[1] Al-Aasm, I. S., Packard, J. J., 2000. Stabilization of Early-Formed Dolomite:A Tale of Divergence from Two Mississippian Dolomites. Sedimentary Geology, 131(3/4):97-108. https://doi.org/10.1016/s0037-0738(99)00132-3 doi:  10.1016/s0037-0738(99)00132-3
[2] Abramoff, M. D., Magelhaes, P. J., Ram, S. J., 2004. Image Processing with ImageJ. Biophotonics International, 11(5/6):36-42. https://doi.org/10.3233/isu-1991-115-601 doi:  10.3233/isu-1991-115-601
[3] Ajdukiewicz, J. M., Larese, R. E., 2012. How Clay Grain Coats Inhibit Quartz Cement and Preserve Porosity in Deeply Buried Sandstones:Observations and Experiments. AAPG Bulletin, 96(11):2091-2119. https://doi.org/10.1306/02211211075 doi:  10.1306/02211211075
[4] Baig, M. O., Harris, N. B., Ahmed, H., et al., 2016. Controls on Reservoir Diagenesis in the Lower Goru Sandstone Formation, Lower Indus Basin, Pakistan. Journal of Petroleum Geology, 39(1):29-47. https://doi.org/10.1111/jpg.12626 doi:  10.1111/jpg.12626
[5] Bao, H. M., Thiemens, M. H., 2000. Generation of O2 from BaSO4 Using a CO2-Laser Fluorination System for Simultaneous Analysis of δ18O and δ17O. Analytical Chemistry, 72(17):4029-4032. https://doi.org/10.1021/ac000086e doi:  10.1021/ac000086e
[6] Bettison-Varga, L., Mackinnon, I. D. R., Schiffman, P., 1991. Integrated TEM, XRD and Electron Microprobe Investigation of Mixed-Layer Chlorite-Smectite from the Point Sal Ophiolite, California. Journal of Metamorphic Geology, 9(6):697-710. https://doi.org/10.1111/j.1525-1314.1991.tb00559.x doi:  10.1111/j.1525-1314.1991.tb00559.x
[7] Bird, N., Díaz, M. C., Saa, A., et al., 2006. Fractal and Multifractal Analysis of Pore-Scale Images of Soil. Journal of Hydrology, 322(1/2/3/4):211-219. https://doi.org/10.1016/j.jhydrol.2005.02.039 doi:  10.1016/j.jhydrol.2005.02.039
[8] Bjorkum, P. A., Walderhaug, O., Aase, N. E., 1993. A Model for the Effect of Illitization on Porosity and Quartz Cementation of Sandstones. Journal of Sedimentary Research, 63(6):1089-1091. https://doi.org/10.2110/jsr.63.1089 doi:  10.2110/jsr.63.1089
[9] Boles, J. R., Franks, S. G., 1979. Clay Diagenesis in Wilcox Sandstones of Southwest Texas:Implications of Smectite Diagenesis on Sandstone Cementation. SEPM Journal of Sedimentary Research, 49(1):55-70 https://pubs.geoscienceworld.org/sepm/jsedres/article-abstract/49/1/55/113540/clay-diagenesis-in-wilcox-sandstones-of-southwest
[10] Chen, J., Xiao, X. M., 2014. Evolution of Nanoporosity in Organic-Rich Shales during Thermal Maturation. Fuel, 129:173-181. https://doi.org/10.1016/j.fuel.2014.03.058 doi:  10.1016/j.fuel.2014.03.058
[11] Chen, S. B., Han, Y. F., Fu, C. Q., et al., 2016. Micro and Nano-Size Pores of Clay Minerals in Shale Reservoirs:Implication for the Accumulation of Shale Gas. Sedimentary Geology, 342:180-190. https://doi.org/10.1016/j.sedgeo.2016.06.022 doi:  10.1016/j.sedgeo.2016.06.022
[12] Chen, Q., Kang, Y. L., You, L. J., et al., 2017. Change in Composition and Pore Structure of Longmaxi Black Shale during Oxidative Dissolution. International Journal of Coal Geology, 172:95-111. https://doi.org/10.1016/j.coal.2017.01.011 doi:  10.1016/j.coal.2017.01.011
