[1] Acosta, J. A., Faz, A., Jansen, B., et al., 2011. Assessment of Salinity Status in Intensively Cultivated Soils under Semiarid Climate, Murcia, SE Spain. Journal of Arid Environments, 75(11):1056-1066. https://doi.org/10.1016/j.jaridenv.2011.05.006
[2] Agosta, F., Alessandroni, M., Antonellini, M., et al., 2010. From Fractures to Flow:A Field-Based Quantitative Analysis of an Outcropping Car-bonate Reservoir. Tectonophysics, 490(3/4):197-213. https://doi.org/10.1016/j.tecto.2010.05.005
[3] Altiner, D., Ömer Yilmaz, Ý., Özgül, N., et al., 1999. High-Resolution Sequence Stratigraphic Correlation in the Upper Jurassic (Kimmeridgian)-Upper Cretaceous (Cenomanian) Peritidal Carbonate Deposits (Western Taurides, Turkey). Geological Journal, 34(12):139-158. https://doi.org/10.1002/(sici)1099-1034(199901/06)34:1/2 < 139::aid-gj818 > 3.3.co; 2-z doi: 10.1002/(sici)1099-1034(199901/06)34:1/2<139::aid-gj818>3.3.co;2-z
[4] Amadi, F. O., Major, R. P., Baria, L. R., 2012. Origins of Gypsum in Deep Carbonate Reservoirs:Implications for Hydrocarbon Exploration and Production. AAPG Bulletin, 96(2):375-390. https://doi.org/10.1306/05101110179
[5] Andreassen, K., Nilssen, E. G., Ødegaard, C. M., 2007. Analysis of Shallow Gas and Fluid Migration within the Plio-Pleistocene Sedimentary Suc-cession of the SW Barents Sea Continental Margin Using 3D Seismic Data. Geo-Marine Letters, 27(2/3/4):155-171. https://doi.org/10.1007/s00367-007-0071-5
[6] Berra, F., 2012. Sea-Level Fall, Carbonate Production, Rainy Days:How do they Relate? Insight from Triassic Carbonate Platforms (Western Tethys, Southern Alps, Italy). Geology, 40(3):271-274. https://doi.org/10.1130/g32803.1
[7] Brenchley, P. J., Marshall, J. D., Harper, D. A. T., et al., 2006. A Late Ordovician (Hirnantian) Karstic Surface in a Submarine Channel, Re-cording Glacio-Eustatic Sea-Level Changes:Meifod, Central Wales. Geological Journal, 41(1):1-22. https://doi.org/10.1002/gj.1029
[8] Burchette, T. P., Wright, V. P., Faulkner, T. J., 1990. Oolitic Sandbody Depositional Models and Geometries, Mississippian of Southwest Britain:Implications for Petroleum Exploration in Carbonate Ramp Settings. Sedimentary Geology, 68(1/2):87-115. https://doi.org/10.1016/0037-0738(90)90121-9
[9] Cai, C. F., He, W. X., Jiang, L., et al., 2014. Petrological and Geochemical Constraints on Porosity Difference between Lower Triassic Sour- and Sweet-Gas Carbonate Reservoirs in the Sichuan Basin. Marine and Petroleum Geology, 56:34-50. https://doi.org/10.1016/j.marpetgeo.2014.04.003
[10] Cao, Y. Q., Hu, K. R., 1988. A Preliminary Study on Karst Hydrochemical Field Modeling and Quantitative Evaluation of Erosion of Carbonate-Sulfate Formation. Journal of Changchun University of Earth Science, 18(1):53-62 (in Chinese with English Abstract)
[11] Choi, B. Y., Yun, S. T., Mayer, B., et al., 2012. Hydrogeochemical Processes in Clastic Sedimentary Rocks, South Korea:A Natural Analogue Study of the Role of Dedolomitization in Geologic Carbon Storage. Chemical Geology, 306/307:103-113. https://doi.org/10.1016/j.chemgeo.2012.03.002
