[1] Ahmed, H. A., Ma, C. Q., Wang, L. X., et al., 2018. Petrogenesis and Tectonic Implications of Peralkaline A-Type Granites and Syenites from the Suizhou-Zaoyang Region, Central China. Journal of Earth Science, 29(5):1181-1202. https://doi.org/10.1007/s12583-018-0877-2 doi:  10.1007/s12583-018-0877-2
[2] Aiuppa, A., Baker, D. R., Webster, J. D., 2009. Halogens in Volcanic Systems. Chemical Geology, 263(1/2/3/4):1-18. https://doi.org/10.1016/j.chemgeo.2008.10.005 doi:  10.1016/j.chemgeo.2008.10.005
[3] Aseri, A. A., Linnen, R. L., Che, X. D., et al., 2015. Effects of Fluorine on the Solubilities of Nb, Ta, Zr and Hf Minerals in Highly Fluxed Water-Saturated Haplogranitic Melts. Ore Geology Reviews, 64:736-746. https://doi.org/10.1016/j.oregeorev.2014.02.014 doi:  10.1016/j.oregeorev.2014.02.014
[4] Baasner, A., Schmidt, B. C., Dupree, R., et al., 2014. Fluorine Speciation as a Function of Composition in Peralkaline and Peraluminous Na2O-CaO-Al2O3-SiO2 Glasses:A Multinuclear NMR Study. Geochimica et Cosmochimica Acta, 132:151-169. https://doi.org/10.1016/j.gca.2014.01.041 doi:  10.1016/j.gca.2014.01.041
[5] Baasner, A., Schmidt, B. C., Webb, S. L., 2013. The Effect of Chlorine, Fluorine and Water on the Viscosity of Aluminosilicate Melts. Chemical Geology, 357:134-149. https://doi.org/10.1016/j.chemgeo.2013.08.020 doi:  10.1016/j.chemgeo.2013.08.020
[6] Badanina, E. V., Trumbull, R. B., Dulski, P., et al., 2006. The Behavior of Rare-Earth and Lithophile Trace Elements in Rare-Metal Granites:A Study of Fluorite, Melt Inclusions and Host Rocks from the Khangilay Complex, Transbaikalia, Russia. The Canadian Mineralogist, 44(3):667-692. https://doi.org/10.2113/gscanmin.44.3.667 doi:  10.2113/gscanmin.44.3.667
[7] Bailey, J. C., 1977. Fluorine in Granitic Rocks and Melts:A Review. Chemical Geology, 19(1/2/3/4):1-42. https://doi.org/10.1016/0009-2541(77)90002-x doi:  10.1016/0009-2541(77)90002-x
[8] Baker, D. R., Vaillancourt, J., 1995. The Low Viscosities of F+H2O-Bearing Granitic Melts and Implications for Melt Extraction and Transport. Earth and Planetary Science Letters, 132(1/2/3/4):199-211. https://doi.org/10.1016/0012-821x(95)00054-g doi:  10.1016/0012-821x(95)00054-g
[9] Bao, B., Webster, J. D., Zhang, D. H., et al., 2016. Compositions of Biotite, Amphibole, Apatite and Silicate Melt Inclusions from the Tongchang Mine, Dexing Porphyry Deposit, SE China:Implications for the Behavior of Halogens in Mineralized Porphyry Systems. Ore Geology Reviews, 79:443-462. https://doi.org/10.1016/j.oregeorev.2016.05.024 doi:  10.1016/j.oregeorev.2016.05.024
[10] Bartels, A., Behrens, H., Holtz, F., et al., 2013. The Effect of Fluorine, Boron and Phosphorus on the Viscosity of Pegmatite Forming Melts. Chemical Geology, 346:184-198. https://doi.org/10.1016/j.chemgeo.2012.09.024 doi:  10.1016/j.chemgeo.2012.09.024
[11] Berndt, J., Liebske, C., Holtz, F., et al., 2002. A Combined Rapid-Quench and H2-Membrane Setup for Internally Heated Pressure Vessels:Description and Application for Water Solubility in Basaltic Melts. American Mineralogist, 87(11/12):1717-1726. https://doi.org/10.2138/am-2002-11-1222 doi:  10.2138/am-2002-11-1222