[13] Curtis, M. E., Ambrose, R. J., Sondergeld, C. H., 2010. Structural Charac-terization of Gas Shales on the Micro- and Nano-Scales. Canadian Unconventional Resources and International Petroleum Conference, October 19-21, Calgary, Alberta. https://doi.org/10.2118/137693-MS
[14] Dai, J. X., Zou, C. N., Liao, S. M., et al., 2014. Geochemistry of the Extremely High Thermal Maturity Longmaxi Shale Gas, Southern Si-chuan Basin. Organic Geochemistry, 74:3-12. https://doi.org/10.1016/j.orggeochem.2014.01.018 doi:  10.1016/j.orggeochem.2014.01.018
[15] Dowey, P. J., Taylor, K. G., 2017. Extensive Authigenic Quartz Overgrowths in the Gas-Bearing Haynesville-Bossier Shale, USA. Sedimentary Ge-ology, 356:15-25. https://doi.org/10.1016/j.sedgeo.2017.05.001 doi:  10.1016/j.sedgeo.2017.05.001
[16] Evertsz, C. J. G., Mandelbrot, B. B., 1992. Multifractal Measures (Appendix B). In: Peitgen, H.-O., Jurgens, H., Saupe, D., eds. Chaos and Fractals. Springer Verlag, New York. 922-953
[17] Gasparrini, M., Bechstädt, T., Boni, M., 2006. Massive Hydrothermal Dolomites in the Southwestern Cantabrian Zone (Spain) and Their Relation to the Late Variscan Evolution. Marine and Petroleum Geology, 23(5):543-568. https://doi.org/10.1016/j.marpetgeo.2006.05.003 doi:  10.1016/j.marpetgeo.2006.05.003
[18] Ge, X. M., Fan, Y. R., Li, J. T., et al., 2015. Pore Structure Characterization and Classification Using Multifractal Theory-An Application in San-tanghu Basin of Western China. Journal of Petroleum Science and En-gineering, 127:297-304. https://doi.org/10.1016/j.petrol.2015.01.004 doi:  10.1016/j.petrol.2015.01.004
[19] Geng, Y. K., Jin, Z. K., Zhao, J. H., et al., 2016. Composition and Origin of Clay Minerals in the Lower Silurian Longmaxi Formation in Eastern Sichuan Basin. Natural Gas Geoscience, 27(10):1933-1941. https://doi.org/10.11764/j.issn.1672-1926.2016.10.1933 doi:  10.11764/j.issn.1672-1926.2016.10.1933
[20] Gipson, M. Jr., 1963. Ultrasonic Disaggregation of Shale. Journal of Sedi-mentary Research, 33(4):955-958 doi:  10.1306/74D70FA1-2B21-11D7-8648000102C1865D
[21] Goldsmith, J. R., Graf, D. L., 1958. Structural and Compositional Variations in some Natural Dolomites. The Journal of Geology, 66(6):678-693. https://doi.org/10.1086/626547 doi:  10.1086/626547
[22] Halsey, T. C., Jensen, M. H., Kadanoff, L. P., et al., 1986. Fractal Measures and Their Singularities:The Characterization of Strange Sets. Physical Review A, 33(2):1141-1151. https://doi.org/10.1016/0920-5632(87)90036-3 doi:  10.1016/0920-5632(87)90036-3
[23] Hu, H. Y., Hao, F., Lin, J. F., et al., 2017. Organic Matter-Hosted Pore System in the Wufeng-Longmaxi (O3W-S11) Shale, Jiaoshiba Area, Eastern Sichuan Basin, China. International Journal of Coal Geology, 173:40-50. https://doi.org/10.1016/j.coal.2017.02.004 doi:  10.1016/j.coal.2017.02.004
[24] Jacobs, B. W., Ayres, V. M., Petkov, M. P., et al., 2007. Electronic and Structural Characteristics of Zinc-Blende Wurtzite Biphasic Homo-structure GaN Nanowires. Nano Letters, 7(5):1435-1438. https://doi.org/10.1021/nl062871y doi:  10.1021/nl062871y