[12] Choquette, P. W., Pray, L. C., 1970. Geologic Nomenclature and Classification of Porosity in Sedimentary Carbonates. AAPG Bulletin, 54(2):207-250. https://doi.org/10.1306/5d25c98b-16c1-11d7-8645000102c1865d
[13] Cooper, A. H., 2002. Environmental Problems Caused by Gypsum Karst and Salt Karst in Great Britain. Carbonates and Evaporites, 17(2):116-120. https://doi.org/10.1007/bf03176477
[14] De Meer, S., Spiers, C. J., Peach, C. J., 2000. Kinetics of Precipitation of Gypsum and Implications for Pressure-Solution Creep. Journal of the Geological Society, 157(2):269-281. https://doi.org/10.1144/jgs.157.2.269
[15] Ding, X., Tan, X. C., Li, L., et al., 2015. Characteristics and Dominating Factors of Reservoirs in Leikoupo Formation, Southwest Sichuan Basin. Geoscience, 29(3):644-652 (in Chinese with English Abstract)
[16] Eberli, G. P., Masaferro, J. L., Rick-Sarg, J. F., 2004. Seismic Imaging of Carbonate Reservoirs and Systems. AAPG Memoir, 81:1-9
[17] Einsiedl, F., Mayer, B., 2005. Evidence for Bacterial Sulfate Reduction in a Fissured-Porous Karst System in Southern Germany. AGU Fall Meeting Abstracts. American Geophysical Union, December, 2005, San Francisco
[18] Feng, X. T., Ding, W. X., Zhang, D. X., 2009. Multi-Crack Interaction in Limestone Subject to Stress and Flow of Chemical Solutions. Interna-tional Journal of Rock Mechanics and Mining Sciences, 46(1):159-171. https://doi.org/10.1016/j.ijrmms.2008.08.001
[19] Ferket, H., Swennen, R., Ortuño Arzate, S., et al., 2006. Fluid Flow Evolution in Petroleum Reservoirs with a Complex Diagenetic History:An Example from Veracruz, Mexico. Journal of Geochemical Exploration, 89(1/2/3):108-111. https://doi.org/10.1016/j.gexplo.2005.11.040
[20] Florea, L. J., Vacher, H. L., 2006. Springflow Hydrographs:Eogenetic vs. Telogenetic Karst. Ground Water, 44(3):352-361. https://doi.org/10.1111/j.1745-6584.2005.00158.x
[21] Ford, D. C., 1989. Features of the Genesis of Jewel Cave and Wind Cave, Black Hills, South Dakota. National Speleological Society, 51(2):100-110
[22] Gabrovšek, F., Dreybrodt, W., 2001. A Model of the Early Evolution of Karst Aquifers in Limestone in the Dimensions of Length and Depth. Journal of Hydrology, 240(3/4):206-224. https://doi.org/10.1016/s0022-1694(00)00323-1
[23] Galve, J. P., Gutiérrez, F., Remondo, J., et al., 2009. Evaluating and Comparing Methods of Sinkhole Susceptibility Mapping in the Ebro Valley Evaporite Karst (NE Spain). Geomorphology, 111(3/4):160-172. https://doi.org/10.1016/j.geomorph.2009.04.017
[24] Grime, J. P., 2006. Plant Strategies, Vegetation Processes, and Ecosystem Properties. John Wiley & Sons, Chichester. 403
[25] Guidry, S. A., Grasmueck, M., Carpenter, D. G., et al., 2007. Karst and Early Fracture Networks in Carbonates, Turks and Caicos Islands, British West Indies. Journal of Sedimentary Research, 77(6):508-524. https://doi.org/10.2110/jsr.2007.052
[26] Gutiérrez, F., Calaforra, J. M., Cardona, F., et al., 2008. Geological and Environmental Implications of the Evaporite Karst in Spain. Environmental Geology, 53(5):951-965. https://doi.org/10.1007/s00254-007-0721-y
