Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 33 Issue 3
Jun 2022
Turn off MathJax
Article Contents
Shucan Zheng, Qinglai Feng, Sebastiaan van de Velde, Shan Chang, Lei Zhang, Bo Gao. Microfossil Assemblages and Indication of the Source and Preservation Pattern of Organic Matter from the Early Cambrian in South China. Journal of Earth Science, 2022, 33(3): 802-819. doi: 10.1007/s12583-020-1117-0
Citation: Shucan Zheng, Qinglai Feng, Sebastiaan van de Velde, Shan Chang, Lei Zhang, Bo Gao. Microfossil Assemblages and Indication of the Source and Preservation Pattern of Organic Matter from the Early Cambrian in South China. Journal of Earth Science, 2022, 33(3): 802-819. doi: 10.1007/s12583-020-1117-0

Microfossil Assemblages and Indication of the Source and Preservation Pattern of Organic Matter from the Early Cambrian in South China

doi: 10.1007/s12583-020-1117-0
More Information
  • Corresponding author: Qinglai Feng, qinglaifeng@cug.edu.cn
  • Received Date: 26 Jun 2020
  • Accepted Date: 24 Oct 2020
  • The beginning of the Phanerozoic was marked by abundant phytoplankton, the occurrence of animals and a newly established ecosystem structure, which in turn, resulted in different modes of organic matter (OM) cycling and preservation. In this study, we present an integrated paleontological and geochemical study of the Lower Cambrian Yanjiahe and Shuijingtuo formations in the Three Gorges area, South China. Rock samples were analyzed for major and trace elements, in order to evaluate the marine productivity. Fossil samples were recovered using palynological methods, destructive analytical techniques, SEM analysis and thin section microscopy. The organic-walled microfossils in the investigated sections include marine microphytoplankton, linings of sponge spicules, small shelly fossils and some unnamed sheet-like and net-like microfossils (animal parts). Additionally, fecal structures and coprolites fossils were found. Three intervals in the Luojiacun Section were proposed to discuss the links among microfossil assemblages and their influence on OM cycling and preservation. We found that the marine microphytoplankton was the main source of OM in the investigated sections. The appearance of fecal structures groups and massive appearance of animals in the pelagic zone indicate a higher transfer efficiency of OM aggregates through the water column. Oxygenated conditions in the water-column would have led to a moderate to low preservation of OM, an effect which would have been further enhanced by the potential presence of bioturbators. Overall, our study reveals the contribution of various organisms to the sedimentary OM and highlights the links and feedbacks among microfossil assemblages, OM recycling efficiency and OM preservation in the tipping point of the Phanerozoic "new world".

     

  • Electronic Supplementary Material: Supplementary material (Table S1, Geochemical and Palynological data of the Luojiacun Section) is available in the online version of this article at https://doi.org/10.1007/s12583-020-1117-0.
  • loading
  • Ahn, S. Y., Zhu, M. Y., 2017. Lowermost Cambrian Acritarchs from the Yanjiahe Formation, South China: Implication for Defining the Base of the Cambrian in the Yangtze Platform. Geological Magazine, 154(6): 1217-1231. https://doi.org/10.1017/s0016756816001369
    Algeo, T. J., Maynard, J. B., 2004. Trace-Element Behavior and Redox Facies in Core Shales of Upper Pennsylvanian Kansas-Type Cyclothems. Chemical Geology, 206(3/4): 289-318. https://doi.org/10.1016/j.chemgeo.2003.12.009
    Algeo, T. J., Lyons, T. W., 2006. Mo-Total Organic Carbon Covariation in Modern Anoxic Marine Environments: Implications for Analysis of Paleoredox and Paleohydrographic Conditions. Paleoceanography, 21(1): 1-23. https://doi.org/10.1029/2004pa001112