[12] Botcharnikov, R. E., Holtz, F., Almeev, R. R., et al., 2008. Storage Conditions and Evolution of Andesitic Magma Prior to the 1991-95 Eruption of Unzen Volcano:Constraints from Natural Samples and Phase Equilibria Experiments. Journal of Volcanology and Geothermal Research, 175(1/2):168-180. https://doi.org/10.1016/j.jvolgeores.2008.03.026 doi:  10.1016/j.jvolgeores.2008.03.026
[13] Chelle-Michou, C., Chiaradia, M., 2017. Amphibole and Apatite Insights into the Evolution and Mass Balance of Cl and S in Magmas Associated with Porphyry Copper Deposits. Contributions to Mineralogy and Petrology, 172(11/12):105. https://doi.org/10.1007/s00410-017-1417-2 doi:  10.1007/s00410-017-1417-2
[14] Chevychelov, V. Y., Botcharnikov, R. E., Holtz, F., 2008. Experimental Study of Fluorine and Chlorine Contents in Mica (Biotite) and Their Partitioning between Mica, Phonolite Melt, and Fluid. Geochemistry International, 46(11):1081-1089. https://doi.org/10.1134/s0016702908110025 doi:  10.1134/s0016702908110025
[15] Dalou, C. L., Le Losq, C., Mysen, B. O., et al., 2015. Solubility and Solution Mechanisms of Chlorine and Fluorine in Aluminosilicate Melts at High Pressure and High Temperature. American Mineralogist, 100(10):2272-2283. https://doi.org/10.2138/am-2015-5201 doi:  10.2138/am-2015-5201
[16] Dingwell, D. B., Mysen, B. O., 1985. Effects of Water and Fluorine on the Viscosity of Albite Melt at High Pressure:A Preliminary Investigation. Earth and Planetary Science Letters, 74(2/3):266-274. https://doi.org/10.1016/0012-821x(85)90026-3 doi:  10.1016/0012-821x(85)90026-3
[17] Doherty, A. L., Webster, J. D., Goldoff, B. A., et al., 2014. Partitioning Behavior of Chlorine and Fluorine in Felsic Melt-Fluid(s)-Apatite Systems at 50 MPa and 850-950 ℃. Chemical Geology, 384:94-111. https://doi.org/10.1016/j.chemgeo.2014.06.023 doi:  10.1016/j.chemgeo.2014.06.023
[18] Dolejš, D., Baker, D. R., 2006. Fluorite Solubility in Hydrous Haplogranitic Melts at 100 MPa. Chemical Geology, 225(1/2):40-60. https://doi.org/10.1016/j.chemgeo.2005.08.007 doi:  10.1016/j.chemgeo.2005.08.007
[19] Gabitov, R. I., Price, J. D., Watson, E. B., 2005. Solubility of Fluorite in Haplogranitic Melt of Variable Alkalis and Alumina Content at 800-1 000 ℃ and 100 MPa. Geochemistry, Geophysics, Geosystems, 6(3):Q03007. https://doi.org/10.1029/2004gc000870 doi:  10.1029/2004gc000870
[20] Giesting, P. A., Filiberto, J., 2014. Quantitative Models Linking Igneous Amphibole Composition with Magma Cl and OH Content. American Mineralogist, 99(4):852-865. https://doi.org/10.2138/am.2014.4623 doi:  10.2138/am.2014.4623
[21] Gualda, G. A. R., Ghiorso, M. S., Lemons, R. V., et al., 2012. Rhyolite-MELTS:A Modified Calibration of MELTS Optimized for Silica-Rich, Fluid-Bearing Magmatic Systems. Journal of Petrology, 53(5):875-890. https://doi.org/10.1093/petrology/egr080 doi:  10.1093/petrology/egr080
[22] Holtz, F., Sato, H., Lewis, J., et al., 2005. Experimental Petrology of the 1991-1995 Unzen Dacite, Japan. Part I:Phase Relations, Phase Composition and Pre-Eruptive Conditions. Journal of Petrology, 46(2):319-337. https://doi.org/10.1093/petrology/egh077 doi:  10.1093/petrology/egh077
[23] Hou, T., Charlier, B., Namur, O., et al., 2017. Experimental Study of Liquid Immiscibility in the Kiruna-Type Vergenoeg Iron-Fluorine Deposit, South Africa. Geochimica et Cosmochimica Acta, 203:303-322. https://doi.org/10.1016/j.gca.2017.01.025 doi:  10.1016/j.gca.2017.01.025
