Hydrous MORB with 6 wt.% H2O. Contributions to Mineralogy and Petrology, 156(5): 607-625. doi: 10.1007/s00410-008-0304-2
[5] Bercovici, D., Karato, S.-I., 2003. Whole-Mantle Convection and the Transition-Zone Water Filter. Nature, 425(6953): 39-44. doi: 10.1038/nature01918
[6] Bercovici, D., Ricard, Y., 2014. Plate Tectonics, Damage and Inheritance. Nature, 508(7497): 513-516. doi: 10.1038/nature13072
[7] Bercovici, D., Ricard, Y., 2016. Grain-Damage Hysteresis and Plate Tectonic States. Physics of the Earth and Planetary Interiors, 253: 31-47. doi: 10.13039/100000001
[8] Bolfan-Casanova, N., 2005. Water in the Earth's Mantle. Mineralogical Magazine, 69(3): 229-258. doi: 10.1180/0026461056930248
[9] Christensen, U. R., Hofmann, A. W., 1994. Segregation of Subducted Oceanic Crust in the Convecting Mantle. Journal of Geophysical Research: Solid Earth, 99(B10): 19867-19884. doi: 10.1029/93jb03403
[10] Coltice, N., Rolf, T., Tackley, P. J., et al., 2012. Dynamic Causes of the Relation between Area and Age of the Ocean Floor. Science, 336(6079): 335-338. doi: 10.1126/science.1219120
[11] Condie, K. C., 2016. A Planet in Transition: The Onset of Plate Tectonics on Earth between 3 and 2 Ga?. Geoscience Frontiers, doi: 10.1016/j.gsf.2016.09.001
[12] Crameri, F., Tackley, P. J., Meilick, I., et al., 2012. A Free Plate Surface and Weak Oceanic Crust Produce Single-Sided Subduction on Earth. Geophysical Research Letters, 39(3): L03306. doi: 10.1029/2011gl050046
[13] Crowley, J. W., Gérault, M., O'Connell, R. J., 2011. On the Relative Influence of Heat and Water Transport on Planetary Dynamics. Earth and Planetary Science Letters, 310(3/4): 380-388. doi: 10.1016/j.epsl.2011.08.035
[14] Dasgupta, R., Hirschmann, M. M., 2010. The Deep Carbon Cycle and Melting in Earth's Interior. Earth and Planetary Science Letters, 298(1/2): 1-13. doi: 10.1016/j.epsl.2010.06.039
[15] de Smet, J. H., van den Berg, A. P., Vlaar, N. J., 1998. Stability and Growth of Continental Shields in Mantle Convection Models Including Recurrent Melt Production. Tectonophysics, 296(1/2): 15-29. doi: 10.1016/s0040-1951(98)00135-8
[16] Fei, H. Z., Wiedenbeck, M., Yamazaki, D., et al., 2013. Small Effect of Water on Upper-Mantle Rheology Based on Silicon Self-Diffusion Coefficients. Nature, 498(7453): 213-215. doi: 10.1038/nature12193
[17] Foley, B. J., Becker, T. W., 2009. Generation of Plate-Like Behavior and Mantle Heterogeneity from a Spherical, Viscoplastic Convection Model. Geochemistry, Geophysics, Geosystems, 10(8): Q08001. doi: 10.1029/2009gc002378
[18] Foley, B. J., Driscoll, P. E., 2016. Whole Planet Coupling between Climate, Mantle, and Core: Implications for Rocky Planet Evolution. Geochemistry, Geophysics, Geosystems, 17(5): 1885-1914. doi: 10.13039/100000104
[19] Franck, S., Kossacki, K. J., von Bloh, W., et al., 2002. Long-Term Evolution of the Global Carbon Cycle: Historic Minimum of Global Surface Temperature at Present. Tellus B, 54(4): 325-343. doi: 10.1034/j.1600-0889.2002.201377.x
[20] Fujita, K., Ogawa, M., 2013. A Preliminary Numerical Study on Water-Circulation in Convecting Mantle with Magmatism and Tectonic Plates. Physics of the Earth and Planetary Interiors, 216: 1-11. doi: 10.1016/j.pepi.2012.12.003
[21] Gaidos, E., Deschenes, B., Dundon, L., et al., 2005. Beyond the Principle of Plentitude: A Review of Terrestrial Planet Habitability. Astrobiology, 5(2): 100-126. doi: 10.1089/ast.2005.5.100