    Algeo, T. J., Tribovillard, N., 2009. Environmental Analysis of Paleoceano-graphic Systems Based on Molybdenum-Uranium Covariation. Chemical Geology, 268(3/4): 211-225. https://doi.org/10.1016/j.chemgeo.2009.09.001
    Bailey, J. V., Corsetti, F. A., Bottjer, D. J., et al., 2006. Microbially-Mediated Environmental Influences on Metazoan Colonization of Matground Ecosystems: Evidence from the Lower Cambrian Harkless Formation. Palaios, 21(3): 215-226. https://doi.org/10.2110/palo.2005-p05-51e
    Babcock, L. E., Peng, S. C., 2007. Cambrian Chronostratigraphy: Current State and Future Plans. Palaeogeography, Palaeoclimatology, Palaeoecology, 254(1/2): 62-66. https://doi.org/10.1016/j.palaeo.2007.03.011
    Batten, D. J., 1996. Palynofacies and Palaeoenvironmental Interpretation. Journal of Micropalaeontology, 1: 1011-1064
    Bottjer, D., Hagadorn, J., Dornbos, S. Q., 2000. The Cambrian Substrate Revolution. GSA Today, 10(9): 1-7
    Braun, A., Chen, J., Waloszek, D., et al., 2007. First Early Cambrian Radiolaria. Geological Society, London, Special Publications, 286(1): 143-149. https://doi.org/10.1144/sp286.10
    Brocks, J. J., Jarrett, A. J. M., Sirantoine, E., et al., 2017. The Rise of Algae in Cryogenian Oceans and the Emergence of Animals. Nature, 548(7669): 578-581. https://doi.org/10.1038/nature23457
    Brumsack, H. J., 2006. The Trace Metal Content of Recent Organic Carbon-Rich Sediments: Implications for Cretaceous Black Shale Formation. Palaeogeography, Palaeoclimatology, Palaeoecology, 232(2/3/4): 344-361. https://doi.org/10.1016/j.palaeo.2005.05.011
    Budd, G. E., 2013. At the Origin of Animals: The Revolutionary Cambrian Fossil Record. Current Genomics, 14(6): 344-354. https://doi.org/10.2174/13892029113149990011
    Butterfield, N. J., 2005. Probable Proterozoic Fungi. Paleobiology, 31(1): 165-182. https://doi.org/10.1666/0094-8373(2005)0310165:ppf>2.0.co;2 doi: 10.1666/0094-8373(2005)0310165:ppf>2.0.co;2
    Butterfield, N. J., 2007. Macroevolution and Macroecology through Deep Time. Palaeontology, 50(1): 41-55. https://doi.org/10.1111/j.1475-4983.2006.00613.x
    Butterfield, N. J., 2009. Modes of Pre-Ediacaran Multicellularity. Precambrian Research, 173(1/2/3/4): 201-211. https://doi.org/10.1016/j.precamres.2009.01.008
    Butterfield, N. J., 2011. Animals and the Invention of the Phanerozoic Earth System. Trends in Ecology & Evolution, 26(2): 81-87. https://doi.org/10.1016/j.tree.2010.11.012
    Butterfield, N. J., Harvey, T. H. P., 2012. Small Carbonaceous Fossils (SCFS): A New Measure of Early Paleozoic Paleobiology. Geology, 40(1): 71-74. https://doi.org/10.1130/g32580.1
    Cao, W. C., Feng, Q. L., Feng, F. B., et al., 2014. Radiolarian Kalimnasphaera from the Cambrian Shuijingtuo Formation in South China. Marine Micropaleontology, 110: 3-7. https://doi.org/10.1016/j.marmicro.2013.06.005
    Chang, S., Feng, Q. L., Clausen, S., et al., 2017. Sponge Spicules from the Lower Cambrian in the Yanjiahe Formation, South China: The Earliest Biomineralizing Sponge Record. Palaeogeography, Palaeoclimatology, Palaeoecology, 474: 36-44. https://doi.org/10.1016/j.palaeo.2016.06.032
    Chen, X., Ling, H. F., Vance, D., et al., 2015. Rise to Modern Levels of Ocean Oxygenation Coincided with the Cambrian Radiation of Animals. Nature Communications, 6: 7142. https://doi.org/10.1038/ncomms8142
    Chen, X. H., Wang, X. F., 1999. Early Palaeozoic Chrono- and Sequence-Stratigraphy in the Yangtze Gorges Area, China with an Approach of Palaeobiogeography. Gondwana Research, 2(4): 627-633. https://doi.org/10.1016/s1342-937x(05)70224-0
    Cremonese, L., Shields-Zhou, G., Struck, U., et al., 2013. Marine Biogeochemical Cycling during the Early Cambrian Constrained by a Nitrogen and Organic Carbon Isotope Study of the Xiaotan Section, South China. Precambrian Research, 225: 148-165. https://doi.org/10.1016/j.precamres.2011.12.004