[25] Jiang, C. Q., Chen, Z. H., Lavoie, D., et al., 2017. Mineral Carbon MinC(%) from Rock-Eval Analysis as a Reliable and Cost-Effective Measurement of Carbonate Contents in Shale Source and Reservoir Rocks. Marine and Petroleum Geology, 83:184-194. https://doi.org/10.1016/j.marpetgeo.2017.03.017 doi:  10.1016/j.marpetgeo.2017.03.017
[26] Jones, B., Luth, R. W., MacNeil, A. J., 2001. Powder X-Ray Diffraction Analysis of Homogeneous and Heterogeneous Sedimentary Dolostones. Journal of Sedimentary Research, 71(5):790-799 doi:  10.1306/2DC40968-0E47-11D7-8643000102C1865D
[27] Kong, L. M., Wan, M. X., Yan, Y. X., et al., 2016. Reservoir Diagenesis Research of Silurian Longmaxi Formation in Sichuan Basin, China. Journal of Natural Gas Geoscience, 1(3):203-211. https://doi.org/10.1016/j.jnggs.2016.08.001 doi:  10.1016/j.jnggs.2016.08.001
[28] Korolyuk, V. N., 2008. JXA-8100 Microanalyzer:Accuracy of Analysis of Rock-Forming Minerals. Russian Geology and Geophysics, 49(3):165-168. https://doi.org/10.1016/j.rgg.2007.07.005 doi:  10.1016/j.rgg.2007.07.005
[29] Land, L. S., 1985. The Origin of Massive Dolomite. Journal of Geological Education, 33(2):112-125. https://doi.org/10.5408/0022-1368-33.2.112 doi:  10.5408/0022-1368-33.2.112
[30] Lavrent'Ev, Y. G., Korolyuk, V. N., Usova, L. V., et al., 2015. Electron Probe Microanalysis of Rock-Forming Minerals with a JXA-8100 Electron Probe Microanalyzer. Russian Geology and Geophysics, 56(10):1428-1436. https://doi.org/10.1016/j.rgg.2015.09.005 doi:  10.1016/j.rgg.2015.09.005
[31] Li, F. X., Wang, Y., Wang, D. Z., et al., 2004. Characterization of Single-Wall Carbon Nanotubes by N2 Adsorption. Carbon, 42(12/13):2375-2383. https://doi.org/10.1016/j.carbon.2004.02.025 doi:  10.1016/j.carbon.2004.02.025
[32] Li, J., Yu, B. S., Liu, C., et al., 2012. Clay Minerals of Black Shale and Their Effects on Physical Properties of Shale Gas Reservoirs in the Southeast of Chongqing:A Case Study from Lujiao Outcrop Section in Pengshui, Chongqing. Geoscience, 26(4):732-740. https://doi.org/10.1007/s11783-011-0280-z doi:  10.1007/s11783-011-0280-z
[33] Li, W. H., Lu, S. F., Xue, H. T., et al., 2016. Microscopic Pore Structure in Shale Reservoir in the Argillaceous Dolomite from the Jianghan Basin. Fuel, 181:1041-1049. https://doi.org/10.1016/j.fuel.2016.04.140 doi:  10.1016/j.fuel.2016.04.140
[34] Li, X. Q., Bao, H. M., Gan, Y. Q., et al., 2013. Multiple Oxygen and Sulfur Isotope Compositions of Secondary Atmospheric Sulfate in a Mega-City in Central China. Atmospheric Environment, 81(4):591-599. https://doi.org/10.1016/j.atmosenv.2013.09.051 doi:  10.1016/j.atmosenv.2013.09.051
[35] Liang, C., Jiang, Z. X., Cao, Y. C., et al., 2016. Deep-Water Depositional Mechanisms and Significance for Unconventional Hydrocarbon Ex-ploration:A Case Study from the Lower Silurian Longmaxi Shale in the Southeastern Sichuan Basin. AAPG Bulletin, 100(5):773-794. https://doi.org/10.1306/02031615002 doi:  10.1306/02031615002
[36] Liu, K. Q., Ostadhassan, M., 2017. Multi-Scale Fractal Analysis of Pores in Shale Rocks. Journal of Applied Geophysics, 140:1-10. https://doi.org/10.1016/j.jappgeo.2017.02.028 doi:  10.1016/j.jappgeo.2017.02.028