[27] Gutiérrez, F., Linares, R., Roqué, C., et al., 2012. Investigating Gravitational Grabens Related to Lateral Spreading and Evaporite Dissolution Sub-sidence by Means of Detailed Mapping, Trenching, and Electrical Re-sistivity Tomography (Spanish Pyrenees). Lithosphere, 4(4):331-353. https://doi.org/10.1130/l202.1
[28] Halbouty, M. T., Meyerhoff, A. A., King, R. E., et al., 1970. World's Giant Oil and Gas Fields, Geologic Factors Affecting Their Formation, and Basin Classification: Part Ⅰ: Giant Oil and Gas Fields. AAPG Special Volumes. 502-528
[29] Hammes, U., Lucia, F. J., Kerans, C., 1996. Reservoir Heterogeneity in Karst-Related Reservoirs: Lower Ordovician Ellenburger Group, West Texas. In: Stoudt, E. L., ed., Precambrian-Devonian Geology of the Franklin Mountains, West Texas-Analogs for Exploration and Pro-duction in Ordovician and Silurian Karsted Reservoirs in the Permian Basin. West Texas Geological Society, Midland TX. 99-117
[30] Hao, F., Zhang, X. F., Wang, C. W., et al., 2015. The Fate of CO2 Derived from Thermochemical Sulfate Reduction (TSR) and Effect of TSR on Carbonate Porosity and Permeability, Sichuan Basin, China. Earth-Science Reviews, 141:154-177. https://doi.org/10.1016/j.earscirev.2014.12.001
[31] He, J., Fang, S. X., Hou, F. H., et al., 2013. Vertical Zonation of Weathered Crust Ancient Karst and Reservoir Evaluation and Prediction-A Case Study of M55-M51 Sub-Members of Majiagou Formation in Gas Fields, Central Ordos Basin, NW China. Petroleum Exploration and Devel-opment, 40(5):572-581. https://doi.org/10.1016/s1876-3804(13)60075-0
[32] Heydari, E., 2000. Porosity Loss, Fluid Flow, and Mass Transfer in Lime-stone Reservoirs:Application to the Upper Jurassic Smackover For-mation, Mississippi. AAPG Bulletin, 84(1):100-118
[33] Hou, F. H., Fang, S. X., Shen, Z. G., et al., 2005. The Scale of Dolostone Bodies Palaeoweathering Karsting Hyperdiagenesis Exposure Phase. Marine Origin Petroleum Geology, 10(1):19-30 (in Chinese with English Abstract)
[34] Hu, Z. S., Chen, Q. F., 1994. Paleo-Karst of the Lower Permian Carbonate Reservoir in the Southern Sichuan Basin and Its Relation to Natural Gas Accumulation. Natural Gas Geoscience, 23(5):14-18 (in Chinese with English Abstract)
[35] Huang, J. Q., Ren, J. S., Jiang, C. F., et al., 1980. The Tectonics and Its Evolution of China. Science Press, Beijing. 124 (in Chinese)
[36] Johnson, K. S., 2005. Subsidence Hazards due to Evaporite Dissolution in the United States. Environmental Geology, 48(3):395-409. https://doi.org/10.1007/s00254-005-1283-5
[37] Johnson, K. S., 2008. Evaporite-Karst Problems and Studies in the USA. Environmental Geology, 53(5):937-943. https://doi.org/10.1007/s00254-007-0716-8
[38] Johnson, K. S., 2002. Evaporite Karst Problems in the United States. Geological Society of America, 34(6):215
[39] Kalvoda, J., Kumpan, T., Bábek, O., et al., 2015. Upper Famennian and Lower Tournaisian Sections of the Moravian Karst (Moravo-Silesian Zone, Czech Republic):A Proposed Key Area for Correlation of the Conodont and Foraminiferal Zonations. Geological Journal, 50(1):17-38. https://doi.org/10.1002/gj.2523
