Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 34 Issue 1
Feb 2023
Turn off MathJax
Article Contents
Peilong Yan, Nan Zhang, Huaiyu Yuan, Liang Qi, Xiaoxu Liu. Possible South-Dipping Mesozoic Subduction at Southern Tethys Ocean-Constrained from Global Tectonic Reconstructions and Seismic Tomography. Journal of Earth Science, 2023, 34(1): 260-279. doi: 10.1007/s12583-021-1466-3
Citation: Peilong Yan, Nan Zhang, Huaiyu Yuan, Liang Qi, Xiaoxu Liu. Possible South-Dipping Mesozoic Subduction at Southern Tethys Ocean-Constrained from Global Tectonic Reconstructions and Seismic Tomography. Journal of Earth Science, 2023, 34(1): 260-279. doi: 10.1007/s12583-021-1466-3

Possible South-Dipping Mesozoic Subduction at Southern Tethys Ocean-Constrained from Global Tectonic Reconstructions and Seismic Tomography

doi: 10.1007/s12583-021-1466-3
More Information
  • Corresponding author: Nan Zhang, nan_zhang@pku.edu.cn
  • Received Date: 10 Feb 2021
  • Accepted Date: 01 Apr 2021
  • Available Online: 02 Feb 2023
  • Issue Publish Date: 28 Feb 2023
  • The evolution of the Tethys Ocean involved several episodes of ocean opening (including the Paleo-Tethys and Neo-Tethys) along its southern margin as terranes rifting away from eastern Gondwana. These oceans were terminated by well observed north-dipping subduction as the same terranes accreted to southern Eurasia. However, the presence of south-dipping subduction, though geologically proposed by numerous studies, have generally been omitted in the reconstruction of Tethyan evolution. Here, we synthesize the Mesozoic south-dipping subduction evolutions in the global reconstruction and focus on two potential events located along the northern edges of Southwest Borneo Block and the Woyla Arc. We next evaluate their slab volumes after thermal diffusion in the current mantle. Fast velocity anomalies in the mantle beneath the same region are then converted to cold anomalies and their volumes are further estimated and compared to the volumes evaluated from these two Mesozoic south-dipping subduction. We further identify seismic fast velocity anomalies likely relevant to slab remnants of south-dipping Tethyan subduction in the present-day mantle beneath the Indian ocean and West Australia, and link them to arc systems in plate reconstructions. In addition, one more tectonic scenario relevant to the north-dipping subduction in our study region is also examined. We speculate the relationship and evolution between such south-dipping subduction and north-dipping subduction in the south of Tethys Oceans. The attempt to reconstruct intermittent south-dipping subduction systems in southern Tethys region represents an effort on assessing rifting mechanisms in the opening of the Tethys Ocean and break-up of eastern Gondwana.

     

  • Electronic Supplementary Materials: Supplementary materials (Figs. S1–S3) are available in the online version of this article at https://doi.org/10.1007/s12583-021-1466-3.
  • loading
  • Advokaat, E. L., Bongers, M. L. M., Rudyawan, A., et al., 2018. Early Cretaceous Origin of the Woyla Arc (Sumatra, Indonesia) on the Australian Plate. Earth and Planetary Science Letters, 498: 348–361. https://doi.org/10.1016/j.epsl.2018.07.001
    Auer, L., Boschi, L., Becker, T. W., et al., 2014. Savani: A Variable Resolution Whole―Mantle Model of Anisotropic Shear Velocity Variations Based on Multiple Data Sets. Journal of Geophysical Research: Solid Earth, 119(4): 3006–3034. https://doi.org/10.1002/2013jb010773 doi: 10.1002/2013JB010773
    Barber, A. J., Crow, M. J., Milsom, J. S., 2005. Sumatra: Geology, Resources and Tectonic Evolution. Geological Society, London, Memoirs. The Geological Society, London. 31
    Becker, T. W., Boschi, L., 2002. A Comparison of Tomographic and Geodynamic Mantle Models. Geochemistry, Geophysics, Geosystems, 3(1): 1003. https://doi.org/10.1029/2001gc000168
    Becker, T. W., Faccenna, C., 2011. Mantle Conveyor beneath the Tethyan Collisional Belt. Earth and Planetary Science Letters, 310(3/4): 453–461. https://doi.org/10.1016/j.epsl.2011.08.021
    Bennett, J. D., Bridge, D. M., Cameron, N. R., et al., 1981. The Geology of the Banda Aceh Quadrangle, Sunuttra (1 : 250 000). Geological Research and Development Centre, Bandung
    Bergman, S., Dunn, D. P., Krol, L. G., 1988. Rock and Mineral Chemistry of the Linhaisai Minette, Central Kalimantan, Indonesia and the Origin of Borneo Diamonds. The Canadian Mineralogist, 26: 23–43.