    Dai, T., Zhang, X. L., 2011. Ontogeny of the Eodiscoid Trilobite Tsunyidiscus Acutus from the Lower Cambrian of South China. Palaeontology, 54(6): 1279-1288. https://doi.org/10.1111/j.1475-4983.2011.01102.x
    Dale, A. W., Boyle, R. A., Lenton, T. M., et al., 2016. A Model for Microbial Phosphorus Cycling in Bioturbated Marine Sediments: Significance for Phosphorus Burial in the Early Paleozoic. Geochimica et Cosmochimica Acta, 189: 251-268. https://doi.org/10.1016/j.gca.2016.05.046
    de la Rocha, C. L., Passow, U., 2007. Factors Influencing the Sinking of POC and the Efficiency of the Biological Carbon Pump. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 54(5/6/7): 639-658. https://doi.org/10.1016/j.dsr2.2007.01.004
    Debrenne, F., Zhuravlev, A. Y., 1997. Cambrian Food Web: A Brief Review. Geobios, 30: 181-188. https://doi.org/10.1016/s0016-6995(97)80023-x
    Demaison, G. J., Moore, G. T., 1980. Anoxic Environments and Oil Source Bed Genesis. Organic Geochemistry, 2(1): 9-31. https://doi.org/10.1016/0146-6380(80)90017-0
    Devaere, L., Clausen, S., Alvaro, J. J., et al., 2014. Terreneuvian Orthothecid (Hyolitha) Digestive Tracts from Northern Montagne Noire, France; Taphonomic, Ontogenetic and Phylogenetic Implications. PLoS One, 9(2): e88583. https://doi.org/10.1371/journal.pone.0088583
    Ding, L., Li, Y., Chen, H., 1992. Discovery of Micrhystridium Regulare from Sinian-Cambrian Boundary Strata in Yichang, Hubei, and Its Stratigraphic Significance. Acta Micropalaeontologica Sinica, 9(3): 303-309, 345 (in Chinese with English Abstract)
    Ercegovac, M., Kostić, A., 2006. Organic Facies and Palynofacies: Nomenclature, Classification and Applicability for Petroleum Source Rock Evaluation. International Journal of Coal Geology, 68(1/2): 70-78. https://doi.org/10.1016/j.coal.2005.11.009
    Eriksson, M. E., Lindgren, J., Chin, K., et al., 2011. Coprolite Morphotypes from the Upper Cretaceous of Sweden: Novel Views on an Ancient Ecosystem and Implications for Coprolite Taphonomy. Lethaia, 44(4): 455-468. https://doi.org/10.1111/j.1502-3931.2010.00257.x
    Eriksson, M. E., Terfelt, F., 2012. Exceptionally Preserved Cambrian Trilobite Digestive System Revealed in 3D by Synchrotron-Radiation X-Ray Tomographic Microscopy. PLoS One, 7(4): e35625. https://doi.org/10.1371/journal.pone.0035625
    Erwin, D. H., Laflamme, M., Tweedt, S. M., et al., 2011. The Cambrian Conundrum: Early Divergence and Later Ecological Success in the Early History of Animals. Science, 334(6059): 1091-1097. https://doi.org/10.1126/science.1206375
    Erwin, D. H., Tweedt, S., 2012. Ecological Drivers of the Ediacaran-Cambrian Diversification of Metazoa. Evolutionary Ecology, 26(2): 417-433. https://doi.org/10.1007/s10682-011-9505-7
    Fairchild, I. J., Kennedy, M. J., 2007. Neoproterozoic Glaciation in the Earth System. Journal of the Geological Society, 164(5): 895-921. https://doi.org/10.1144/0016-76492006-191
    Falkowski, P. G., Fenchel, T., Delong, E. F., 2008. The Microbial Engines that Drive Earth's Biogeochemical Cycles. Science, 320(5879): 1034-1039. https://doi.org/10.1126/science.1153213
    Feng, L. J., Li, C., Huang, J., et al., 2014. A Sulfate Control on Marine Mid-Depth Euxinia on the Early Cambrian (ca. 529-521 Ma) Yangtze Platform, South China. Precambrian Research, 246: 123-133. https://doi.org/10.1016/j.precamres.2014.03.002
    Fowler, S. W., Knauer, G. A., 1986. Role of Large Particles in the Transport of Elements and Organic Compounds through the Oceanic Water Column. Progress in Oceanography, 16(3): 147-194. https://doi.org/10.1016/0079-6611(86)90032-7