[22] Genda, H., 2016. Origin of Earth's Oceans: An Assessment of the Total Amount, History and Supply of Water. Geochemical Journal, 50(1): 27-42. doi: 10.2343/geochemj.2.0398
[23] Gerya, T. V., Connolly, J. A. D., Yuen, D. A., 2008. Why is Terrestrial Subduction One-Sided?. Geology, 36(1): 43. doi: 10.1130/g24060a.1
[24] Gerya, T. V., Stern, R. J., Baes, M., et al., 2015. Plate Tectonics on the Earth Triggered by Plume-Induced Subduction Initiation. Nature, 527(7577): 221-225. doi: 10.1038/nature15752
[25] Gerya, T., 2012. Origin and Models of Oceanic Transform Faults. Tectonophysics, 522/523: 34-54. doi: 10.1016/j.tecto.2011.07.006
[26] Gillmann, C., Golabek, G. J., Tackley, P. J., 2016. Effect of a Single Large Impact on the Coupled Atmosphere-Interior Evolution of Venus. Icarus, 268: 295-312. doi: 10.1016/j.icarus.2015.12.024
[27] Gillmann, C., Tackley, P., 2014. Atmosphere/Mantle Coupling and Feedbacks on Venus. Journal of Geophysical Research: Planets, 119(6): 1189-1217. doi: 10.1002/2013je004505
[28] Hamano, K., Abe, Y., Genda, H., 2013. Emergence of Two Types of Terrestrial Planet on Solidification of Magma Ocean. Nature, 497(7451): 607-610. doi: 10.1038/nature12163
[29] Hernlund, J. W., Tackley, P. J., 2008. Modeling Mantle Convection in the Spherical Annulus. Physics of the Earth and Planetary Interiors, 171(1/2/3/4): 48-54. doi: 10.1016/j.pepi.2008.07.037
[30] Hirschmann, M., Kohlstedt, D., 2012. Water in Earth's Mantle. Physics Today, 65(3): 40-45. doi: 10.1063/pt.3.1476
[31] Hopkins, M., Harrison, T. M., Manning, C. E., 2008. Low Heat Flow Inferred from > 4 Gyr Zircons Suggests Hadean Plate Boundary Interactions. Nature, 456(7221): 493-496. doi: 10.1038/nature07465
[32] Houser, C., 2016. Global Seismic Data Reveal Little Water in the Mantle Transition Zone. Earth and Planetary Science Letters, 448: 94-101. doi: 10.13039/100000001
[33] Inoue, T., Tanimoto, Y., Irifune, T., et al., 2004. Thermal Expansion of Wadsleyite, Ringwoodite, Hydrous Wadsleyite and Hydrous Ringwoodite. Physics of the Earth and Planetary Interiors, 143/144: 279-290. doi: 10.1016/j.pepi.2003.07.021
[34] Inoue, T., Weidner, D. J., Northrup, P. A., et al., 1998. Elastic Properties of Hydrous Ringwoodite (γ-Phase) in Mg2SiO4. Earth and Planetary Science Letters, 160(1/2): 107-113. doi: 10.1016/s0012-821x(98)00077-6
[35] Iwamori, H., 2004. Phase Relations of Peridotites under H2O-Saturated Conditions and Ability of Subducting Plates for Transportation of H2O. Earth and Planetary Science Letters, 227(1/2): 57-71. doi: 10.1016/j.epsl.2004.08.013
[36] Iwamori, H., 2007. Transportation of H2O beneath the Japan Arcs and Its Implications for Global Water Circulation. Chemical Geology, 239(3/4): 182-198. doi: 10.1016/j.chemgeo.2006.08.011
[37] Iwamori, H. , Nakakuki, T. , 2013. Fluid Processes in Subduction Zones and Water Transport to the Deep Mantle. In: Karato, S. -I. , ed. , Physics and Chemistry of the Deep Mantle. John Wiley, N. Y. . 372-391
[38] Jacobsen, S. D. , Smyth, J. R. , 2006. Effect of Water on the Sound Velocities of Ringwoodite in the Transition Zone. In: Jacobsen, S. D. , van der Lee, S. , eds. , Earth's Deep Water Cycle. Geophys. Monogr. Ser. 168. AGU, Washington, D. C. . 131-145
[39] Karato, S.-I., 2011. Water Distribution Across the Mantle Transition Zone and Its Implications for Global Material Circulation. Earth and Planetary Science Letters, 301(3/4): 413-423. doi: 10.1016/j.epsl.2010.11.038