    Breitfeld, H. T., Davies, L., Hall, R., et al., 2020. Mesozoic Paleo-Pacific Subduction beneath SW Borneo: U-Pb Geochronology of the Schwaner Granitoids and the Pinoh Metamorphic Group. Frontiers in Earth Science, 8: 568715. https://doi.org/10.3389/feart.2020.568715
    Breitfeld, H. T., Hall, R., Galin, T., et al., 2017. A Triassic to Cretaceous Sundaland-Pacific Subduction Margin in West Sarawak, Borneo. Tectonophysics, 694: 35–56. https://doi.org/10.1016/j.tecto.2016.11.034
    Butterworth, N. P., Talsma, A. S., Müller, R. D., et al., 2014. Geological, Tomographic, Kinematic and Geodynamic Constraints on the Dynamics of Sinking Slabs. Journal of Geodynamics, 73: 1–13. https://doi.org/10.1016/j.jog.2013.10.006
    Cameron, N. R., 1983. The Stratigraphy of the Sihapas Formation in the North West of the Central Sumatra Basin. In Proceedings of 12th Annual Convention, June 7–8, 1983, Jakarta. The AAPG/Datapages Combined Publications Database: Indonesian Petroleum Association, 1: 43–65
    Cammarano, F., Goes, S., Vacher, P., et al., 2003. Inferring Upper-Mantle Temperatures from Seismic Velocities. Physics of the Earth and Planetary Interiors, 138(3/4): 197–222. https://doi.org/10.1016/S0031-9201(03)00156-0
    Candan, O., Akal, C., Koralay, O. E., et al., 2016. Carboniferous Granites on the Northern Margin of Gondwana, Anatolide-Tauride Block, Turkey―Evidence for Southward Subduction of Paleotethys. Tectonophysics, 683: 349–366. https://doi.org/10.1016/j.tecto.2016.06.030
    Cawood, P. A., Kröner, A., Collins, W. J., et al., 2009. Accretionary Orogens through Earth History. Geological Society, London, Special Publications, 318(1): 1–36. https://doi.org/10.1144/sp318.1 doi: 10.1144/SP318.1
    Chang, S. J., Ferreira, A. M. G., Ritsema, J., et al., 2015. Joint Inversion for Global Isotropic and Radially Anisotropic Mantle Structure Including Crustal Thickness Perturbations. Journal of Geophysical Research: Solid Earth, 120: 4278–4300. https://doi.org/10.1002/2014JB011824
    Cheng, X., Wu, H. N., Diao, Z. B., et al., 2013. Paleomagnetic Data from the Late Carboniferous–Late Permian Rocks in Eastern Tibet and Their Implications for Tectonic Evolution of the Northern Qiangtang-Qamdo Block. Science China Earth Sciences, 56(7): 1209–1220. https://doi.org/10.1007/s11430-012-4558-1
    Davies, L., Hall, R., Armstrong, R., 2014. Cretaceous Crust in SW Borneo: Petrological, Geochemical and Geochronological Constraints from the Schwaner Mountains. In Proceedings of 38th Annual Convention, May 21–23, 2014, Jakarta. The AAPG/Datapages Combined Publications Database: Indonesian Petroleum Association, 14: IPA14-G-025.