    Goldberg, T., Poulton, S. W., Strauss, H., 2005. Sulphur and Oxygen Isotope Signatures of Late Neoproterozoic to Early Cambrian Sulphate, Yangtze Platform, China: Diagenetic Constraints and Seawater Evolution. Precambrian Research, 137(3/4): 223-241. https://doi.org/10.1016/j.precamres.2005.03.003
    Goldberg, T., Strauss, H., Guo, Q. J., et al., 2007. Reconstructing Marine Redox Conditions for the Early Cambrian Yangtze Platform: Evidence from Biogenic Sulphur and Organic Carbon Isotopes. Palaeogeography, Palaeoclimatology, Palaeoecology, 254(1/2): 175-193. https://doi.org/10.1016/j.palaeo.2007.03.015
    Guo, J. F., Li, Y., Li, G. X., 2014. Small Shelly Fossils from the Early Cambrian Yanjiahe Formation, Yichang, Hubei, China. Gondwana Research, 25(3): 999-1007. https://doi.org/10.1016/j.gr.2013.03.007
    Guo, J. F., 2009. Yanjiahe Biota from the Early Cambrian of Yichang, Hubei, China: [Dissertation]. Northwest University, Xi՚an. 166 (in Chinese with English Abstract)
    Guo, J. F., Li, Y., Shu, D., 2010. Fossil Macroscopic Algae from the Yanjiahe Formation, Terreneuvian of the Three Gorges Area, South China. Acta Palaeonotologica Sinica, 49: 144-149 (in Chinese with English Abstract)
    Harvey, T. H. P., Butterfield, N. J., 2011. Great Canadian Lagerstätten 2. Macro- and Microfossils of the Mount Cap Formation (Early and Middle Cambrian, Northwest Territories). Geoscience Canada, 38(4): 165-173. https://doi.org/10.1016/j.petrol.2011.10.014
    Haupt, F., Stockenreiter, M., Reichwaldt, E. S., et al., 2010. Upward Phosphorus Transport by Daphnia Diel Vertical Migration. Limnology and Oceanography, 55(2): 529-534. https://doi.org/10.4319/lo.2010.55.2.0529
    Hu, L., Zhu, Y. M., Chen, S. B., et al., 2012. Resource Potential Analysis of Shale Gas in Lower Cambrian Qiongzhusi Formation in Middle & Upper Yangtze Region. Journal of China Coal Society, 37(11): 1871-1877. https://doi.org/10.13225/j.cnki.jccs.2012.11.003(in Chinese with English Abstract)
    Hülse, D., Arndt, S., Wilson, J. D., et al., 2017. Understanding the Causes and Consequences of Past Marine Carbon Cycling Variability through Models. Earth-Science Reviews, 171: 349-382. https://doi.org/10.1016/j.earscirev.2017.06.004
    Ishikawa, T., Ueno, Y., Komiya, T., et al., 2008. Carbon Isotope Chemostratigraphy of a Precambrian/Cambrian Boundary Section in the Three Gorge Area, South China: Prominent Global-Scale Isotope Excursions Just before the Cambrian Explosion. Gondwana Research, 14(1/2): 193-208. https://doi.org/10.1016/j.gr.2007.10.008
    Jiang, G. Q., Wang, X. Q., Shi, X. Y., et al., 2012. The Origin of Decoupled Carbonate and Organic Carbon Isotope Signatures in the Early Cambrian (ca. 542-520 Ma) Yangtze Platform. Earth and Planetary Science Letters, 317/318: 96-110. https://doi.org/10.1016/j.epsl.2011.11.018
    Jin, C. S., Li, C., Algeo, T. J., et al., 2018. Highly Heterogeneous "Poikiloredox" Conditions in the Early Ediacaran Yangtze Sea. Precambrian Research, 311: 157-166. https://doi.org/10.1016/j.precamres.2018.04.012
    Jin, C. S., Li, C., Algeo, T. J., et al., 2016a. A Highly Redox-Heterogeneous Ocean in South China during the Early Cambrian (~529-514 Ma): Implications for Biota-Environment Co-Evolution. Earth and Planetary Science Letters, 441: 38-51. https://doi.org/10.1016/j.epsl.2016.02.019
    Jin, C. S., Li, C., Algeo, T. J., et al., 2016b. Evidence for Marine Redox Control on Spatial Colonization of Early Animals during Cambrian Age 3 (c. 521-514 Ma) in South China. Geological Magazine, 154(6): 1360-1370. https://doi.org/10.1017/s0016756816001138
    Knoll, A. H., Carroll, S. B., 1999. Early Animal Evolution: Emerging Views from Comparative Biology and Geology. Science, 284(5423): 2129-2137. https://doi.org/10.1126/science.284.5423.2129
    Lebrato, M., Pahlow, M., Oschlies, A., et al., 2011. Depth Attenuation of Organic Matter Export Associated with Jelly Falls. Limnology and Oceanography, 56(5): 1917-1928. https://doi.org/10.4319/lo.2011.56.5.1917