[40] Kenny, R., Krinsley, D. H., 1998. Silicified Micropeloid Structures from the 1.1 Ga Mescal Limestone, North-Central Arizona:Probable Evidence for Precambrian Terrigeneous Life. Mountain Geologist, 35:45-54
[41] Klimchouk, A. B., Aksem, S. D., 2002. Gypsum Karst in the Western Ukraine:Hydrochemistry and Solution Rates. Carbonates and Evapo-rites, 17(2):142-153. https://doi.org/10.1007/bf03176480
[42] Klimchouk, A., Cucchi, F., Calaforra, J., et al., 1996. Dissolution of Gypsum from Field Observations. International Journal of Speleology, 25(3/4):37-48. https://doi.org/10.5038/1827-806x.25.3.3
[43] Kosa, E., Hunt, D. W., 2006. Heterogeneity in Fill and Properties of Karst-Modified Syndepositional Faults and Fractures:Upper Permian Capitan Platform, New Mexico, U.S.A. Journal of Sedimentary Re-search, 76(1):131-151. https://doi.org/10.2110/jsr.2006.08
[44] Kuznetsov, V. G., Skobeleva, N. M., 2005. Silicification of Riphean Carbonate Sediments (Yurubcha-Tokhomo Zone, Siberian Craton). Lithology and Mineral Resources, 40(6):552-563. https://doi.org/10.1007/s10987-005-0052-6
[45] Latinwo, G. K., Aribike, D. S., Susu, A. A., et al., 2010. Effects of Different Filler Treatments on the Morphology and Mechanical Properties of Flexible Polyurethane Foam Composites. Nature and Science, 8(6):23-31
[46] Li, G. H., Li, X., Yang, X. N., 2000. Controlling Factors of Sinian Gas Pools in Caledonian Paleouplift, Sichuan Basin. Oil & Gas Geology, 21(2):80-83 (in Chinese with English Abstract)
[47] Li, L., Tan, X. C., Ding, X., et al., 2011. Difference in Depositional Characteristics between Intra-Platform and Margional-Platform Shoals in Leikoupo Formation, Sichuan Basin and Its Impact on Reservoirs. Acta Petrolei Sinica, 32(1):70-76 (in Chinese with English Abstract) doi: 10.1038/aps.2010.200
[48] Li, L., Tan, X. C., Zhou, S. Y., et al., 2012. Sequence Lithofacies Paleography of Leikoupo Formation, Sichuan Basin. Journal of Southwest Petroleum University (Science & Technology Edition), 34(4):13-22 (in Chinese with English Abstract)
[49] Li, Q. F., Miao, S. D., Li, Y. X., et al., 2018. Reservoir Characteristics and Genesis of the Changxing Formation on the Margin of Yanting-Tongnan Trough, Central Sichuan Basin. Earth Science, 43(10):3553-3567. https://doi.org/10.3799/dqkx.2018.313 (in Chinese with English Abstract)
[50] Liu, W. H., Zhang, D. W., Zhang, X. F., 2006. Influence of Hydrogenation and TSR (Thermochemical Sulfate Reduction) to Natural Gas Isotopic Composition. Acta Petrologica Sinica, 22(8):2237-2242 (in Chinese with English Abstract)
[51] Liu, Y. K., Chang, X., 2003. Modeling of Burial and Subsidence History in Sichuan Basin. Chinese Journal of Geophysics, 46(2):203-208 (in Chinese with English Abstract)
[52] Liu, Z. H., Dreybrodt, W., Li, H. J., 2006. Comparison of Dissolution Rate-Determining Mechanisms between Limestone and Dolomite. Earth Science-Journal of China University of Geosciences, 31(3):411-416 (in Chinese with English Abstract)
[53] Liu, Z. H., Yuan, D. X., Dreybrodt, W., 2005. Comparative Study of Dissolution Rate-Determining Mechanisms of Limestone and Dolomite. Environmental Geology, 49(2):274-279. https://doi.org/10.1007/s00254-005-0086-z