[24] Huang, H., Wang, T., Zhang, Z. C., et al., 2018. Highly Differentiated Fluorine-Rich, Alkaline Granitic Magma Linked to Rare Metal Mineralization:A Case Study from the Boziguo'er Rare Metal Granitic Pluton in South Tianshan Terrane, Xinjiang, NW China. Ore Geology Reviews, 96:146-163. https://doi.org/10.1016/j.oregeorev.2018.04.021 doi:  10.1016/j.oregeorev.2018.04.021
[25] Icenhower, J. P., London, D., 1997. Partitioning of Fluorine and Chlorine between Biotite and Granitic Melt:Experimental Calibration at 200 MPa H2O. Contributions to Mineralogy and Petrology, 127(1/2):17-29. https://doi.org/10.1007/s004100050262 doi:  10.1007/s004100050262
[26] Iveson, A. A., Webster, J. D., Rowe, M. C., et al., 2017. Major Element and Halogen (F, Cl) Mineral-Melt-Fluid Partitioning in Hydrous Rhyodacitic Melts at Shallow Crustal Conditions. Journal of Petrology, 58(12):2465-2492. https://doi.org/10.1093/petrology/egy011 doi:  10.1093/petrology/egy011
[27] Jiang, W. C., Li, H., Wu, J. H., et al., 2018. A Newly Found Biotite Syenogranite in the Huangshaping Polymetallic Deposit, South China:Insights into Cu Mineralization. Journal of Earth Science, 29(3):537-555. https://doi.org/10.1007/s12583-017-0974-7 doi:  10.1007/s12583-017-0974-7
[28] Keppler, H., 1993. Influence of Fluorine on the Enrichment of High Field Strength Trace Elements in Granitic Rocks. Contributions to Mineralogy and Petrology, 114(4):479-488. https://doi.org/10.1007/bf00321752 doi:  10.1007/bf00321752
[29] Keppler, H., Wyllie, P. J., 1991. Partitioning of Cu, Sn, Mo, W, U, and Th between Melt and Aqueous Fluid in the Systems Haplogranite-H2O-HCl and Haplogranite-H2O-HF. Contributions to Mineralogy and Petrology, 109(2):139-150. https://doi.org/10.1016/j.gca.2017.03.015 doi:  10.1016/j.gca.2017.03.015
[30] Kohn, S., Dupree, R., Mortuza, M., et al., 1991. NMR Evidence for Five- and Six-Coordinated Aluminum Fluoride Complexes in F-Bearing Aluminosilicate Glasses. American Mineralogist, 76(1/2):309-312
[31] Kress, V. C., Carmichael, I. S. E., 1991. The Compressibility of Silicate Liquids Containing Fe2O3 and the Effect of Composition, Temperature, Oxygen Fugacity and Pressure on Their Redox States. Contributions to Mineralogy and Petrology, 108(1/2):82-92. https://doi.org/10.1007/bf00307328 doi:  10.1007/bf00307328
[32] Li, H. J., Hermann, J., 2015. Apatite as an Indicator of Fluid Salinity:An Experimental Study of Chlorine and Fluorine Partitioning in Subducted Sediments. Geochimica et Cosmochimica Acta, 166:267-297. https://doi.org/10.1016/j.gca.2015.06.029 doi:  10.1016/j.gca.2015.06.029
[33] Li, X. Y., Zhang, C., Behrens, H., et al., 2018. Fluorine Partitioning between Titanite and Silicate Melt and Its Dependence on Melt Composition:Experiments at 50-200 MPa and 875-925 ℃. European Journal of Mineralogy, 30(1):33-44. https://doi.org/10.1127/ejm/2017/0029-2689 doi:  10.1127/ejm/2017/0029-2689
[34] Lukkari, S., Holtz, F., 2007. Phase Relations of a F-Enriched Peraluminous Granite:An Experimental Study of the Kymi Topaz Granite Stock, Southern Finland. Contributions to Mineralogy and Petrology, 153(3):273-288. https://doi.org/10.1007/s00410-006-0146-8 doi:  10.1007/s00410-006-0146-8