[40] Karato, S.-I., Wu, P., 1993. Rheology of the Upper Mantle: A Synthesis. Science, 260(5109): 771-778. doi: 10.1126/science.260.5109.771
[41] Katz, R. F., Spiegelman, M., Langmuir, C. H., 2003. A New Parameterization of Hydrous Mantle Melting. Geochemistry, Geophysics, Geosystems, 4(9): 1073. doi: 10.1029/2002gc000433
[42] Kawamoto, T., 2006. Hydrous Phases and Water Transport in the Subducting Slab. Reviews in Mineralogy and Geochemistry, 62(1): 273-289. doi: 10.2138/rmg.2006.62.12
[43] Kelemen, P. B., Behn, M. D., 2016. Formation of Lower Continental Crust by Relamination of Buoyant Arc Lavas and Plutons. Nature Geoscience, 9(3): 197-205. doi: 10.1038/ngeo2662
[44] Keller, T., Tackley, P. J., 2009. Towards Self-Consistent Modeling of the Martian Dichotomy: The Influence of One-Ridge Convection on Crustal Thickness Distribution. Icarus, 202(2): 429-443. doi: 10.1016/j.icarus.2009.03.029
[45] Kohlstedt, D. L., Evans, B., Mackwell, S. J., 1995. Strength of the Lithosphere: Constraints Imposed by Laboratory Experiments. Journal of Geophysical Research: Solid Earth, 100(B9): 17587-17602. doi: 10.1029/95jb01460
[46] Kohlstedt, D. L., Keppler, H., Rubie, D. C., 1996. Solubility of Water in the α, β and γ Phases of (Mg, Fe)2SiO4. Contributions to Mineralogy and Petrology, 123(4): 345-357. doi: 10.1007/s004100050161
[47] Kohn, S. C., Grant, K. J., 2006. The Partitioning of Water between Nominally Anhydrous Minerals and Silicate Melts. Reviews in Mineralogy and Geochemistry, 62(1): 231-241. doi: 10.2138/rmg.2006.62.10
[48] Komabayashi, T., Omori, S., Maruyama, S., 2004. Petrogenetic Grid in the System MgO-SiO2-H2O up to 30 GPa, 1 600 ℃: Applications to Hydrous Peridotite Subducting into the Earth's Deep Interior. Journal of Geophysical Research, 109(B3). doi: 10.1029/2003jb002651
[49] Korenaga, J., 2011. Thermal Evolution with a Hydrating Mantle and the Initiation of Plate Tectonics in the Early Earth. Journal of Geophysical Research, 116(B12): B12403. doi: 10.1029/2011jb008410
[50] Korenaga, J., Karato, S.-I., 2008. A New Analysis of Experimental Data on Olivine Rheology. Journal of Geophysical Research, 113(B2): B02403. doi: 10.1029/2007jb005100
[51] Li, Z. X. A., Lee, C. T. A., Peslier, A. H., et al., 2008. Water Contents in Mantle Xenoliths from the Colorado Plateau and Vicinity: Implications for the Mantle Rheology and Hydration-Induced Thinning of Continental Lithosphere. Journal of Geophysical Research, 113(B9): B09210. doi: 10.1029/2007jb005540
[52] Mao, Z., Jacobsen, S. D., Jiang, F. M., et al., 2008. Single-Crystal Elasticity of Wadsleyites, Β-Mg2SiO4, Containing 0.37-1.66 wt.% H2O. Earth and Planetary Science Letters, 268(3/4): 540-549. doi: 10.1016/j.epsl.2008.01.023
[53] Maruyama, S., Okamoto, K., 2007. Water Transportation from the Subducting Slab into the Mantle Transition Zone. Gondwana Research, 11(1/2): 148-165. doi: 10.1016/j.gr.2006.06.001
[54] Mashino, I., Murakami, M., Ohtani, E., et al., 2016. Sound Velocities of Δ-AlOOH up to Core-Mantle Boundary Pressures with Implications for the Seismic Anomalies in the Deep Mantle. Journal of Geophysical Research: Solid Earth, 121(2): 595-609. doi: 10.1002/2015jb012477
[55] Matsuno, T., Suetsugu, D., Baba, K., et al., 2017. Mantle Transition Zone beneath a Normal Seafloor in the Northwestern Pacific: Electrical Conductivity, Seismic Thickness, and Water Content. Earth and Planetary Science Letters, 462: 189-198. doi: 10.13039/501100001691