[54] Liu, Z. H., Dreybrodt, W., 2001. Dynamic Mechanism of Dolomite Solution under Different CO2 Partial Pressure. Science in China (Series B), 31(4):377-384 (in Chinese)
[55] Lu, Y. R., Cooper, A. H., 1996. Gypsum Karst in China (in Gypsum Karst of the World). International Journal of Speleology, 25(3/4):297-307 doi: 10.5038/1827-806X.25.3.24
[56] Lu, Y. R., Zhang, F. E., Qi, J. X., et al., 2002a. Evaporite Karst and Resultant Geohazards in China. Carbonates and Evaporites, 17(2):159-165. https://doi.org/10.1007/bf03176482
[57] Lu, Y. R., Zhang, F. E., Yan, B. R., et al., 2002b. Mechanism of Karst Development in Sulphate Rocks and Its Main Geo-Environmental Impacts. Acta Geosicientia Sinica, 23(1):1-6 (in Chinese with English Abstract)
[58] Ma, Y. S., 2007. Generation Mechanism of Puguang Gas Field in Sichuan Basin. Acta Petrolei Sinica, 28(2):9-21 (in Chinese with English Ab-stract)
[59] Ma, Z. F., 1994. Reservoir Characteristics of the Weathered Paleocrust in the Central Ordos Basin. Natural Gas Geoscience, 6(5):28-36 (in Chinese with English Abstract)
[60] Ma, Z. F., Zhou, S. X., Yu, Z. P., et al., 1999. The Weathered Paleocrust on the Ordovician in Ordos Basin and Its Relationship to Gas Accumulation. Petroleum Exploration and Development, 26(5):21-23 (in Chinese with English Abstract)
[61] Martinez, M. I., White, W. B., 1999. A Laboratory Investigation of the Relative Dissolution Rates of the Lirio Limestone and the Isla de Mona Dolomite and Implications for Cave and Karst Development on Isla de Mona. Journal of Cave and Karst Studies, 61(1):7-12
[62] Mees, F., 2003. Salt Mineral Distribution Patterns in Soils of the Otjomongwa Pan, Namibia. Catena, 54(3):425-437. https://doi.org/10.1016/s0341-8162(03)00135-8
[63] Meng, Q. R., Wang, E., Hu, J. M., 2005. Mesozoic Sedimentary Evolution of the Northwest Sichuan Basin:Implication for Continued Clockwise Rotation of the South China Block. Geological Society of America Bulletin, 117(3):396-410. https://doi.org/10.1130/b25407.1
[64] Meyers, W. J., 1988. Paleokarstic Features on Mississippian Limestone, New Mexico. In: James, N. P., Choquette, P. W., eds., Paleokarst. Spring-er-Verlag, New York. 306-328
[65] Négrel, P., Roy, S., Petelet-Giraud, E., et al., 2007. Long-Term Fluxes of Dissolved and Suspended Matter in the Ebro River Basin (Spain). Journal of Hydrology, 342(3/4):249-260. https://doi.org/10.1016/j.jhydrol.2007.05.013
[66] Oblik, P. E. Z. R. K., Depresij, P., Grèiji, V., 2004. The Role of Epikarst in the Morphogenesis of the Karstic Forms in Greece and specially of the Karstic Hollow Forms. Acta Carsologica, 33(1):219-235
[67] Paskauskas, R., Kucinskiene, A., Zvikas, A., 2005. Sulfate-Reducing Bacteria in Gypsum Karst Lakes of Northern Lithuania. Microbiology, 74(6):715-721. https://doi.org/10.1007/s11021-005-0129-1
[68] Paukštys, B., Narbutas, V., 1996. Gypsum Karst of the Baltic Republics. International Journal of Speleology, 25(3/4):279-284. https://doi.org/10.5038/1827-806x.25.3.21
