[1] Anderson, J. L., 1980. Mineral Equilibria and Crystallization Conditions in the Late Precambrian Wolf River Rapakivi Massif, Wisconsin. American Journal of Science, 280(4): 289-332. https://doi.org/10.2475/ajs.280.4.289 doi:  10.2475/ajs.280.4.289
[2] Anderson, J. L., 1983. Proterozoic Anorogenic Granite Plutonism of North America. In: Medaris, L. G. Jr., Byers, C. W., Mickelson, D. M., et al., eds., Proterozoic Geology. Geological Society of America Memoir, 161: 133-154
[3] Arzi, A. A., 1978. Critical Phenomena in the Rheology of Partially Melted Rocks. Tecnonophysics, 44(1-4): 173-184. https://doi.org/10.1016/0040-1951(78)90069-0 doi:  10.1016/0040-1951(78)90069-0
[4] Beard, J. S., Lofgren, G. E., 1991. Dehydration Melting and Water-Saturated Melting of Basaltic and Andesitic Greenstones and Amphibolites at 1, 3, and 6.9 kb. Journal of Petrology, 32(2): 365-401. https://doi.org/ 10.1093/petrology/32.2.365 doi:  10.1093/petrology/32.2.365
[5] Berman, R. G., 1988. Internally-Consistent Thermodynamic Data for Minerals in the System Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2. Journal of Petrology, 29(2): 445-522. https://doi.org/10.1093/petrology/29.2.445 doi:  10.1093/petrology/29.2.445
[6] Bons, P. D., Arnold, J., Elburg, M. A., et al., 2004. Melt Extraction and Accumulation from Partially Molten Rocks. Lithos, 78(1/2): 25-42. https://doi.org/10.1016/j.lithos.2004.04.041 doi:  10.1016/j.lithos.2004.04.041
[7] Bucher, K., Frey, M., 2002. Petrogenesis of Metamorphic Rocks, 7th Edition. Springer Verlag, Berlin. 356
[8] Bulau, J. R., Waff, H., Tyburczy, J. A., 1979. Mechanical and Thermodynamic Constraints of Fluid Distribution in Partial Melts. Journal of Geophysical Research, 84(B11): 6102-6108. https://doi.org/10.1029/jb084ib11p06102 doi:  10.1029/jb084ib11p06102
[9] Chamberlain, C. P., Sonder, L. J., 1990. Heat-Producing Elements and the Thermal and Baric Patterns of Metamorphic Belts. Science, 250(4982): 763-769. https://doi.org/10.1126/science.250.4982.763 doi:  10.1126/science.250.4982.763
[10] Clauser, C., 2011. Radiogenic Heat Production in Rocks. In: Gupta, H. K., ed., Encyclopedia of Solid Earth Geophysics. Springer, Dordrecht. 1018-1024. https://doi.org/10.1007/978-90-481-8702-7
[11] Crawford, M. L., Klepeis, K. A., Gehrels, G. E., et al., 2009. Mid-Cretaceous- Recent Crustal Evolution in the Central Coast Orogen, British Columbia and Southeastern Alaska. Geological Society of America Special Paper, 456: 97-124. https://doi.org/10.1130/2009.2456(04) doi:  10.1130/2009.2456(04)
[12] Creaser, R. A., White, A. J. R., 1991. Yardea Dacite-Large-Volume, High-Temperature Felsic Volcanism from the Middle Proterozoic of South Australia. Geology, 19(1): 48-51. https://doi.org/10.1130/0091- 7613(1991)019<0048:ydlvht>2.3.co;2 doi:  10.1130/0091-7613(1991)019<0048:ydlvht>2.3.co;2
[13] Ehlers, C., Lindroos, A., Selonen, O., 1993. The Late Svecofennian Granite- Migmatite Zone of Southern Finland—A Belt of Transpressive Deformation and Granite Emplacement. Precambrian Research, 64(1-4): 295-309. https://doi.org/10.1016/0301-9268(93)90083-e doi:  10.1016/0301-9268(93)90083-e
[14] Ehrlich, K., Verš, E., Kirs, J., et al. ., 2012. Using a Titanium-in-Quartz Geothermometer for Crystallization Temperature Estimation of the Palaeoproterozoic Suursaari Quartz Porphyry. Estonian Journal of Earth Science, 61(4): 195-204. https://doi.org/10.3176/earth.2012.4.01 doi:  10.3176/earth.2012.4.01
[15] Eklund, O., Shebanov, A. D., 1999. The Origin of Rapakivi Texture by Sub-Isothermal Decompression. Precambrian Research, 95(1/2): 129-146. https://doi.org/10.1016/s0301-9268(98)00130-2 doi:  10.1016/s0301-9268(98)00130-2