    Lebrato, M., de Jesus Mendes, P., Steinberg, D. K., et al., 2013. Jelly Biomass Sinking Speed Reveals a Fast Carbon Export Mechanism. Limnology and Oceanography, 58(3): 1113-1122. https://doi.org/10.4319/lo.2013.58.3.1113
    Li, G. X., Steiner, M., Zhu, X. J., et al., 2007. Early Cambrian Metazoan Fossil Record of South China: Generic Diversity and Radiation Patterns. Palaeogeography, Palaeoclimatology, Palaeoecology, 254(1/2): 229-249. https://doi.org/10.1016/j.palaeo.2007.03.017
    Li, C., Love, G. D., Lyons, T. W., et al., 2010. A Stratified Redox Model for the Ediacaran Ocean. Science, 328(5974): 80-83. https://doi.org/10.1126/science.1182369
    Li, J. G., Batten, D. J., 2005. Palynofacies: Principles and Methods. Acta Palaeontologica Sinica, 44(1): 138-156 (in Chinese with English Abstract)
    Li, Z. X., Bogdanova, S. V., Collins, A. S., et al., 2008. Assembly, Configuration, and Break-up History of Rodinia: A Synthesis. Precambrian Research, 160(1/2): 179-210. https://doi.org/10.1016/j.precamres.2007.04.021
    Little, S. H., Vance, D., Lyons, T. W., et al., 2015. Controls on Trace Metal Authigenic Enrichment in Reducing Sediments: Insights from Modern Oxygen-Deficient Settings. American Journal of Science, 315(2): 77-119. https://doi.org/10.2475/02.2015.01
    Liu, K., Feng, Q. L., Shen, J., et al., 2018. Increased Productivity as a Primary Driver of Marine Anoxia in the Lower Cambrian. Palaeogeography, Palaeoclimatology, Palaeoecology, 491: 1-9. https://doi.org/10.1016/j.palaeo.2017.11.007
    Logan, G. A., Hayes, J. M., Hieshima, G. B., et al., 1995. Terminal Proterozoic Reorganization of Biogeochemical Cycles. Nature, 376(6535): 53-56. https://doi.org/10.1038/376053a0
    Lu, W. Y., Ridgwell, A., Thomas, E., et al., 2018. Late Inception of a Resiliently Oxygenated Upper Ocean. Science, 361(6398): 174-177. https://doi.org/10.1126/science.aar5372
    Ma, Q. F., Feng, Q. L., Cao, W. C., et al., 2019. Radiolarian Fauna from the Chiungchussuan Shuijingtuo Formation (Cambrian Series 2) in Western Hubei Province, South China. Science China Earth Sciences, 62(10): 1645-1658. https://doi.org/10.1007/s11430-018-9335-0
    Maloof, A. C., Porter, S. M., Moore, J. L., et al., 2010. The Earliest Cambrian Record of Animals and Ocean Geochemical Change. Geological Society of America Bulletin, 122(11/12): 1731-1774. https://doi.org/10.1130/b30346.1
    Marshall, C. R., 2006. Explaining the Cambrian "Explosion" of Animals. Annual Review of Earth and Planetary Sciences, 34(1): 355-384. https://doi.org/10.1146/annurev.earth.33.031504.103001
    Martin, W., Rotte, C., Hoffmeister, M., et al., 2003. Early Cell Evolution, Eukaryotes, Anoxia, Sulfide, Oxygen, Fungi First (?), and a Tree of Genomes Revisited. IUBMB Life, 55(4/5): 193-204. https://doi.org/10.1080/1521654031000141231
    Meyer, K. M., Ridgwell, A., Payne, J. L., 2016. The Influence of the Biological Pump on Ocean Chemistry: Implications for Long-Term Trends in Marine Redox Chemistry, the Global Carbon Cycle, and Marine Animal Ecosystems. Geobiology, 14(3): 207-219. https://doi.org/10.1111/gbi.12176
    Meyers, S. R., Sageman, B. B., Lyons, T. W., 2005. Organic Carbon Burial Rate and the Molybdenum Proxy: Theoretical Framework and Application to Cenomanian-Turonian Oceanic Anoxic Event 2. Paleoceanography, 20(2): 169-189. https://doi.org/10.1029/2004pa001068
    Meysman, F. J. R., Middelburg, J. J., Heip, C. H. R., 2006. Bioturbation: A Fresh Look at Darwin՚s Last Idea. Trends in Ecology & Evolution, 21(12): 688-695. https://doi.org/10.1016/j.tree.2006.08.002
    Nowak, H., Servais, T., Monnet, C., et al., 2015. Phytoplankton Dynamics from the Cambrian Explosion to the Onset of the Great Ordovician Biodiversification Event: A Review of Cambrian Acritarch Diversity. Earth-Science Reviews, 151: 117-131. https://doi.org/10.1016/j.earscirev.2015.09.005