[69] Rahimpour-Bonab, H., Esrafili-Dizaji, B., Tavakoli, V., 2010. Dolomitiza-tion and Anhydrite Precipitation in Permo-Triassic Carbonates at the South Pars Gasfield, Offshore Iran:Controls on Reservoir Quality. Journal of Petroleum Geology, 33(1):43-66. https://doi.org/10.1111/j.1747-5457.2010.00463.x
[70] Rahimpour-Bonab, H., Mehrabi, H., Navidtalab, A., et al., 2012. Flow Unit Distribution and Reservoir Modelling in Cretaceous Carbonates of the Sarvak Formation, Abteymour Oilfield, Dezful Embayment, SW Iran. Journal of Petroleum Geology, 35(3):213-236. https://doi.org/10.1111/j.1747-5457.2012.00527.x
[71] Ren, M. E., Liu, Z. Z., Wang, F. Y., et al., 1983. Karst Introduction. Commercial Press, Beijing (in Chinese)
[72] Sando, W. J., 1985. Revised Mississippian Time Scale, Western Interior Region, Conterminous United States. USGS Bulletin, 1605:A15-A26
[73] Sando, W. J., 1988. Madison Limestone (Mississippian) Paleokarst: A Geologic Synthesis. In: James, N. P., Choquette, P. W., Paleokarst. Springer-Verlag, New York. 256-277
[74] Shalev, E., Lyakhovsky, V., Yechieli, Y., 2006. Salt Dissolution and Sinkhole Formation along the Dead Sea Shore. Journal of Geophysical Research:Solid Earth, 111(B3):1-12. https://doi.org/10.1029/2005jb004038
[75] Shen, A. J., Zhou, J. G., Xin, Y. G., et al., 2008. Origin of Triassic Leikoupo Dolostone Reservoirs in Sichuan Basin. Marine Origin Petroleum Geology, 13(4):19-28 (in Chinese with English Abstract)
[76] Song, H. R., Huang, S. Y., 1998. Carbonate and Karst. Minerals and Rocks, 8(1):9-17 (in Chinese with English Abstract)
[77] Song, W. Y., Liu, L. Q., Gan, X. Q., et al., 2012. Weathering Crust Karstification in Leikoupo Formation in Central Sichuan Area. Natural Gas Geoscience, 23(6):1019-1024 (in Chinese with English Abstract)
[78] Surlyk, F., Hurst, J. M., Piasecki, S., et al., 1986. The Permian of the Western Margin of the Greenland Sea——A Future Exploration Target. In: Future Petroleum Provinces of the World. AAPG Special Volumes, M40: 629-659
[79] Sztanó, O., Krézsek, C., Magyar, I., et al., 2005. Sedimentary Cycles and Rhythms in a Sarmatian to Pannonian (Late Miocene) Transitional Section at Oarba de Mures/Marosorbó, Transylvanian Basin. Acta Geologica Hungarica, 48(3):235-257. https://doi.org/10.1556/ageol.48.2005.3.1
[80] Trzhtsinsky, Y. B., 2002. Human-Induced Activation of Gypsum Karst in the Southern Priangaria (East Siberia, Russia). Carbonates and Evaporites, 17(2):154-158. https://doi.org/10.1007/bf03176481
[81] Vacher, H. L., Mylroie, J. E., 2002. Eogenetic Karst from the Perspective of an Equivalent Porous Medium. Carbonates and Evaporites, 17(2):182-196. https://doi.org/10.1007/bf03176484
[82] Wang, B. Q., Zhang, G. S., 2006. Diagenesis of Ordovician Paleo-Karst Reservoir in the Sulige Area, the Ordos Basin. Experimental Petroleum Geology, 28(6):518-528 (in Chinese with English Abstract)
[83] Wang, H. Y., Li, C., Hu, C. Y., et al., 2015. Spurious Thermoluminescence Characteristics of the Ediacaran Doushantuo Formation (ca. 635-551 Ma) and Its Implications for Marine Dissolved Organic Carbon Reservoir. Journal of Earth Science, 26(6):883-892. https://doi.org/10.1007/s12583-015-0650-3