[56] McGovern, P. J., Schubert, G., 1989. Thermal Evolution of the Earth: Effects of Volatile Exchange between Atmosphere and Interior. Earth and Planetary Science Letters, 96(1/2): 27-37. doi: 10.1016/0012-821x(89)90121-0
[57] Mei, S. H., Kohlstedt, D. L., 2000. Influence of Water on Plastic Deformation of Olivine Aggregates: 1. Diffusion Creep Regime. Journal of Geophysical Research: Solid Earth, 105(B9): 21457-21469. doi: 10.1029/2000jb900179
[58] Moresi, L., Solomatov, V., 1998. Mantle Convection with a Brittle Lithosphere: Thoughts on the Global Tectonic Styles of the Earth and Venus. Geophysical Journal International, 133(3): 669-682. doi: 10.1046/j.1365-246x.1998.00521.x
[59] Murakami, M., Hirose, K., Yurimoto, Y., et al., 2002. Water in Earth's Lower Mantle. Science, 295(5561): 1885-1887. doi: 10.1126/science.1065998
[60] Nakagawa, T., Nakakuki, T., Iwamori, H., 2015. Water Circulation and Global Mantle Dynamics: Insight from Numerical Modeling. Geochemistry, Geophysics, Geosystems, 16(5): 1449-1464. doi: 10.1002/2014gc005701
[61] Nakagawa, T., Spiegelman, M. W., 2017. Global-Scale Water Circulation in the Earth's Mantle: Implications for the Mantle Water Budget in the Early Earth. Earth and Planetary Science Letters, 464: 189-199. doi: 10.13039/501100001691
[62] Nakagawa, T., Tackley, P. J., 2011. Effects of Low-Viscosity Post-Perovskite on Thermo-Chemical Mantle Convection in a 3-D Spherical Shell. Geophysical Research Letters, 38(4): L04309. doi: 10.1029/2010gl046494
[63] Nakagawa, T., Tackley, P. J., 2015. Influence of Plate Tectonic Mode on the Coupled Thermochemical Evolution of Earth's Mantle and Core. Geochemistry, Geophysics, Geosystems, 16(10): 3400-3413. doi: 10.1002/2015gc005996
[64] Nakagawa, T., Tackley, P. J., Deschamps, F., et al., 2010. The Influence of MORB and Harzburgite Composition on Thermo-Chemical Mantle Convection in a 3-D Spherical Shell with Self-Consistently Calculated Mineral Physics. Earth and Planetary Science Letters, 296(3/4): 403-412. doi: 10.1016/j.epsl.2010.05.026
[65] Nakajima, J., Hasegawa, A., 2007. Tomographic Evidence for the Mantle Upwelling beneath Southwestern Japan and Its Implications for Arc Magmatism. Earth and Planetary Science Letters, 254(1/2): 90-105. doi: 10.1016/j.epsl.2006.11.024
[66] Nakajima, S., Hayashi, Y. Y., Abe, Y., 1992. A Study on the "Runaway Greenhouse Effect" with a One-Dimensional Radiative-Convective Equilibrium Model. Journal of the Atmospheric Sciences, 49(23): 2256-2266. doi:10.1175/1520-0469(1992)049<2256:asotge>2.0.co;2
[67] Nakajima, Y., Imada, S., Hirose, K., et al., 2015. Carbon-Depleted Outer Core Revealed by Sound Velocity Measurements of Liquid Iron-Carbon Alloy. Nature Communications, 6: 8942. doi: 10.1038/ncomms9942
[68] Nakao, A., Iwamori, H., Nakakuki, T., 2016. Effects of Water Transportation on Subduction Dynamics: Roles of Viscosity and Density Reduction. Earth and Planetary Science Letters, 454: 178-191. doi: 10.13039/501100001691
[69] Nisbet, E. G., Sleep, N. H., 2001. The Habitat and Nature of Early Life. Nature, 409(6823): 1083-1091. doi: 10.1038/35059210
[70] Nishi, M., Irifune, T., Tsuchiya, J., et al., 2014. Stability of Hydrous Silicate at High Pressures and Water Transport to the Deep Lower Mantle. Nature Geoscience, 7(3): 224-227. doi: 10.1038/ngeo2074
[71] O'Neill, C., Lenardic, A., Moresi, L., et al., 2007. Episodic Precambrian Subduction. Earth and Planetary Science Letters, 262(3/4): 552-562. doi: 10.1016/j.epsl.2007.04.056