    de Jonge, M. R., Wortel M. J. R., Spakman W., 1994. Regional Scale Tectonic Evolution and the Seismic Velocity Structure of the Lithosphere and Upper Mantle: The Mediterranean Region. Journal of Geophysical Research, 99: 12091–12108. https://doi.org/10.1029/94JB00648
    Deal, M. M., Nolet, G., 1999. Slab Temperature and Thickness from Seismic Tomography: 2. Izu-Bonin, Japan, and Kuril Subduction Zones. Journal of Geophysical Research: Solid Earth, 104(B12): 28803–28812. https://doi.org/10.1029/1999JB900254
    Deal, M. M., Nolet, G., van der Hilst, R. D., 1999. Slab Temperature and Thickness from Seismic Tomography: 1. Method and Application to Tonga. Journal of Geophysical Research: Solid Earth, 104(B12): 28789–28802. https://doi.org/10.1029/1999jb900255 doi: 10.1029/1999JB900255
    Domeier, M., Torsvik, T. H., 2014. Plate Tectonics in the Late Paleozoic. Geoscience Frontiers, 5(3): 303–350. https://doi.org/10.1016/j.gsf.2014.01.002
    Durand, S., Debayle, E., Ricard, Y., et al., 2016. Seismic Evidence for a Change in the Large-Scale Tomographic Pattern across the D'' Layer. Geophysical Research Letters, 43(15): 7928–7936. https://doi.org/10.1002/2016gl069650 doi: 10.1002/2016GL069650
    Durand, S., Debayle, E., Ricard, Y., et al., 2017. Confirmation of a Change in the Global Shear Velocity Pattern at around 1 000 km Depth. Geophysical Journal International, 211(3): 1628–1639. https://doi.org/10.1093/gji/ggx405
    French, S. W., Romanowicz, B. A., 2014. Whole-Mantle Radially Anisotropic Shear Velocity Structure from Spectral-Element Waveform Tomography. Geophysical Journal International, 199(3): 1303–1327. https://doi.org/10.1093/gji/ggu334
    Fukao, Y., Obayashi, M., 2013. Subducted Slabs Stagnant Above, Penetrating Through, and Trapped below the 660 km Discontinuity. Journal of Geophysical Research: Solid Earth, 118(11): 5920–5938. https://doi.org/10.1002/2013jb010466 doi: 10.1002/2013JB010466
    Fukao, Y., Obayashi, M., Nakakuki, T., et al., 2009. Stagnant Slab: A Review. Annual Review of Earth and Planetary Sciences, 37: 19–46. https://doi.org/10.1146/annurev.earth.36.031207.124224.
    Gou, Y., Wang, Q., 2019. Closure of a short-Lived Paleo-Tethys Back-Arc Basin in the Lhasa Terrane: Constraints from the Sumdo Metamorphic Belt. In Proceedings of AGU Fall Meeting, San Francisco, CA. T41d-0289
    Grand, S. P., 2002. Mantle Shear-Wave Tomography and the Fate of Subducted Slabs. Philosophical Transactions of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 360(1800): 2475–2491. https://doi.org/10.1098/rsta.2002.1077
    Gurnis, M., Muller, R. D., Moresi, L., 1998. Cretaceous Vertical Motion of Australia and the Australian- Antarctic Discordance. Science, 279(5356): 1499–1504. https://doi.org/10.1126/science.279.5356.1499
    Hafkenscheid, E., Wortel, M. J. R., Spakman, W., 2006. Subduction History of the Tethyan Region Derived from Seismic Tomography and Tectonic Reconstructions. Journal of Geophysical Research: Solid Earth, 111: B08401. https://doi.org/10.1029/2005JB003791.
    Hall, R., 2012. Late Jurassic-Cenozoic Reconstructions of the Indonesian Region and the Indian Ocean. Tectonophysics, 570/571: 1–41. https://doi.org/10.1016/j.tecto.2012.04.021
    Hosseini, K., Matthews, K. J., Sigloch, K., et al., 2018. SubMachine: Web-Based Tools for Exploring Seismic Tomography and Other Models of Earth's Deep Interior. Geochemistry, Geophysics, Geosystems, 19(5): 1464–1483. https://doi.org/10.1029/2018GC007431
    Houser, C., Masters, G., Shearer, P., et al., 2008. Shear and Compressional Velocity Models of the Mantle from Cluster Analysis of Long-Period Waveforms. Geophysical Journal International, 174(1): 195–212. https://doi.org/10.1111/j.1365-246X.2008.03763.x