[37] Liang, L. I., Pan, R., Yang, Y., et al., 2017. Characteristics of Pores and the Controlling Factors in Longmaxi Formation of Silurian Changing Area, Sichuan Basin. Journal of Geology, 41(1):39-44. https://doi.org/10.3969/j.issn.1674-3636.2017.01.39 (in Chinese with English Abstract) doi:  10.3969/j.issn.1674-3636.2017.01.39
[38] Liu, J. K., Peng, J., Liu, J. J., et al., 2009. Pore-Preserving Mechanism of Chlorite Rims in Tight Sandstone——An Example from the T3x Formation of Baojie Area in the Transitional Zone from the Central to Southern Sichuan Basin. Oil and Gas Geology, 30(1):53-58. https://doi.org/10.3923/ijps.2008.223.233 (in Chinese with English Abstract) doi:  10.3923/ijps.2008.223.233
[39] Liu, H. M., Zhang, S., Song, G. Q., et al., 2017. A Discussion on the Origin of Shale Reservoir Inter-Laminar Fractures in the Shahejie Formation of Paleogene, Dongying Depression. Journal of Earth Science, 28(6):1064-1077. https://doi.org/10.1007/s12583-016-0946-3 doi:  10.1007/s12583-016-0946-3
[40] Luo, L., Meng, W. B., Feng, M. S., et al., 2015. Silica Source of Quartz Cements and Its Effects on the Reservoir in Tight Sandstones:A Case Study on the 2th Member of the Xujiahe Formation in Xinchang Structural Belt, Western Sichuan Depression. Natural Gas Geoscience, 26(3):435-443. https://doi.org/10.11764/j.issn.1672-1926.2015.03.0435 (in Chinese with English Abstract) doi:  10.11764/j.issn.1672-1926.2015.03.0435
[41] Lupan, O., Chow, L., Chai, G., et al., 2008. Biopolymer-Assisted Self-Assembly of ZnO Nanoarchitectures from Nanorods. Superlattices and Microstructures, 43(4):292-302. https://doi.org/10.1016/j.spmi.2007.12.003 doi:  10.1016/j.spmi.2007.12.003
[42] Machel, H. G., 1997. Recrystallization Versus Neomorphism, and the Concept of 'Significant Recrystallization' in Dolomite Research. Sedimentary Geology, 113(3/4):161-168. https://doi.org/10.1016/s0037-0738(97)00078-x doi:  10.1016/s0037-0738(97)00078-x
[43] Mandelbrot, B. B., 1977. Fractals: Form, Chance and Dimension. W.H. Freeman, San Francisco
[44] Midtbø, R. E. A., Rykkje, J. M., Ramm, M., 2000. Deep Burial Diagenesis and Reservoir Quality along the Eastern Flank of the Viking Graben. Evidence for Illitization and Quartz Cementation after Hydrocarbon Emplacement. Clay Minerals, 35(1):227-237. https://doi.org/10.1180/000985500546602 doi:  10.1180/000985500546602
[45] Moore, D. M., Reynolds, R. C. J., 1989. X-Ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, Oxford. 210-211
[46] Mountjoy, E. W., Achel, H. G. M., Green, D., et al., 1999. Devonian Matrix Dolomites and Deep Burial Carbonate Cements:A Comparison between the Rimbey-Meadowbrook Reef Trend and the Deep Basin of West-Central Alberta. Bulletin of Canadian Petroleum Geology, 47(4):487-509. https://doi.org/10.1007/bf00992913 doi:  10.1007/bf00992913
[47] Ouyang, C., Xi, X., Cao, J., 2015. Multifractal Characteristics of Metallo-genic Elements of Pingguo Accumulated Bauxite in Guangxi. Geolog-ical Science and Technology Information, 34(5): 114-119. https://doi.org/1000-7849(2015)05-0114-06 (in Chinese with English Abstract)
[48] Peltonen, C., Marcussen, Ø., Bjørlykke, K., et al., 2009. Clay Mineral Diagenesis and Quartz Cementation in Mudstones:The Effects of Smectite to Illite Reaction on Rock Properties. Marine and Petroleum Geology, 26(6):887-898. https://doi.org/10.1016/j.marpetgeo.2008.01.021 doi:  10.1016/j.marpetgeo.2008.01.021