[84] Wang, H., Liu, S. G., Qin, C., et al., 2009. Study on Petroleum Geological Conditions and Hydrocarbon Exploration Direction of Leikoupo For-mation in the Centre and West of Sichuan Basin, China. Journal of Chengdu University of Technology (Science & Technology Edition), 36(6):669-674 (in Chinese with English Abstract)
[85] Wang, Z. P., Lu, Z. Y., 2006. Important Role of Karstification in the Lower Permian Reservoir in Sichuan Basin. Petroleum Exploration and De-velopment, 33(2):141-144 (in Chinese with English Abstract)
[86] Wang, Z. S., Sha, Q. A., 1991. Solution-Collapse Brecciation of the Middle Ordovician Evaporates in North China. Scientia Geologica Sinica, (3):246-254 (in Chinese with English Abstract)
[87] Wang, Z. Y., Li, L., Tan, X. C., et al., 2008. Types and Recognizable Indicators of Ordovician Carbonate Rock of Karstification in Tarim Basin. Journal of Southwest Petroleum University (Science & Technology Edition), 30(5):11-14 (in Chinese with English Abstract)
[88] Weidlich, O., 2010. Meteoric Diagenesis in Carbonates below Karst Unconformities:Heterogeneity and Control Factors. Geological Society, London, Special Publications, 329(1):291-315. https://doi.org/10.1144/sp329.12
[89] Wu, J., Liu, S. G., Wang, G. Z., et al., 2016. Multi-Stage Hydrocarbon Accumulation and Formation Pressure Evolution in Sinian Dengying Formation-Cambrian Longwangmiao Formation, Gaoshiti-Moxi Structure, Sichuan Basin. Journal of Earth Science, 27(5):835-845. https://doi.org/10.1007/s12583-016-0706-4
[90] Wu, S. X., Li, H. T., Long, S. X., et al., 2011. A Study on Characteristics and Diagenesis of Carbonate Reservoirs in the Middle Triassic Leikoupo Formation in Western Sichuan Depression. Oil & Gas Geology, 32(4):542-559 (in Chinese with English Abstract)
[91] Xiao, D., Tan, X. C., Xi, A. H., et al., 2016. An Inland Facies-Controlled Eogenetic Karst of the Carbonate Reservoir in the Middle Permian Maokou Formation, Southern Sichuan Basin, SW China. Marine and Petroleum Geology, 72:218-233. https://doi.org/10.1016/j.marpetgeo.2016.02.001
[92] Xing, F. C., Hu, H. R., Hou, M. C., et al., 2018. Carbonate Reservoirs Cycles and Assemblages under the Tectonic and Palaeogeography Control:A Case Study from Sichuan Basin. Earth Science, 43(10):3540-3552. https://doi.org/10.3799/dqkx.2018.310 (in Chinese with English Ab-stract)
[93] Xu, H. L., Wei, G. Q., Jia, C. Z., et al., 2012. Tectonic Evolution of the Leshan-Longnüsi Paleo-Uplift and Its Control on Gas Accumulation in the Sinian Strata. Petroleum Exploration and Development, 39(4):436-446. https://doi.org/10.1016/s1876-3804(12)60060-3
[94] Yang, X. F., Tang, H., Wang, X. Z., et al., 2017. Dolomitization by Pe-nesaline Sea Water in Early Cambrian Longwangmiao Formation, Central Sichuan Basin, China. Journal of Earth Science, 28(2):305-314. https://doi.org/10.1007/s12583-017-0761-5
[95] Youssef, M., El-Sorogy, A. S., 2015. Paleoecology of Benthic Foraminifera in Coral Reefs Recorded in the Jurassic Tuwaiq Mountain Formation of the Khashm Al-Qaddiyah Area, Central Saudi Arabia. Journal of Earth Science, 26(2):224-235. https://doi.org/10.1007/s12583-015-0529-8