[16] Frost, B. R., Frost, C. D., 1987. CO2, Melts and Granulite Metamorphism. Nature, 327(6122): 503-506. https://doi.org/10.1038/327503a0 doi:  10.1038/327503a0
[17] Geological Survey of Finland, 2020. Rock Geochemical Data of Finland, GTK 2020. http://tupa.gtk.fi/paikkatieto/meta/rock_geochemical_data_of_finland.html
[18] Gerdes, A., 2001. Magma Homogenization during Anatexis, Ascent and/or Emplacement? Constraints from the Variscan Weinsberg Granites. Terra Nova, 13(4): 305-312. https://doi.org/10.1046/j.1365-3121.2001.00365.x doi:  10.1046/j.1365-3121.2001.00365.x
[19] Gerdes, A., Wörner, G., Henk, A., 2000. Post-Collisional Granite Generation and HT-LP Metamorphism by Radiogenic Heating: The Variscan South Bohemian Batholith. Journal of the Geological Society, London, 157: 577-587. https://doi.org/10.1144/jgs.157.3.577 doi:  10.1144/jgs.157.3.577
[20] Ghiorso, M. S., Sack, R. O., 1995. Chemical Mass Transfer in Magmatic Processes IV. A Revised and Internally Consistent Thermodynamic Model for the Interpolation and Extrapolation of Liquid-Solid Equilibria in Magmatic Systems at Elevated Temperatures and Pressures. Contributions to Mineralogy and Petrology, 119(2): 197-212. https://doi.org/10.1007/bf00307281 doi:  10.1007/bf00307281
[21] Ghiorso, M. S., Gualda, G. A. R., 2015. An H2O-CO2 Mixed Fluid Saturation Model Compatible with Rhyolite-MELTS. Contributions to Mineralogy and Petrology, 169(6): 1-30. https://doi.org/10.1007/s00410-015-1141-8 doi:  10.1007/s00410-015-1141-8
[22] Gualda, G. A. R., Ghiorso, M. S., 2015. MELTS-Excel: A Microsoft Excel- Based MELTS Interface for Research and Teaching of Magma Properties and Evolution. Geochemistry, Geophysics, Geosystems, 16(1): 315-324. https://doi.org/10.1002/2014gc005545 doi:  10.1002/2014gc005545
[23] Gualda, G. A. R., Ghiorso, M. S., Lemons, R. V., et al., 2012. Rhyolite- MELTS: A Modified Calibration of MELTS Optimized for Silica-Rich, Fluid-Bearing Magmatic Systems. Journal of Petrology, 53(5): 875-890. https://doi.org/10.1093/petrology/egr080 doi:  10.1093/petrology/egr080
[24] Heinonen, A. P., Rämö, O. T., Mänttäri, I., et al., 2017. Zircon as a Proxy for the Magmatic Evolution of Proterozoic Ferroan Granites; The Wiborg Rapakivi Granite Batholith, SE Finland. Journal of Petrology, 58(12): 2493-2517. https://doi.org/10.1093/petrology/egy014 doi:  10.1093/petrology/egy014
[25] Heinonen, A. P., Andersen, T., Rämö, O. T., 2010. Re-Evaluation of Rapakivi Petrogenesis: Source Constraints from the Hf Isotope Composition of Zircon in the Rapakivi Granites and Associated Mafic Rocks of Southern Finland. Journal of Petrology, 51(8): 1687-1709. https://doi.org/10.1093/petrology/egq035 doi:  10.1093/petrology/egq035
[26] Hölttä, P., Heilimo, E., 2017. Metamorphic Map of Finland. Geological Survey of Finland, Special Paper, 60: 77-128
[27] Holtz, F., Becker, A., Freise, M., et al., 2001. The Water-Undersaturated and Dry Qz-Ab-Or System Revisited. Experimental Results at very Low Water Activities and Geological Implications. Contributions to Mineralogy and Petrology, 141(3): 347-357. https://doi.org/10.1007/s004100100245 doi:  10.1007/s004100100245
[28] Huhma, H., 1986. Sm-Nd, U-Pb and Pb-Pb Isotopic Evidence for the Origin of the Early Proterozoic Svecokarelian Crust in Finland. Geological Survey of Finland Bulletin, 337: 1-52 http://www.researchgate.net/publication/35460875_Sm-Nd_U-Pb_and_Pb-Pb_isotopic_evidence_for_the_origin_of_the_Early_Proterozoic_Svecokarelian_crust_in_Finland_Hannu_Huhma
[29] Janoušek, V., Farrow, C. M., Erban, V., 2006. Interpretation of Whole-Rock Geochemical Data in Igneous Geochemistry: Introducing Geochemical Data Toolkit (GCDkit). Journal of Petrology, 47(6): 1255-1259. https://doi.org/10.1093/petrology/egl013 doi:  10.1093/petrology/egl013