    Hu, J. S., Liu, L. J., Faccenda, M., et al., 2018. Modification of the Western Gondwana Craton by Plume–Lithosphere Interaction. Nature Geoscience, 11(3): 203–210. https://doi.org/10.1038/s41561-018-0064-1
    Ingalls, M., Rowley, D. B., Currie, B., et al., 2016. Large-Scale Subduction of Continental Crust Implied by India-Asia Mass-Balance Calculation. Nature Geoscience, 9(11): 848–853. https://doi.org/10.1038/ngeo2806
    Jiao, X. W., Shi, Y. R., Yang, T. S., et al., 2021. U-Pb Age of Detrital Zircons from Lower Cretaceous in Eastern Tethyan Himalaya and Its Paleogeography. Earth Science, 46(8): 2850–2859. https://doi.org/10.3799/dqkx.2020.308 (in Chinese with English Abstract)
    Karato, S. I., 1993. Importance of Anelasticity in the Interpretation of Seismic Tomography. Geophysical Research Letters, 20(15): 1623–1626. https://doi.org/10.1029/93gl01767 doi: 10.1029/93GL01767
    Karato, S. I., Karki, B. B., 2001. Origin of Lateral Variation of Seismic Wave Velocities and Density in the Deep Mantle. Journal of Geophysical Research: Solid Earth, 106(B10): 21771–21783. https://doi.org/10.1029/2001jb000214 doi: 10.1029/2001JB000214
    Katsura, T., 1995. Thermal Diffusivity of Olivine under Upper Mantle Conditions. Geophysical Journal International, 122(1): 63–69. https://doi.org/10.1111/j.1365-246X.1995.tb03536.x
    Khan, M. A., Stern, R. J., Gribble, R. F., et al., 1997. Geochemical and Isotopic Constraints on Subduction Polarity, Magma Sources, and Palaeogeography of the Kohistan Intra-Oceanic Arc, Northern Pakistan Himalaya. Journal of the Geological Society, 154(6): 935–946. https://doi.org/10.1144/gsjgs.154.6.0935
    Koelemeijer, P., Ritsema, J., Deuss, A., et al., 2015. SP12RTS: A Degree-12 Model of Shear- and Compressional-Wave Velocity for Earth's Mantle. Geophysical Journal International, 204(2): 1024–1039. https://doi.org/10.1093/gji/ggv481
    Lekić, V., Romanowicz, B., 2011. Inferring Upper-Mantle Structure by Full Waveform Tomography with the Spectral Element Method. Geophysical Journal International, 185(2): 799–831. https://doi.org/10.1111/j.1365-246X.2011.04969.x
    Li, Z. X., Mitchell, R. N., Spencer, C. J., et al., 2019. Decoding Earth's Rhythms: Modulation of Supercontinent Cycles by Longer Superocean Episodes. Precambrian Research, 323: 1–5. https://doi.org/10.1016/j.precamres.2019.01.009
    Li, Z. X., Powell, C. M., 2001. An Outline of the Palaeogeographic Evolution of the Australasian Region since the Beginning of the Neoproterozoic. Earth-Science Reviews, 53(3/4): 237–277. https://doi.org/10.1016/S0012-8252(00)00021-0
    Li, Z. Y., Ding, L., Lippert, P. C., et al., 2016. Paleomagnetic Constraints on the Mesozoic Drift of the Lhasa Terrane (Tibet) from Gondwana to Eurasia. Geology, 44(9): 727–730. https://doi.org/10.1130/g38030.1 doi: 10.1130/G38030.1
    Lu, C., Grand, S. P., 2016. The Effect of Subducting Slabs in Global Shear Wave Tomography. Geophysical Journal International, 205(2): 1074–1085. https://doi.org/10.1093/gji/ggw072
    Luan, X. W., Wang, J., Liu, H., et al., 2021. A Discussion on Tethys in Northern Margin of South China Sea. Earth Science, 46(3): 866–884. https://doi.org/10.3799/dqkx.2020.332 (in Chinese with English Abstract)
    Mao, W., Zhong, S. J., 2018. Slab Stagnation Due to a Reduced Viscosity Layer beneath the Mantle Transition Zone. Nature Geoscience, 11(11): 876–881. https://doi.org/10.1038/s41561-018-0225-2
    Matthews, K. J., Maloney, K. T., Zahirovic, S., et al., 2016. Global Plate Boundary Evolution and Kinematics since the Late Paleozoic. Global and Planetary Change, 146: 226–250. https://doi.org/10.1016/j.gloplacha.2016.10.002