[35] Manning, D. A. C., 1981. The Effect of Fluorine on Liquidus Phase Relationships in the System Qz-Ab-Or with Excess Water at 1 kb. Contributions to Mineralogy and Petrology, 76(2):206-215. https://doi.org/10.1007/bf00371960 doi:  10.1007/bf00371960
[36] Mathez, E. A., Webster, J. D., 2005. Partitioning Behavior of Chlorine and Fluorine in the System Apatite-Silicate Melt-Fluid. Geochimica et Cosmochimica Acta, 69(5):1275-1286. https://doi.org/10.1016/j.gca.2004.08.035 doi:  10.1016/j.gca.2004.08.035
[37] McCubbin, F. M., Vander Kaaden, K. E., Tartèse, R., et al., 2015. Experimental Investigation of F, Cl, and OH Partitioning between Apatite and Fe-Rich Basaltic Melt at 1.0-1.2 GPa and 950-1 000 ℃. American Mineralogist, 100(8/9):1790-1802. https://doi.org/10.2138/am-2015-5233 doi:  10.2138/am-2015-5233
[38] Mysen, B. O., Cody, G. D., Smith, A., 2004. Solubility Mechanisms of Fluorine in Peralkaline and Meta-Aluminous Silicate Glasses and in Melts to Magmatic Temperatures. Geochimica et Cosmochimica Acta, 68(12):2745-2769. https://doi.org/10.1016/j.gca.2003.12.015 doi:  10.1016/j.gca.2003.12.015
[39] Pichavant, M., Manning, D., 1984. Petrogenesis of Tourmaline Granites and Topaz Granites; The Contribution of Experimental Data. Physics of the Earth and Planetary Interiors, 35(1/2/3):31-50. https://doi.org/10.1016/0031-9201(84)90032-3 doi:  10.1016/0031-9201(84)90032-3
[40] Price, J. D., Hogan, J. P., Gilbert, M. C., et al., 1999. Experimental Study of Titanite-Fluorite Equilibria in the A-Type Mount Scott Granite:Implications for Assessing F Contents of Felsic Magma. Geology, 27(10):951-954. https://doi.org/10.1130/0091-7613(1999)027<0951:esotfe>2.3.co; 2 doi:  10.1130/0091-7613(1999)027<0951:esotfe>2.3.co;2
[41] Scaillet, B., Macdonald, R., 2003. Experimental Constraints on the Relationships between Peralkaline Rhyolites of the Kenya Rift Valley. Journal of Petrology, 44(10):1867-1894. https://doi.org/10.1093/petrology/egg062 doi:  10.1093/petrology/egg062
[42] Scaillet, B., Macdonald, R., 2004. Fluorite Stability in Silicic Magmas. Contributions to Mineralogy and Petrology, 147(3):319-329. https://doi.org/10.1007/s00410-004-0559-1 doi:  10.1007/s00410-004-0559-1
[43] Schwab, R., Küstner, D., 1981. The Equilibrium Fugacities of Important Oxygen Buffers in Technology and Petrology. Neues Jahrbuch für Mineralogie, 140:112-142
[44] Stebbins, J. F., Zeng, Q., 2000. Cation Ordering at Fluoride Sites in Silicate Glasses:A High-Resolution 19F NMR Study. Journal of Non-Crystalline Solids, 262(1/2/3):1-5. https://doi.org/10.1016/s0022-3093(99)00695-x doi:  10.1016/s0022-3093(99)00695-x
[45] Tossell, J., 1993. Theoretical Studies of the Speciation of Al in F-Bearing Aluminosilicate Glasses. American Mineralogist, 78(1/2):16-22
[46] Van den Bleeken, G., Koga, K. T., 2015. Experimentally Determined Distribution of Fluorine and Chlorine Upon Hydrous Slab Melting, and Implications for F-Cl Cycling through Subduction Zones. Geochimica et Cosmochimica Acta, 171:353-373. https://doi.org/10.1016/j.gca.2015.09.030 doi:  10.1016/j.gca.2015.09.030
[47] Veksler, I. V., Dorfman, A. M., Kamenetsky, M., et al., 2005. Partitioning of Lanthanides and Y between Immiscible Silicate and Fluoride Melts, Fluorite and Cryolite and the Origin of the Lanthanide Tetrad Effect in Igneous Rocks. Geochimica et Cosmochimica Acta, 69(11):2847-2860. https://doi.org/10.1016/j.gca.2004.08.007 doi:  10.1016/j.gca.2004.08.007