[49] Porten, K. W., Walderhaug, O., Torkildsen, G., 2015. Apatite Overgrowth Cement as a Possible Diagenetic Temperature-History Indicator. Journal of Sedimentary Research, 85(12):1478-1491. https://doi.org/10.2110/jsr.2015.99 doi:  10.2110/jsr.2015.99
[50] Puphaiboon, K., Arjeneh, M., Markvardsen, A. J., 2013. Jpowder Version 2:For the Display and Examination of Powder Diffraction Data Using Stack Plot. Journal of Software Engineering and Applications, 6(4):168-173. https://doi.org/10.4236/jsea.2013.64021 doi:  10.4236/jsea.2013.64021
[51] Ramm, M., Forsberg, A. W., Jahren, J. S., 1997. Porosity-Depth Trends in Deeply Buried Upper Jurassic Reservoirs in the Norwegian Central Graben:An Example of Porosity Preservation beneath the Normal Economic Basement by Grain-Coating Microquartz. AAPG Bulletin, 66:177-199
[52] Rusk, B., Reed, M., 2002. Scanning Electron Microscope-Cathodoluminescence Analysis of Quartz Reveals Complex Growth Histories in Veins from the Butte Porphyry Copper Deposit, Montana. Geology, 30(8):727. https://doi.org/10.1130/0091-7613(2002)030 < 0727:semcao > 2.0.co; 2 doi:  10.1130/0091-7613(2002)030<0727:semcao>2.0.co;2
[53] Samtani, M., Skrzypczak-Janktun, E., Dollimore, D., et al., 2001. Thermal Analysis of Ground Dolomite, Confirmation of Results Using an X-Ray Powder Diffraction Methodology. Thermochimica Acta, 367/368:297-309. https://doi.org/10.1016/s0040-6031(00)00663-8 doi:  10.1016/s0040-6031(00)00663-8
[54] Sliaupa, S., Cyziene, J., Molenaar, N., et al., 2008. Ferroan Dolomite Cement in Cambrian Sandstones:Burial History and Hydrocarbon Generation of the Baltic Sedimentary Basin. Acta Geologica Polonica, 58(1):27-41. https://doi.org/10.3986/ags48106 doi:  10.3986/ags48106
[55] Steins, P., Poulesquen, A., Frizon, F., et al., 2014. Effect of Aging and Alkali Activator on the Porous Structure of a Geopolymer. Journal of Applied Crystallography, 47(1):316-324. https://doi.org/10.1107/s160057671303197x doi:  10.1107/s160057671303197x
[56] Stevens, S. M., Loiola, A. R., Cubillas, P., et al., 2011. Hierarchical Porous Materials:Internal Structure Revealed by Argon Ion-Beam Cross-Section Polishing, HRSEM and AFM. Solid State Sciences, 13(4):745-749. https://doi.org/10.1016/j.solidstatesciences.2010.04.027 doi:  10.1016/j.solidstatesciences.2010.04.027
[57] Tan, L. L., Ong, W. J., Chai, S. P., et al., 2015. Visible-Light-Active Oxygen-Rich TiO2 Decorated 2D Graphene Oxide with Enhanced Photocatalytic Activity Toward Carbon Dioxide Reduction. Applied Catalysis B:Environmental, 179:160-170. https://doi.org/10.1016/j.apcatb.2015.05.024 doi:  10.1016/j.apcatb.2015.05.024
[58] Torre, I. G., Losada, J. C., Heck, R. J., et al., 2018. Multifractal Analysis of 3D Images of Tillage Soil. Geoderma, 311:167-174. https://doi.org/10.1016/j.geoderma.2017.02.013 doi:  10.1016/j.geoderma.2017.02.013
[59] Towe, K. M., 1962. Clay Mineral Diagenesis as a Possible Source of Silica Cement in Sedimentary Rocks. SEPM Journal of Sedimentary Research, 32(1):26-28