    Okada, Y., Sawaki, Y., Komiya, T., et al., 2014. New Chronological Constraints for Cryogenian to Cambrian Rocks in the Three Gorges, Weng՚an and Chengjiang Areas, South China. Gondwana Research, 25(3): 1027-1044. https://doi.org/10.1016/j.gr.2013.05.001
    Pacton, M., Gorin, G. E., Vasconcelos, C., 2011. Amorphous Organic Matter—Experimental Data on Formation and the Role of Microbes. Review of Palaeobotany and Palynology, 166(3/4): 253-267. https://doi.org/10.1016/j.revpalbo.2011.05.011
    Pessagno, E. A., Newport, R. L., 1972. A Technique for Extracting Radiolaria from Radiolarian Cherts. Micropaleontology, 18(2): 231-234. https://doi.org/10.2307/1484997
    Peterson, K. J., Lyons, J. B., Nowak, K. S., et al., 2004. Estimating Metazoan Divergence Times with a Molecular Clock. Proceedings of the National Academy of Sciences of the United States of America, 101(17): 6536-6541. https://doi.org/10.1073/pnas.0401670101
    Piper, D. Z., Perkins, R. B., 2004. A Modern vs. Permian Black Shale—The Hydrography, Primary Productivity, and Water-Column Chemistry of Deposition. Chemical Geology, 206(3/4): 177-197. https://doi.org/10.1016/j.chemgeo.2003.12.006
    Qian, Y., 1999. Taxonomy and Biostratigraphy of Small Shelly Fossils in China. Science Press, Beijing. 249
    Shang, X. D., Liu, P. J., Yang, B., et al., 2016. Ecology and Phylogenetic Affinity of the Early Cambrian Tubular Microfossil Megathrix longus. Palaeontology, 59(1): 13-28. https://doi.org/10.1111/pala.12201
    Shen, J., Schoepfer, S. D., Feng, Q. L., et al., 2015. Marine Productivity Changes during the End-Permian Crisis and Early Triassic Recovery. Earth-Science Reviews, 149: 136-162. https://doi.org/10.1016/j.earscirev.2014.11.002
    Shu, D. G., Isozaki, Y., Zhang, X. L., et al., 2014. Birth and Early Evolution of Metazoans. Gondwana Research, 25(3): 884-895. https://doi.org/10.1016/j.gr.2013.09.001
    Slater, B. J., Harvey, T. H. P., Butterfield, N. J., 2018. Small Carbonaceous Fossils (SCFS) from the Terreneuvian (Lower Cambrian) of Baltica. Palaeontology, 61(3): 417-439. https://doi.org/10.1111/pala.12350
    Sperling, E. A., Stockey, R. G., 2018. The Temporal and Environmental Context of Early Animal Evolution: Considering all the Ingredients of an "Explosion". Integrative and Comparative Biology, 58(4): 605-622. https://doi.org/10.1093/icb/icy088
    Steiner, M., Li, G. X., Qian, Y., et al., 2004. Lower Cambrian Small Shelly Fossils of Northern Sichuan and Southern Shaanxi (China), and Their Biostratigraphic Importance. Geobios, 37(2): 259-275. https://doi.org/10.1016/j.geobios.2003.08.001
    Steiner, M., Li, G. X., Qian, Y., et al., 2007. Neoproterozoic to Early Cambrian Small Shelly Fossil Assemblages and a Revised Biostratigraphic Correlation of the Yangtze Platform (China). Palaeogeography, Palaeoclimatology, Palaeoecology, 254(1/2): 67-99. https://doi.org/10.1016/j.palaeo.2007.03.046
    Steiner, M., Zhu, M. Y., Zhao, Y. L., et al., 2005. Lower Cambrian Burgess Shale-Type Fossil Associations of South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 220(1/2): 129-152. https://doi.org/10.1016/j.palaeo.2003.06.001
    Tarhan, L. G., 2018. The Early Paleozoic Development of Bioturbation—Evolutionary and Geobiological Consequences. Earth-Science Reviews, 178: 177-207. https://doi.org/10.1016/j.earscirev.2018.01.011
    Tarhan, L. G., Droser, M. L., Planavsky, N. J., et al., 2015. Protracted Development of Bioturbation through the Early Palaeozoic Era. Nature Geoscience, 8(11): 865-869. https://doi.org/10.1038/ngeo2537
    Traverse, A., 2007. Differential Sorting of Palynomorphs into Sediments: Palynofacies, Palynodebris, Discordant Palynomorphs. Paleopaly-nology, 579: 275-287. https://doi.org/10.1007/978-1-4020-5610-9_18