    Metcalfe, I., 2013. Gondwana Dispersion and Asian Accretion: Tectonic and Palaeogeographic Evolution of Eastern Tethys. Journal of Asian Earth Sciences, 66: 1–33. https://doi.org/10.1016/j.jseaes.2012.12.020
    Montelli, R., Nolet, G., Dahlen, F. A., et al., 2006. A Catalogue of Deep Mantle Plumes: New Results from Finite-Frequency Tomography. Geochemistry, Geophysics, Geosystems, 7(11): Q11007. https://doi.org/10.1029/2006gc001248
    Moulik, P., Ekström, G., 2014. An Anisotropic Shear Velocity Model of the Earth's Mantle Using Normal Modes, Body Waves, Surface Waves and Long-Period Waveforms. Geophysical Journal International, 199(3): 1713–1738. https://doi.org/10.1093/gji/ggu356
    Müller, R. D., Seton, M., Zahirovic, S., et al., 2016. Ocean Basin Evolution and Global-Scale Plate Reorganization Events since Pangea Breakup. Annual Review of Earth and Planetary Sciences, 44: 107–138. https://doi.org/10.1146/annurev-earth-060115-012211
    Müller, R. D., Zahirovic, S., Williams, S. E., et al., 2019. A Global Plate Model Including Lithospheric Deformation along Major Rifts and Orogens since the Triassic. Tectonics, 38(6): 1884–1907. https://doi.org/10.1029/2018tc005462 doi: 10.1029/2018TC005462
    Panning, M. P., Lekić, V., Romanowicz, B. A., 2010. Importance of Crustal Corrections in the Development of a New Global Model of Radial Anisotropy. Journal of Geophysical Research: Solid Earth, 115(B12): B12325. https://doi.org/10.1029/2010jb007520 doi: 10.1029/2010JB007520
    Ran, B., Wang, C. S., Zhao, X. X., et al., 2012. New Paleomagnetic Results of the Early Permian in the Xainza Area, Tibetan Plateau and Their Paleogeographical Implications. Gondwana Research, 22(2): 447–460. https://doi.org/10.1016/j.gr.2011.11.014
    Ritsema, J., Deuss, A., van Heijst, H. J., et al., 2011. S40RTS: A Degree-40 Shear-Velocity Model for the Mantle from New Rayleigh Wave Dispersion, Teleseismic Travel-Time and Normal-Mode Splitting Function Measurements. Geophysical Journal International, 184(3): 1223–1236. https://doi.org/10.1111/j.1365-246X.2010.04884.x
    Ritsema, J., van Heijst, H. J., Woodhouse, J. H., 1999. Complex Shear Wave Velocity Structure Imaged beneath Africa and Iceland. Science, 286(5446): 1925–1928. https://doi.org/10.1126/science.286.5446.1925
    Saki, A., 2010. Proto-Tethyan Remnants in Northwest Iran: Geochemistry of the Gneisses and Metapelitic Rocks. Gondwana Research, 17(4): 704–714. https://doi.org/10.1016/j.gr.2009.08.008
    Schellart, W. P., Freeman, J., Stegman, D. R., et al., 2007. Evolution and Diversity of Subduction Zones Controlled by Slab Width. Nature, 446(7133): 308–311. https://doi.org/10.1038/nature05615
    Senemari, S., 2022. Lithostratigraphy and Biostratigraphy Based on Calcareous Nannofossils at the Late Campanian to Thanetian Transition in the Izeh Zone, Southwestern Iran (Eastern Neo-Tethys). Journal of Earth Science, 33(4): 1017–1030. https://doi.org/10.1007/s12583-022-1642-0
    Şengör, A. M. C., 1979. Mid-Mesozoic Closure of Permo–Triassic Tethys and Its Implications. Nature, 279(5714): 590–593. https://doi.org/10.1038/279590a0
    Şengör, A. M. C., 1990. Plate Tectonics and Orogenic Research after 25 Years: A Tethyan Perspective. Earth-Science Reviews, 27(1/2): 1–201. https://doi.org/10.1016/0012-8252(90)90002-D
    Shephard, G. E., Matthews, K. J., Hosseini, K., et al., 2017. On the Consistency of Seismically Imaged Lower Mantle Slabs. Scientific Reports, 7: 10976. https://doi.org/10.1038/s41598-017-11039-w