[60] Thyberg, B., Jahren, J., Winje, T., et al., 2010. Quartz Cementation in Late Cretaceous Mudstones, Northern North Sea:Changes in Rock Properties Due to Dissolution of Smectite and Precipitation of Micro-Quartz Crystals. Marine and Petroleum Geology, 27(8):1752-1764. https://doi.org/10.1016/j.marpetgeo.2009.07.005 doi:  10.1016/j.marpetgeo.2009.07.005
[61] Ukar, E., Lopez, R. G., Laubach, S. E., et al., 2017. Microfractures in Bed-Parallel Veins (Beef) as Predictors of Vertical Macrofractures in Shale:Vaca Muerta Formation, Agrio Fold-and-Thrust Belt, Argentina. Journal of South American Earth Sciences, 79:152-169. https://doi.org/10.1016/j.jsames.2017.07.015 doi:  10.1016/j.jsames.2017.07.015
[62] Vega, S., Jouini, M. S., 2015. 2D Multifractal Analysis and Porosity Scaling Estimation in Lower Cretaceous Carbonates. Geophysics, 80(6):D575-D586. https://doi.org/10.1190/geo2014-0596.1 doi:  10.1190/geo2014-0596.1
[63] Wang, J. L., Liu, G. J., Wang, W. Z., et al., 2013. Characteristics of Pore-Fissure and Permeability of Shales in the Longmaxi Formation in Southeastern Sichuan Basin. Journal of China Coal Society, 38(5):772-777. https://doi.org/10.13225/j.cnki.jccs.2013.05.009 (in Chinese with English Abstract) doi:  10.13225/j.cnki.jccs.2013.05.009
[64] Walderhaug, O., Eliassen, A., Aase, N. E., 2012. Prediction of Permeability in Quartz-Rich Sandstones:Examples from the Norwegian Continental Shelf and the Fontainebleau Sandstone. Journal of Sedimentary Research, 82(12):899-912. https://doi.org/10.2110/jsr.2012.79 doi:  10.2110/jsr.2012.79
[65] Walderhaug, O., Ler, R. H., Bjørkum, P. A., et al., 2009. Modelling Quartz Cementation and Porosity in Reservoir Sandstones:Examples from the Norwegian Continental Shelf. Spec. Publs. Int. Ass. Sediment, 29:39-49 https://www.mendeley.com/catalogue/modelling-quartz-cementation-porosity-reservoir-sandstones-examples-norwegian-continental-shelf/
[66] Wang, Y. M., Dong, D. Z., Li, X. J., et al., 2015. Stratigraphic Sequence and Sedimentary Characteristics of Lower Silurian Longmaxi Formation in Sichuan Basin and Its Peripheral Areas. Natural Gas Industry B, 2(2/3):222-232. https://doi.org/10.1016/j.ngib.2015.07.014 doi:  10.1016/j.ngib.2015.07.014
[67] Weinberg, A. C., Huang, L., Jiang, H., et al., 2011. Size and Distribution of Shocked Mineral Grains in the Pierre Shale (Late Cretaceous) of South Dakota Related to the Manson, Iowa, Impact Event. Journal of the American College of Surgeons, 212(5):768-78. https://doi.org/10.1016/j.jamcollsurg.2011.02.006 doi:  10.1016/j.jamcollsurg.2011.02.006
[68] Worden, R. H., Charpentier, D., Fisher, Q. J., et al., 2005. Fabric Development and the Smectite to Illite Transition in Upper Cretaceous Mudstones from the North Sea:An Image Analysis Approach. Geological Society, London, Special Publications, 249(1):103-114. https://doi.org/10.1144/gsl.sp.2005.249.01.09 doi:  10.1144/gsl.sp.2005.249.01.09
[69] Wu, X. Y., Ling, S. X., Ren, Y., et al., 2016. Elemental Migration Characteristics and Chemical Weathering Degree of Black Shale in Northeast Chongqing, China. Earth Science, 41(2):218-233. https://doi.org/10.3799/dqkx.2016.017 (in Chinese with English Ab-stract) doi:  10.3799/dqkx.2016.017