    Tribovillard, N., Algeo, T. J., Lyons, T., et al., 2006. Trace Metals as Paleoredox and Paleoproductivity Proxies: An Update. Chemical Geology, 232(1/2): 12-32. https://doi.org/10.1016/j.chemgeo.2006.02.012
    Turgeon, S., Brumsack, H. J., 2006. Anoxic vs. Dysoxic Events Reflected in Sediment Geochemistry during the Cenomanian-Turonian Boundary Event (Cretaceous) in the Umbria-Marche Basin of Central Italy. Chemical Geology, 234(3/4): 321-339. https://doi.org/10.1016/j.chemgeo.2006.05.008
    Turner, J. T., 2015. Zooplankton Fecal Pellets, Marine Snow, Phytodetritus and the Ocean's Biological Pump. Progress in Oceanography, 130: 205-248. https://doi.org/10.1016/j.pocean.2014.08.005
    Turner, J. T., 2002. Zooplankton Fecal Pellets, Marine Snow and Sinking Phytoplankton Blooms. Aquatic Microbial Ecology, 27(1): 57-102. https://doi.org/10.3354/ame027057
    Tyson, R. V., Pearson, T. H., 1991. Modern and Ancient Continental Shelf Anoxia: An Overview. Geological Society, London, Special Publications, 58(1): 1-24. https://doi.org/10.1144/gsl.sp.1991.058.01.01
    Tyson, R. V., 1993. Palynofacies Analysis. In: Jenkins, D. G., ed., Applied Micropalaeontology. Springer, Dordrecht. 5: 153-191. https://doi.org/10.1007/978-94-017-0763-3_5
    Tyson, R. V., 1987. The Genesis and Palynofacies Characteristics of Marine Petroleum Source Rocks. Geological Society, London, Special Publications, 26(1): 47-67. https://doi.org/10.1144/gsl.sp.1987.026.01.03
    van de Velde, S., Mills, B. J. W., Meysman, F. J. R., et al., 2018. Early Palaeozoic Ocean Anoxia and Global Warming Driven by the Evolution of Shallow Burrowing. Nature Communications, 9(1): 2554. https://doi.org/10.1038/s41467-018-04973-4
    Vannier, J., Chen, J. Y., 2005. Early Cambrian Food Chain: New Evidence from Fossil Aggregates in the Maotianshan Shale Biota, SW China. Palaios, 20(1): 3-26. https://doi.org/10.2110/palo.2003.p03-40
    Verlaan, P. A., 2008. The Role of Primary-Producer-Mediated Organic Complexation in Regional Variation in the Supply of Mn, Fe, Co, Cu, Ni and Zn to Oceanic, Non-Hydrothermal Ferromanganese Crusts and Nodules. Marine Georesources & Geotechnology, 26(4): 214-230. https://doi.org/10.1080/10641190802459704
    Wang, D., Ling, H. F., Li, D., et al., 2012. Carbon Isotope Stratigraphy of Yanjiahe Formation across the Ediacaran-Cambrian Boundary in the Area of Three Gorges. Journal of Stratigraphy, 36(1): 21-30. https://doi.org/10.19839/j.cnki.dcxzz.2012.01.003(in Chinese with English Abstract)
    Wang, H. Z., 1985. Atlas of the Paleogeography of China. Cartographic Publishing House, Beijing. 283 (in Chinese with English Abstract)
    Wang, X. F., 1987. Biostratigraphy of the Yangtze Gorge Area Early Palaeozoic Era. Geological Publishing House, Beijing. 489 (in Chinese with English Summary)
    Wang, X., Chen, X., Zhang, R., 2002. Protection on the Precious Geological Heritage in Three Gorges area, Subdivision on the Multiple Stratigraphy and Sea Level Changes in the Archaean-Mesozoic. Geological Publishing House, Beijing (in Chinese with English Abstract)
    Wang, Y., Li, Y., Zhang, Z. F., 2010. Note on Small Skeletal Fossils from the Uppermost Shuijingtuo Formation (Early Cambrian) in the Yangtze Gorge Area. Acta Palaeontologica Sinica, 49(4): 511-523. https://doi.org/10.19800/j.cnki.aps.2010.04.010(in Chinese with English Abstract)
    Wood, R., Liu, A. G., Bowyer, F., et al., 2019. Integrated Records of Environmental Change and Evolution Challenge the Cambrian Explosion. Nature Ecology & Evolution, 3(4): 528-538. https://doi.org/10.1038/s41559-019-0821-6
    Yang, B., Steiner, M., Li, G. X., et al., 2014. Terreneuvian Small Shelly Faunas of East Yunnan (South China) and Their Biostratigraphic Implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 398: 28-58. https://doi.org/10.1016/j.palaeo.2013.07.003