[96] Yuste, A., Bauluz, B., Mayayo, M. J., 2015. Genesis and Mineral Transformations in Lower Cretaceous Karst Bauxites (NE Spain):Climatic Influence and Superimposed Processes. Geological Journal, 50(6):839-857. https://doi.org/10.1002/gj.2604
[97] Zeng, D. M., Wang, X. Z., Zhang, F., et al., 2007. Study on Reservoir of the Leikoupo Formation of Middle Triassic in Northwestern Sichuan Basin. Journal of Palaeogeography, 9(3):253-266 (in Chinese with English Abstract)
[98] Zhai, G. M., 1989. Chinese Petroleum Geology (Vol. 10, Sichuan Oil and Gas Areas). Petroleum Industry Press, Beijing (in Chinese)
[99] Zhang, F. E., Lu, Y. R., 2001. Experimental Study on the Mechanism of Sulphate Karst. Hydrogeology and Engineering Geology, 5:12-16 (in Chinese with English Abstract)
[100] Zhang, F. E., Lu, Y. R., Guo, X. H., et al., 2003. The Mechanism Related to the Formation of Compound Karstification. Earth Science Frontiers, 10(2):495-500 (in Chinese with English Abstract)
[101] Zhang, J. Q., Geng, A. Q., Chen, H. D., et al., 1992. Paleokarst-Related Natural Gas Reservoirs of Majiagou Formation, Ordos Basin. Journal of Chengdu College of Geology, 19(4):65-70 (in Chinese with English Abstract)
[102] Zhao, Q. X., 1991. The Unconformity between the Upper Triassic Xujiahe and Lower Triassic Leikoupo Formations Based on the Field Survey in the Nanshancun Outcrop. Acta Geologica Sichuan, 11(4):310-311 (in Chinese with English Abstract)
[103] Zhao, R., Wu, Y. S., Jiang, H. X., et al., 2017. Oxygen Isotope Clue to Migration of Dolomitizing Fluid as Exampled by the Changxing For-mation Dolomite at Panlongdong, Northeastern Sichuan. Journal of Earth Science, 28(2):333-346. https://doi.org/10.1007/s12583-017-0724-x
[104] Zhao, W. Z., Shen, A. J., Pan, W. Q., et al., 2013. A Research on Carbonate Karst Reservoirs Classification and Its Implication on Hydrocarbon Exploration:Cases Studies from Tarim Basin. Acta Petrologica Sinica, 29(9):3213-3222 (in Chinese with English Abstract)
[105] Zhong, Y. J., Chen, H. D., Lin, L. B., et al., 2011. Paleokarstification and Reservoir Distribution in the Middle Triassic Carbonates of the 4th Member of the Leikoupo Fornation, Northeastern Sichuan Basin. Acta Petrologica Sinica, 27(8):2272-2280 (in Chinese with English Abstract)
[106] Zhou, W., Deng, H. C., Qiu, D. Z., et al., 2007. The Discovery and Significance of the Devonian Paleo-Reservoir in Tianjingshan Structure of the Northwest Sichuan, China. Journal of Chengdu University of Technology (Science & Technology Edition), 34(4):413-417 (in Chinese with English Abstract)
[107] Zhu, C. Q., Qiu, N. S., Cao, H. Y., et al., 2016. Paleogeothermal Recon-struction and Thermal Evolution Modeling of Source Rocks in the Puguang Gas Field, Northeastern Sichuan Basin. Journal of Earth Sci-ence, 27(5):796-806. https://doi.org/10.1007/s12583-016-0909-8
[108] Zhu, C. Q., Rao, S., Xu, M., et al., 2011. The Mesozoic Thermal Regime of the Sichuan Basin and the Relationship between It and the Structural and Sedimentary Action of the Foreland Basin Evolution. Chinese Journal of Geology, 46(1):194-202 (in Chinese with English Abstract)