[30] Johannes, W., Holtz, F., 1996. Petrogenesis and Experimental Petrology of Granitic Rocks. Springer Verlag, Berlin. 335
[31] Jurewicz, S. R., Watson, E. B., 1985. The Distribution of Partial Melt in a Granitic System: The Application of Liquid Phase Sintering Theory. Geochimica et Cosmochimica Acta, 49(5): 1109-1121. https://doi.org/10.1016/0016-7037(85)90002-x doi:  10.1016/0016-7037(85)90002-x
[32] Korsman, K., Koistinen, T., Kohonen, J., et al., 1997. Bedrock Map of Finland 1 : 1 000 000. Geologian Tutkimuskeskus, Espoo
[33] Kukkonen, I. T., Lauri, L. S., 2009. Modelling the Thermal Evolution of a Collisional Precambrian Orogen: High Heat Production Migmatitic Granites of Southern Finland. Precambrian Research, 168(3/4): 233-246. https://doi.org/10.1016/j.precamres.2008.10.004 doi:  10.1016/j.precamres.2008.10.004
[34] Kukkonen, I. T., Lauri, L. S., 2016. Mesoproterozoic Rapakivi Granite Magmatism in the Fennoscandian Shield and Adjacent Areas: Role of Crustal Radiogenic Heating. Ninth Symposium on the Structure, Composition and Evolution of the Lithosphere in Fennoscandia. Geological Survey of Finland Report, S-65: 65-66
[35] Kurhila, M., Andersen, T., Rämö, O. T., 2010. Diverse Sources of Crustal Granitic Magma: Lu-Hf Isotope Data on Zircon in Three Paleoproterozoic Leucogranites of Southern Finland. Lithos, 115(1-4): 263-271. https://doi.org/10.1016/j.lithos.2009.12.009 doi:  10.1016/j.lithos.2009.12.009
[36] Kurhila, M., Mänttäri, I., Vaasjoki, M., et al., 2011. U-Pb Geochronological Constraints of the Late Svecofennian Leucogranites of Southern Finland. Precambrian Research, 190(1-4): 1-24. https://doi.org/10.1016/j.precamres.2011.07.008 doi:  10.1016/j.precamres.2011.07.008
[37] Lahtinen, R., Korja, A., Nironen, M., 2005. Paleoproterozoic Tectonic Evolution. In: Lehtinen, M., Nurmi, P. A., Rämö, O. T., eds., Precambrian Geology of Finland—Key to the Evolution of the Fennoscandian Shield. Developments in Precambrian Geology, Volume 14. Elsevier, Amsterdam. 481-531
[38] Lahtinen, R., Huhma, H., Kähkönen, Y., et al., 2009. Paleoproterozoic Sediment Recycling during Multiphase Orogenic Evolution in Fennoscandia, the Tampere and Pirkanmaa Belts, Finland. Precambrian Research, 174(3/4): 310-336. https://doi.org/10.1016/j.precamres.2009.08.008 doi:  10.1016/j.precamres.2009.08.008
[39] Luukas, J., Kousa, J., Nironen, M., et al., 2017. Major Stratigraphic Units in the Bedrock of Finland, and an Approach to Tectonostratigraphic Division. Geological Survey of Finland, Special Paper, 60: 9-40
[40] McKenzie, D., 1984. The Generation and Compaction of Partially Molten Rock. Journal of Petrology, 25(3): 713-765. https://doi.org/10.1093/petrology/25.3.713 doi:  10.1093/petrology/25.3.713
[41] Miller, C. F., Watson, E. B., Harrison, T. M., 1988. Perspectives of the Source, Segregation and Transport of Granitoid Magmas. Transactions of the Royal Society of Edinburgh: Earth Sciences, 79: 135-156. https://doi.org/10.1017/s0263593300014176 doi:  10.1017/s0263593300014176
[42] Milord, I., Sawyer, E. W., Brown, M., 2001. Formation of Diatexite Migmatite and Granite Magma during Anatexis of Semi-Pelitic Metasedimentary Rocks: An Example from St. Malo, France. Journal of Petrology, 42(3): 487-505. https://doi.org/10.1093/petrology/42.3.487 doi:  10.1093/petrology/42.3.487
[43] Nekvasil, H., 1991. Ascent of Felsic Magmas and Formation of Rapakivi. American Mineralogist, 76(7/8): 1279-1290 http://www.minsocam.org/ammin/AM76/AM76_1279.pdf
[44] Nironen, M., 2005. Proterozoic Orogenic Granitoid Rocks. In: Lehtinen, M., Nurmi, P. A., Rämö, O. T., eds., Precambrian Geology of Finland—Key to the Evolution of the Fennoscandian Shield. Developments in Precambrian Geology, Volume 14. Elsevier, Amsterdam. 443-479