    Yao, J. X., Xiao, S. H., Yin, L. M., et al., 2005. Basal Cambrian Microfossils from the Yurtus and Xishanblaq Formations (Tarim, North-West China): Systematic Revision and Biostratigraphic Correlation of micrhystridium-Like Acritarchs. Palaeontology, 48(4): 687-708. https://doi.org/10.1111/j.1475-4983.2005.00484.x
    Yin, L., 1987. Microbiotas of Latest Precambrian Sequences in China. Nanjing University Press, Nanjing. 564
    Yin, L. M., Borjigin, T., Knoll, A. H., et al., 2017. Sheet-Like Microfossils from Hydrothermally Influenced Basinal Cherts of the Lower Cambrian (Terreneuvian) Niutitang Formation, Guizhou, South China. Palaeoworld, 26(1): 1-11. https://doi.org/10.1016/j.palwor.2016.01.005
    Yuan, X. L., Xiao, S. H., Parsley, R. L., et al., 2002. Towering Sponges in an Early Cambrian Lagerstätte: Disparity between Nonbilaterian and Bilaterian Epifaunal Tierers at the Neoproterozoic-Cambrian Transition. Geology, 30(4): 363-366. https://doi.org/10.1130/0091-7613(2002)0300363:tsiaec>2.0.co;2 doi: 10.1130/0091-7613(2002)0300363:tsiaec>2.0.co;2
    Zhai, L. N., Wu, C. D., Ye, Y. T., et al., 2018. Marine Redox Variations during the Ediacaran-Cambrian Transition on the Yangtze Platform, South China. Geological Journal, 53(1): 58-79. https://doi.org/10.1002/gj.2878
    Zhang, K., Feng, Q. L., 2019. Early Cambrian Radiolarians and Sponge Spicules from the Niujiaohe Formation in South China. Palaeoworld, 28(3): 234-242. https://doi.org/10.1016/j.palwor.2019.04.001
    Zhang, L., Chang, S., Khan, M. Z., et al., 2018. The Link between Metazoan Diversity and Paleo-Oxygenation in the Early Cambrian: an Integrated Palaeontological and Geochemical Record from the Eastern Three Gorges Region of South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 495: 24-41. https://doi.org/10.1016/j.palaeo.2017.12.007
    Zhang, L., Danelian, T., Feng, Q. L., et al., 2013. On the Lower Cambrian Biotic and Geochemical Record of the Hetang Formation (Yangtze Platform, South China): Evidence for Biogenic Silica and Possible Presence of Radiolaria. Journal of Micropalaeontology, 32(2): 207-217. https://doi.org/10.1144/jmpaleo2013-003
    Zhang, X. L., Shu, D. G., Han, J., et al., 2014. Triggers for the Cambrian Explosion: Hypotheses and Problems. Gondwana Research, 25(3): 896-909. https://doi.org/10.1016/j.gr.2013.06.001
    Zhao, F., Zhu, M., Hu, S., 2010. Analysis on the Paleocommunity of the Chengjiang Biota in the Early Cambrian in Yunnan. Science China Earth Sciences, 40: 1135-1153, 1301-1306 (in Chinese)
    Zheng, S. C., Feng, Q. L., Tribovillard, N., et al., 2020. New Insight into Factors Controlling Organic Matter Distribution in Lower Cambrian Source Rocks: A Study from the Qiongzhusi Formation in South China. Journal of Earth Science, 31(1): 181-194. https://doi.org/10.1007/s12583-019-1240-y
    Zheng, Y. J., Li, Y., Guo, J. F., 2012. Sponge Spicule Fossils of Qiongzhusian Age in Zhenba County of Southern Shaanxi Province. Journal of Earth Sciences and Environment, 34(2): 24-30. https://doi.org/10.3969/j.issn.1672-6561.2012.02.003(in Chinese with English Abstract)
    Zhu, M. Y., 2010. The Origin and Cambrian Explosion of Animals: Fossil Evidences from China. Acta Palaeontologica Sinica, 49: 269-287 (in Chinese with English Abstract)
    Zhu, M. Y., Strauss, H., Shields, G. A., 2007. From Snowball Earth to the Cambrian Bioradiation: Calibration of Ediacaran-Cambrian Earth History in South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 254(1/2): 1-6. https://doi.org/10.1016/j.palaeo.2007.03.026
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article Metrics

    Article views(171) PDF downloads(56) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return