[70] Xie, S. Y., Bao, Z. Y., 2004. Fractal and Multifractal Properties of Geo-chemical Fields. Mathematical Geology, 36(7):847-864. https://doi.org/10.1023/b:matg.0000041182.70233.47 doi:  10.1023/b:matg.0000041182.70233.47
[71] Xie, S. Y., Cheng, Q. M., Xing, X. T., et al., 2010. Geochemical Multifractal Distribution Patterns in Sediments from Ordered Streams. Geoderma, 160(1):36-46. https://doi.org/10.1016/j.geoderma.2010.01.009 doi:  10.1016/j.geoderma.2010.01.009
[72] Xie, S. Y., Cheng, Q. M., Ling, Q. C., et al., 2010. Fractal and Multifractal Analysis of Carbonate Pore-Scale Digital Images of Petroleum Reser-voirs. Marine and Petroleum Geology, 27(2):476-485. https://doi.org/10.1016/j.marpetgeo.2009.10.010 doi:  10.1016/j.marpetgeo.2009.10.010
[73] Yang, Y. N., Wang, J., Guo, X. M., et al., 2017. Mineralogical Characteristics and Petroleum Geological Significance of Wufeng-Longmaxi Formation Shales in the Tianba Area, Northeast of Chongqing. Acta Sedimentologica Sinica, 35(4):772-781. https://doi.org/10.14027/j.cnki.cjxb.2017.04.011 (in Chinese with English Abstract) doi:  10.14027/j.cnki.cjxb.2017.04.011
[74] Ye, Y. H., Liu, S. G., Ran, B., et al., 2017. Characteristics of Black Shale in the Upper Ordovician Wufeng and Lower Silurian Longmaxi Formations in the Sichuan Basin and Its Periphery, China. Australian Journal of Earth Sciences, 64(5):667-687. https://doi.org/10.1080/08120099.2017.1321581 doi:  10.1080/08120099.2017.1321581
[75] Zhang, X. M., Shi, W. Z., Xu, Q. H., et al., 2015. Reservoir Characteristics and Controlling Factors of Shale Gas in Jiaoshiba Area, Sichuan Basin. Acta Petrolei Sinica, 36(8):926-941. https://doi.org/10.7623/syxb201508004 (in Chinese with English Ab-stract) doi:  10.7623/syxb201508004
[76] Zhao, J. H., Jin, Z. J., Jin, Z. K., et al., 2017. Mineral Types and Organic Matters of the Ordovician-Silurian Wufeng and Longmaxi Shale in the Sichuan Basin, China:Implications for Pore Systems, Diagenetic Pathways, and Reservoir Quality in Fine-Grained Sedimentary Rocks. Marine and Petroleum Geology, 86:655-674. https://doi.org/10.1016/j.marpetgeo.2017.06.031 doi:  10.1016/j.marpetgeo.2017.06.031
[77] Zhou, B., Komulainen, S., Vaara, J., et al., 2017. Characterization of Pore Structures of Hydrated Cements and Natural Shales by 129 Xe NMR Spectroscopy. Microporous and Mesoporous Materials, 253:49-54. https://doi.org/10.1016/j.micromeso.2017.06.038 doi:  10.1016/j.micromeso.2017.06.038
[78] Zhou, S. W., Xue, H. Q., Ning, Y., et al., 2018. Experimental Study of Supercritical Methane Adsorption in Longmaxi Shale:Insights into the Density of Adsorbed Methane. Fuel, 211:140-148. https://doi.org/10.1016/j.fuel.2017.09.065 doi:  10.1016/j.fuel.2017.09.065
[79] Zhou, T., Zhang, S. C., Feng, Y., et al., 2016. Experimental Study of Permeability Characteristics for the Cemented Natural Fractures of the Shale Gas Formation. Journal of Natural Gas Science and Engineering, 29:345-354. https://doi.org/10.1016/j.jngse.2016.01.005 doi:  10.1016/j.jngse.2016.01.005
[80] Zhu, W., Tang, D., Yu, T., et al., 2015. The Accurate Determination Method for BET Specific Surface Based on Nitrogen Adsorption of Shale Sample. Science Technology and Engineering, 15(29): 29-33. https://doi.org/1671-1815(2015)29-0029-05 (in Chinese with English Abstract)