[45] Nironen, M., 2017. Guide to the Geological Map of Finland—Bedrock 1 : 1 000 000. Geological Survey of Finland, Special Paper, 60: 41-76
[46] Pajunen, M., Airo, M. -L., Elminen, T., et al., 2008. Tectonic Evolution of the Svecofennian Crust in Southern Finland. Geological Survey of Finland, Special Paper, 47: 15-160
[47] Rabinowics, M., Vigneresse, J. -L., 2004. Melt Segregation under Compaction and Shear Channeling: Application to Granitic Magma Segregation in a Continental Crust. Journal of Geophysical Research, 109: B4407. https://doi.org/10.1029/2002jb002372 doi:  10.1029/2002jb002372
[48] Rämö, O. T., Haapala, I., 2005. Rapakivi Granites. In: Lehtinen, M., Nurmi, P. A., Rämö, O. T., eds., Precambrian Geology of Finland—Key to the Evolution of the Fennoscandian Shield. Developments in Precambrian Geology, Volume 14. Elsevier, Amsterdam. 553-562
[49] Rämö, O. T., Mänttäri, I., 2015. Geochronology of the Suomenniemi Rapakivi Granite Complex Revisited: Implications of Point-Specific Errors on Zircon U-Pb and Refined λ87 on Whole-Rock Rb-Sr. Bulletin of the Geological Society of Finland, 87: 25-45. https://doi.org/10.17741/bgsf/87.1.002 doi:  10.17741/bgsf/87.1.002
[50] Rämö, O. T., Turkki, V., Mänttäri, I., et al., 2014. Age and Isotopic Fingerprints of Some Plutonic Rocks in the Wiborg Rapakivi Granite Batholith with Special Reference to the Dark Wiborgite of the Ristisaari Island. Bulletin of the Geological Society of Finland, 86: 71-91. https://doi.org/10.17741/bgsf/87.1.002 doi:  10.17741/bgsf/86.2.002
[51] Rumble, D., 1976. The Adiabatic Gradient and Adiabatic Compressibility. Carnegie Institution of Washington Year Book, 75: 65l-655
[52] Sandiford, M., Hand, M., McLaren, S., 1998. High Geothermal Gradient Metamorphism during Thermal Subsidence. Earth and Planetary Science Letters, 163: 149-165. https://doi.org/10.1016/s0012-821x(98)00183-6 doi:  10.1016/s0012-821x(98)00183-6
[53] Shaw, D. M., 1970. Trace Element Fractionation during Anataxis. Geochimica et Cosmochimica Acta, 34: 237-243. https://doi.org/10.1016/0016-7037(70)90009-8 doi:  10.1016/0016-7037(70)90009-8
[54] Skyttä, P., Mänttäri, I., 2008. Structural Setting of Late Svecofennian Granites and Pegmatites in Uusimaa Belt, SW Finland: Age Constraints and Implications for Crustal Evolution. Precambrian Research, 164(1/2): 86-109. https://doi.org/10.1016/j.precamres.2008.04.001 doi:  10.1016/j.precamres.2008.04.001
[55] Spear, F. S., Kohn, M. J., Cheney, J. T., 1999. P-T Paths from Anatectic Pelites. Contributions to Mineralogy and Petrology, 134(1): 17-32. https://doi.org/10.1007/s004100050466 doi:  10.1007/s004100050466
[56] Vanderhaeghe, O., Burg, J. P., Teyssier, C., 1999. Exhumation of Migmatites in Two Collapsed Orogens: Canadian Cordillera and French Variscides. Geological Society Special Publication, 154: 181-204. https://doi.org/10.1144/gsl.sp.1999.154.01.08 doi:  10.1144/gsl.sp.1999.154.01.08
[57] Vielzeuf, D., Holloway, J. R., 1988. Experimental Determination of the Fluid- Absent Melting Relations in the Pelitic System. Contributions to Mineralogy and Petrology, 98(3): 257-276. https://doi.org/10.1007/bf00375178 doi:  10.1007/bf00375178
[58] Vigneresse, J. L., 2007. The Role of Discontinuous Magma Inputs in Felsic Magma and Ore Generation. Ore Geology Reviews, 30(3/4): 181-216. https://doi.org/10.1016/j.oregeorev.2006.03.001 doi:  10.1016/j.oregeorev.2006.03.001
[59] Wolf, M. B., Wyllie, P. J., 1994. Dehydration-Melting of Amphibolite at 10 kbar: The Effects of Temperature and Time. Contributions to Mineralogy and Petrology, 115(4): 369-383. https://doi.org/10.1007/bf00320972 doi:  10.1007/bf00320972