    Simmons, N. A., Forte, A. M., Boschi, L., et al., 2010. GyPSuM: A Joint Tomographic Model of Mantle Density and Seismic Wave Speeds. Journal of Geophysical Research: Solid Earth, 115(B12): B12310. https://doi.org/10.1029/2010jb007631 doi: 10.1029/2010JB007631
    Simmons, N. A., Forte, A. M., Grand, S. P., 2009. Joint Seismic, Geodynamic and Mineral Physical Constraints on Three-Dimensional Mantle Heterogeneity: Implications for the Relative Importance of Thermal Versus Compositional Heterogeneity. Geophysical Journal International, 177(3): 1284–1304. https://doi.org/10.1111/j.1365-246X.2009.04133.x
    Simmons, N. A., Myers, S. C., Johannesson, G., et al., 2015. Evidence for Long-Lived Subduction of an Ancient Tectonic Plate beneath the Southern Indian Ocean. Geophysical Research Letters, 42(21): 9270–9278. https://doi.org/10.1002/2015gl066237 doi: 10.1002/2015GL066237
    Stampfli, G. M., Borel, G. D., 2002. A Plate Tectonic Model for the Paleozoic and Mesozoic Constrained by Dynamic Plate Boundaries and Restored Synthetic Oceanic Isochrons. Earth and Planetary Science Letters, 196(1/2): 17–33. https://doi.org/10.1016/S0012-821X(01)00588-X
    Stampfli, G. M., Hochard, C., Vérard, C., et al., 2013. The Formation of Pangea. Tectonophysics, 593: 1–19. https://doi.org/10.1016/j.tecto.2013.02.037
    Stegman, D. R., Farrington, R., Capitanio, F. A., et al., 2010. A Regime Diagram for Subduction Styles from 3-D Numerical Models of Free Subduction. Tectonophysics, 483(1/2): 29–45. https://doi.org/10.1016/j.tecto.2009.08.041
    Stöcklin J., 1968. Structural History and Tectonics of Iran: A Review. AAPG Bulletin, 52: 1229–1258. https://doi.org/10.1306/5d25c4a5-16c1-11d7-8645000102c1865d
    Taylor, W., Jaques, A., Ridd, M., 1990. Nitrogen-Defect Aggregation Characteristics of Some Australasian Diamonds: Time-Temperature Constraints on the Source Regions of Pipe and Alluvial Diamonds. American Mineralogist, 75: 1290–1310.
    Tesoniero, A., Auer, L., Boschi, L., et al., 2015. Hydration of Marginal Basins and Compositional Variations within the Continental Lithospheric Mantle Inferred from a New Global Model of Shear and Compressional Velocity. Journal of Geophysical Research: Solid Earth, 120(11): 7789–7813. https://doi.org/10.1002/2015jb012026 doi: 10.1002/2015JB012026
    Toksöz, M. N., Minear, J. W., Julian, B. R., 1971. Temperature Field and Geophysical Effects of a Downgoing Slab. Journal of Geophysical Research, 76(5): 1113–1138. https://doi.org/10.1029/jb076i005p01113 doi: 10.1029/JB076i005p01113
    Toksöz, M. N., Sleep, N. H., Smith, A. T., 1973. Evolution of the Downgoing Lithosphere and the Mechanisms of Deep Focus Earthquakes. Geophysical Journal International, 35(1/2/3): 285–310. https://doi.org/10.1111/j.1365-246X.1973.tb02429.x
    Torsvik, T. H., Cocks, L. R. M., 2013. Gondwana from Top to Base in Space and Time. Gondwana Research, 24(3/4): 999–1030. https://doi.org/10.1016/j.gr.2013.06.012
    Turcotte, D. L., Schubert, G., 2014. Geodynamics (3rd Edition). Cambridge University Press, Cambridge
    van der Meer, D. G., van Hinsbergen, D. J. J., Spakman, W., 2018. Atlas of the Underworld: Slab Remnants in the Mantle, Their Sinking History, and a New Outlook on Lower Mantle Viscosity. Tectonophysics, 723: 309–448. https://doi.org/10.1016/j.tecto.2017.10.004
    van der Voo, R., Spakman, W., Bijwaard, H., 1999. Tethyan Subducted Slabs under India. Earth and Planetary Science Letters, 171(1): 7–20. https://doi.org/10.1016/S0012-821X(99)00131-4
    Wan, B., Wu, F. Y., Chen, L., et al., 2019. Cyclical One-Way Continental Rupture-Drift in the Tethyan Evolution: Subduction-Driven Plate Tectonics. Science China Earth Sciences, 62(12): 2005–2016. https://doi.org/10.1007/s11430-019-9393-4