[48] Veksler, I. V., Thomas, R., Schmidt, C., 2002. Experimental Evidence of Three Coexisting Immiscible Fluids in Synthetic Granitic Pegmatite. American Mineralogist, 87(5/6):775-779. https://doi.org/10.2138/am-2002-5-621 doi:  10.2138/am-2002-5-621
[49] Wang, L. X., Ma, C. Q., Zhang, C., et al., 2018. Halogen Geochemistry of I- and A-Type Granites from Jiuhuashan Region (South China):Insights into the Elevated Fluorine in A-Type Granite. Chemical Geology, 478:164-182. https://doi.org/10.1016/j.chemgeo.2017.09.033 doi:  10.1016/j.chemgeo.2017.09.033
[50] Wang, L. X., Marks, M. A. W., Wenzel, T., et al., 2016. Halogen-Bearing Minerals from the Tamazeght Complex (Morocco):Constraints on Halogen Distribution and Evolution in Alkaline to Peralkaline Magmatic Systems. The Canadian Mineralogist, 54(6):1347-1368. https://doi.org/10.3749/canmin.1600007 doi:  10.3749/canmin.1600007
[51] Webster, J. D., Goldoff, B. A., Flesch, R. N., et al., 2017. Hydroxyl, Cl, and F Partitioning between High-Silica Rhyolitic Melts-Apatite-Fluid(s) at 50-200 MPa and 700-1 000 ℃. American Mineralogist, 102(1):61-74. https://doi.org/10.2138/am-2017-5746 doi:  10.2138/am-2017-5746
[52] Webster, J. D., Tappen, C. M., Mandeville, C. W., 2009. Partitioning Behavior of Chlorine and Fluorine in the System Apatite-Melt-Fluid. II: Felsic Silicate Systems at 200 MPa. Geochimica et Cosmochimica Acta, 73(3): 559-581. https://doi.org/10.1016/j.gca.2008.10.034
[53] Wengorsch, T., 2013. Experimental Constraints on the Storage Conditions of a Tephriphonolite from the Cumbre Vieja Volcano (La Palma, Canary Islands) at 200 and 400 MPa: [Dissertation]. Leibniz Universität Hannover, Hannover. 97
[54] Xiong, X. L., Rao, B., Chen, F. R., et al., 2002. Crystallization and Melting Experiments of a Fluorine-Rich Leucogranite from the Xianghualing Pluton, South China, at 150 MPa and H2O-Saturated Conditions. Journal of Asian Earth Sciences, 21(2):175-188. https://doi.org/10.1016/s1367-9120(02)00030-5 doi:  10.1016/s1367-9120(02)00030-5
[55] Zeng, Q., Stebbins, J. F., 2000. Fluoride Sites in Aluminosilicate Glasses:High-Resolution19F NMR Results. American Mineralogist, 85(5/6):863-867. https://doi.org/10.2138/am-2000-5-630 doi:  10.2138/am-2000-5-630
[56] Zhang, C., Holtz, F., Ma, C. Q., et al., 2012. Tracing the Evolution and Distribution of F and Cl in Plutonic Systems from Volatile-Bearing Minerals:A Case Study from the Liujiawa Pluton (Dabie Orogen, China). Contributions to Mineralogy and Petrology, 164(5):859-879. https://doi.org/10.1007/s00410-012-0778-9 doi:  10.1007/s00410-012-0778-9
[57] Zhang, C., Koepke, J., Albrecht, M., et al., 2017. Apatite in the Dike-Gabbro Transition Zone of Mid-Ocean Ridge:Evidence for Brine Assimilation by Axial Melt Lens. American Mineralogist, 102(3):558-570. https://doi.org/10.2138/am-2017-5906 doi:  10.2138/am-2017-5906
[58] Zhang, C., Koepke, J., Wang, L. X., et al., 2016. A Practical Method for Accurate Measurement of Trace Level Fluorine in Mg- and Fe-Bearing Minerals and Glasses Using Electron Probe Microanalysis. Geostandards and Geoanalytical Research, 40(3):351-363. https://doi.org/10.1111/j.1751-908x.2015.00390.x doi:  10.1111/j.1751-908x.2015.00390.x