[72] Ohira, I., Ohtani, E., Sakai, T., et al., 2014. Stability of a Hydrous Δ-Phase, AlOOH-MgSiO2(OH)2, and a Mechanism for Water Transport into the Base of Lower Mantle. Earth and Planetary Science Letters, 401: 12-17. doi: 10.13039/501100001691
[73] Ohtani, E., 2005. Water in the Mantle. Elements, 1(1): 25-30. doi: 10.2113/gselements.1.1.25
[74] Ohtani, E., Amaike, Y., Kamada, S., et al., 2014. Stability of Hydrous Phase H MgSiO4H2 under Lower Mantle Conditions. Geophysical Research Letters, 41(23): 8283-8287. doi: 10.13039/501100003443
[75] Ohtani, E., Maeda, M., 2001. Density of Basaltic Melt at High Pressure and Stability of the Melt at the Base of the Lower Mantle. Earth and Planetary Science Letters, 193(1/2): 69-75. doi: 10.1016/s0012-821x(01)00505-2
[76] Panero, W. R., Pigott, J. S., Reaman, D. M., et al., 2015. Dry (Mg, Fe)SiO3 Perovskite in the Earth's Lower Mantle. Journal of Geophysical Research: Solid Earth, 120(2): 894-908. doi: 10.1002/2014jb011397
[77] Pearson, D. G., Brenker, F. E., Nestola, F., et al., 2014. Hydrous Mantle Transition Zone Indicated by Ringwoodite Included within Diamond. Nature, 507(7491): 221-224. doi: 10.1038/nature13080
[78] Poirier, J. P., 1994. Light Elements in the Earth's Outer Core: A Critical Review. Physics of the Earth and Planetary Interiors, 85(3/4): 319-337. doi: 10.1016/0031-9201(94)90120-1
[79] Rey, P. F., Coltice, N., Flament, N., 2014. Spreading Continents Kick-Started Plate Tectonics. Nature, 513(7518): 405-408. doi: 10.1038/nature13728
[80] Richard, G., Monnereau, M., Ingrin, J., 2002. Is the Transition Zone an Empty Water Reservoir? Inferences from Numerical Model of Mantle Dynamics. Earth and Planetary Science Letters, 205(1/2): 37-51. doi: 10.1016/s0012-821x(02)01012-9
[81] Rolf, T., Coltice, N., Tackley, P. J., 2012. Linking Continental Drift, Plate Tectonics and the Thermal State of the Earth's Mantle. Earth and Planetary Science Letters, 351/352: 134-146. doi: 10.1016/j.epsl.2012.07.011
[82] Rüpke, L. , Morgan, J. P. , Dixon, J. E. , 2006. Implciations of Subduction Rehydration for Earth's Deep Water Cycle. In: Jacobsen, S. D. , van der Lee, S. , eds. , Earth's Deep Water Cycle. Geophys. Monogr. Ser. 168. AGU, Washington, D. C. . 263-276. doi: 10.102/168GM20
[83] Rüpke, L., Morgan, J. P., Hort, M., et al., 2004. Serpentine and the Subduction Zone Water Cycle. Earth and Planetary Science Letters, 223(1/2): 17-34. doi: 10.1016/j.epsl.2004.04.018
[84] Sandu, C., Lenardic, A., McGovern, P., 2011. The Effects of Deep Water Cycling on Planetary Thermal Evolution. Journal of Geophysical Research, 116(B12): B12404. doi: 10.1029/2011jb008405
[85] Schmandt, B., Jacobsen, S. D., Becker, T. W., et al., 2014. Dehydration Melting at the Top of the Lower Mantle. Science, 344(6189): 1265-1268. doi: 10.1126/science.1253358
[86] Tackley, P. J., 2000a. Self-Consistent Generation of Tectonic Plates in Time-Dependent, Three-Dimensional Mantle Convection Simulations-Part 1: Pseudo-Plastic Yielding. Geochemistry, Geophysics, Geosystems, 1(8): 1525. doi: 10.1029/2000gc000043
[87] Tackley, P. J., 2000b. Self-Consistent Generation of Tectonic Plates in Time-Dependent, Three-Dimensional Mantle Convection Simulations-Part 2: Strain Weakening and Asthenosphere. Geochemistry, Geophysics, Geosystems, 1(8): 1026. doi: 10.1029/2000gc000043