    Wang, H. L., Wang, Y. Y., Gurnis, M., et al., 2018. A Long-Lived Indian Ocean Slab: Deep Dip Reversal Induced by the African LLSVP. Earth and Planetary Science Letters, 497: 1–11. https://doi.org/10.1016/j.epsl.2018.05.050
    White, L. T., Graham, I., Tanner, D., et al., 2016. The Provenance of Borneo's Enigmatic Alluvial Diamonds: A Case Study from Cempaka, SE Kalimantan. Gondwana Research, 38: 251–272. https://doi.org/10.1016/j.gr.2015.12.007
    Wu, F. Y., Wan, B., Zhao, L., et al., 2020. Tethyan Dynamics. Acta Petrologica Sinica, 36: 1627–1674. https://doi.org/10.18654/1000-0569/2020.06.01 (in Chinese with English Abstract)
    Yanagisawa, T., Yamagishi, Y., Hamano, Y., et al., 2010. Mechanism for Generating Stagnant Slabs in 3-D Spherical Mantle Convection Models at Earth-Like Conditions. Physics of the Earth and Planetary Interiors, 183(1/2): 341–352. https://doi.org/10.1016/j.pepi.2010.02.005
    Yoshida, M., 2017. Trench Dynamics: Effects of Dynamically Migrating Trench on Subducting Slab Morphology and Characteristics of Subduction Zones Systems. Physics of the Earth and Planetary Interiors, 268: 35–53. https://doi.org/10.1016/j.pepi.2017.05.004
    Young, A., Flament, N., Maloney, K., et al., 2019. Global Kinematics of Tectonic Plates and Subduction Zones since the Late Paleozoic Era. Geoscience Frontiers, 10(3): 989–1013. https://doi.org/10.1016/j.gsf.2018.05.011
    Zahirovic, S., 2020. Resolving Geological Enigmas Using Plate Tectonic Reconstructions and Mantle Flow Models. In: Scarselli, N., Adam, J., Chiarella, D., et al., eds., Regional Geology and Tectonics: Principles of Geologic Analysis. Elsevier, Amsterdam. 93–111. https://doi.org/10.1016/b978-0-444-64134-2.00006-7
    Zahirovic, S., Gurnis, M., Wang, H. L., et al., 2019. Permian to Present Tectonic and Geodynamic Evolution of the Eastern Tethys. In Proceedings of AGU Fall Meeting, San Francisco, CA. T51E-0327
    Zahirovic, S., Matthews, K. J., Flament, N., et al., 2016. Tectonic Evolution and Deep Mantle Structure of the Eastern Tethys since the Latest Jurassic. Earth-Science Reviews, 162: 293–337. https://doi.org/10.1016/j.earscirev.2016.09.005
    Zhang, N., Zhong, S. J., Leng, W., et al., 2010. A Model for the Evolution of the Earth's Mantle Structure since the Early Paleozoic. Journal of Geophysical Research Atmospheres, 115(B6): 006896. https://doi.org/10.1029/2009jb006896
    Zhong, S. J., Zhang, N., Li, Z. X., et al., 2007. Supercontinent Cycles, True Polar Wander, and Very Long-Wavelength Mantle Convection. Earth and Planetary Science Letters, 261(3/4): 551–564. https://doi.org/10.1016/j.epsl.2007.07.049
    Zhou, Y. N., Cheng, X., Wu, Y. Y., et al., 2019. The Northern Qiangtang Block Rapid Drift during the Triassic Period: Paleomagnetic Evidence. Geoscience Frontiers, 10(6): 2313–2327. https://doi.org/10.1016/j.gsf.2019.05.003
    Zhou, Y. N., Cheng, X., Yu, L., et al., 2016. Paleomagnetic Study on the Triassic Rocks from the Lhasa Terrane, Tibet, and Its Paleogeographic Implications. Journal of Asian Earth Sciences, 121: 108–119. https://doi.org/10.1016/j.jseaes.2016.02.006
    Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2011. The Lhasa Terrane: Record of a Microcontinent and Its Histories of Drift and Growth. Earth and Planetary Science Letters, 301(1/2): 241–255. https://doi.org/10.1016/j.epsl.2010.11.005
    Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2013. The Origin and Pre-Cenozoic Evolution of the Tibetan Plateau. Gondwana Research, 23(4): 1429–1454. https://doi.org/10.1016/j.gr.2012.02.002
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article Metrics

    Article views(244) PDF downloads(127) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return