[88] Tackley, P. J., 2008. Modelling Compressible Mantle Convection with Large Viscosity Contrasts in a Three-Dimensional Spherical Shell Using the Yin-Yang Grid. Physics of the Earth and Planetary Interiors, 171(1/2/3/4): 7-18. doi: 10.1016/j.pepi.2008.08.005
[89] Tackley, P. J., 1996. Effects of Strongly Variable Viscosity on Three-Dimensional Compressible Convection in Planetary Mantles. Journal of Geophysical Research: Solid Earth, 101(B2): 3311-3332. doi: 10.1029/95jb03211
[90] Tajika, E., Matsui, T., 1992. Evolution of Terrestrial Proto-CO2 Atmosphere Coupled with Thermal History of the Earth. Earth and Planetary Science Letters, 113(1/2): 251-266. doi: 10.1016/0012-821x(92)90223-i
[91] Timm, O., Timmermann, A., Abe-Ouchi, A., et al., 2008. On the Definition of Seasons in Paleoclimate Simulations with Orbital Forcing. Paleoceanography, 23(2): PA2221. doi: 10.1029/2007pa001461
[92] Townsend, J. P., Tsuchiya, J., Bina, C. R., et al., 2016. Water Partitioning between Bridgmanite and Postperovskite in the Lowermost Mantle. Earth and Planetary Science Letters, 454: 20-27. doi: 10.13039/100007059
[93] Trampert, R., Hansen, U., 1998. Mantle Convection Simulations with Rheologies that Generate Plate-Like Behavior. Nature, 395: 686-689. doi: 10.1038/27185
[94] Trenberth, K. E., Fasullo, J. T., Kiehl, J., 2009. Earth's Global Energy Budget. Bulletin of the American Meteorological Society, 90(3): 311-323. doi: 10.1175/2008bams2634.1
[95] Umemoto, K., Hirose, K., 2015. Liquid Iron-Hydrogen Alloys at Outer Core Conditions by First-Principles Calculations. Geophysical Research Letters, 42(18): 7513-7520. doi: 10.1002/2015gl065899
[96] van Heck, H. J., Tackley, P. J., 2008. Planforms of Self-Consistently Generated Plates in 3D Spherical Geometry. Geophysical Research Letters, 35(19): L19312. doi: 10.1029/2008gl035190
[97] van Hunen, J., Moyen, J. F., 2012. Archean Subduction: Fact or Fiction?. Annual Review of Earth and Planetary Sciences, 40(1): 195-219. doi: 10.1146/annurev-earth-042711-105255
[98] van Keken, P. E., Hacker, B. R., Syracuse, E. M., et al., 2011. Subduction Factory: 4. Depth-Dependent Flux of H2O from Subducting Slabs Worldwide. Journal of Geophysical Research, 116(B1): B01401. doi: 10.1029/2010jb007922
[99] Wang, J. Y., Sinogeikin, S. V., Inoue, T., et al., 2006. Elastic Properties of Hydrous Ringwoodite at High-Pressure Conditions. Geophysical Research Letters, 33(14): L14308. doi: 10.1029/2006gl026441
[100] Wilson, C. R., Spiegelman, M., van Keken, P. E., et al., 2014. Fluid Flow in Subduction Zones: The Role of Solid Rheology and Compaction Pressure. Earth and Planetary Science Letters, 401: 261-274. doi: 10.13039/100000001
[101] Xie, S. X., Tackley, P. J., 2004. Evolution of U-Pb and Sm-Nd Systems in Numerical Models of Mantle Convection and Plate Tectonics. Journal of Geophysical Research: Solid Earth, 109(B11): B11204. doi: 10.1029/2004jb003176
[102] Yamazaki, D., Karato, S.-I., 2001. Some Mineral Physics Constraints on the Rheology and Geothermal Structure of Earth's Lower Mantle. American Mineralogist, 86(4): 385-391. doi: 10.2138/am-2001-0401
[103] Ye, Y., Brown, D. A., Smyth, J. R., et al., 2012. Compressibility and Thermal Expansion of Hydrous Ringwoodite with 2.5(3) wt% H2O. American Mineralogist, 97(4): 573-582. doi: 10.2138/am.2012.4010
[104] Zahnle, K., Arndt, N., Cockell, C., et al., 2007. Emergence of a Habitable Planet. Space Science Reviews, 129(1/2/3): 35-78. doi: 10.1007/s11214-007-9225-z