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ABSTRACT: Currently available earthquake attenuation equations are locally applicable, and 
methods based on observation data are not applicable in areas without available observation data. To 
solve the above problems and further improve the prediction accuracy of ground motion parameters, 
we present a prediction model referred to as a light gradient boosting machine with feature selection 
(LGB-FS). It is based on a light gradient boosting machine (LightGBM) constructed using historical 
strong motion data from the NGA-west2 database and can quickly simulate the distribution of strong 
motion near the epicenter after an earthquake. Cases study shows that compared with GMPE methods 
and those based on real-time observation data, the model has a better prediction effect in areas 
without available observation data and be applied to Yangbi earthquake and Maduo earthquake. The 
feature importance evaluation based on both information gains and partial dependence plots (PDPs) 
revealed the complex relationships between multiple factors and ground motion parameters, allowing 
us to better understand their mechanisms and connections. 
KEY WORDS: LightGBM, ground motion parameters, NGA-west2, feature selection, Yangbi, Maduo. 

0 INTRODUCTION 

Strong ground motion parameters are recognized as the most crucial information in seismic hazard 
analysis, followed by those of earthquake-resistant structure designs (Jafariavval and Derakhshani, 2020; Sen, 
2011). Attenuation relationships are commonly implemented to investigate major ground motion parameters 
for seismic hazard analysis (Ambraseys and Douglas, 2003). These attenuation relationships show that 
ground motion parameters are related to certain characteristics, such as magnitude, site, fault, distance from 
the seismogenic structure, etc. The relationship between ground motion parameters and the abovementioned 
characteristics is often nonlinear and complicated. There are roughly three types of methods available to try 
to fit this complex relationship. 
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The first method is based on traditional ground motion parameter equations (GMPEs). Earlier research 
to develop GMPEs was reported in the literature of many scholars (Youngs et al., 1997; Youngs et al., 1988; 
Campbell, 1985; Aptikaev and Kopnichev, 1980). There have also been some GMPEs developed based on 
the NGA-west2 database in recent years (Abrahamson et al., 2014; Campbell and Bozorgnia, 2014; Chiou 
and Youngs, 2014; Boore et al., 2013; Idriss, 2013; Abrahamson and Silva, 2008). The second method is 
based on machine learning. Compared with the traditional GMPE method, the machine learning method can 
identify implicit relationships between variables more deeply and can better handle nonlinear problems. 
Therefore, it is a promising method for predicting ground motion parameters. At present, there are related 
machine learning methods used for ground motion parameter prediction, such as the ANN method (Derras et 
al., 2014; Derras et al., 2012) and the SVM method (Sonia et al., 2016). Some scholars have combined 
machine learning methods with other optimization algorithms for model construction, such as the method of 
combining ANN with the genetic algorithm (Shiuly et al., 2020; Gandomi et al., 2011) or the method of 
combining ANN with simulated annealing (Alavi and Gandomi, 2011). With the development of artificial 
intelligence technology, methods based on deep learning have gradually emerged (Derakhshani and Foruzan, 
2019). While the deep learning approach is popular, the constructed model is a black-box model, leading to 
poor result interpretation. The above methods are all based on the strong motion data of historical earthquake 
cases to construct a model and finally predict the strong motion parameters. The third method estimates 
ground motion parameters in the area surrounding the epicenter based on real-time observation data from a 
station after an earthquake occurs. The representative of this method is ShakeMap (Worden et al., 2010). 
ShakeMap is a system designed for the rapid characterization of the extent and distribution of strong ground 
shaking following significant earthquakes worldwide. 

The main problems of the above methods are as follows. The current earthquake attenuation equations 
are locally applicable and have poor transferability (Akkar et al., 2014; Kayabali and Beyaz, 2011), and the 
methods based on observation data are not applicable in areas without stations (Worden et al., 2010). 
Furthermore, current methods for estimating ground motion parameters are based on the empirical selection 
of features for model construction, which makes it difficult to adequately fit the relationship between features 
and parameters (Campbell and Bozorgnia, 2008; Douglas, 2003; Ambraseys et al., 1996). There are many 
features that affect the ground motion parameters, while there is no research available to specify the 
importance of features and how different features affect the prediction results. 

To solve these problems, a machine learning model is constructed. Due to the utilization of LightGBM 
and the feature selection method, the final constructed prediction model is referred to as LGB-FS, which has 
a good transferability and a high prediction accuracy. LightGBM is an improved gradient-enhanced decision 
tree (GBDT) method (Ke et al., 2017) which has not been used to predict strong motion parameters. We can 
quickly get the prediction results of the ground motion parameters after earthquake through the model. The 
model is verified on the actual earthquake cases, and applied to the Mw6.1 earthquake occurred in Yangbi 
County, Dali Prefecture, Yunnan Province on May 21st (abbreviated as Yangbi earthquake) and the Mw7.3 
earthquake occurred in Maduo County, Guoluo Prefecture, Qinghai Province on May 22nd (abbreviated as 
Maduo earthquake). 

1 DATASETS 

1.1 Raw data 

The data presented in this paper are from the NGA-west2 database. In 2003, the Pacific Earthquake 
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Engineering Research Center (PEER) began to develop a new ground motion attenuation relationship for 
describing shallow crustal earthquakes in the western part of the United States, providing a common ground 
motion record database, namely, the NGA-west database. The NGA-west2 database is an updated version of 
the previous generation. The “flatfiles” of the NGA-West2 database used in the development of the GMPEs 
are publicly available on the PEER website at http://peer.berkeley.edu/ngawest2/databases/ (Bozorgnia et al., 
2014). The NGA-west2 flatfile is considered to be a good quality data in the field of strong motion 
observations. The raw data include 599 earthquakes and 21,539 strong motion data. Table 1 shows the 
available parameters and screened out from the NGA-west2 database. 

 
Table 1. Seismic parameters in NGA-west2 database 

Parameters Unit Parameters Unit  
Magnitude Mw Fault length km 

Strike degree Epicenter distance km 
Dip degree Hypocenter distance km 

Rake degree Joyner-Boore distance km 
Hypocenter latitude degree Closest distance km 

Hypocenter longitude degree Vs30 m/s 
Hypocenter depth km Station latitude degree 

Fault width km Station longitude degree 

1.2 Data preprocessing and descriptive statistics 

The types of earthquake magnitudes used in this study are moment magnitudes. Characteristic 
information such as magnitude, dip angle, strike, slip angle, location and focal depth should not be null. We 
cleaned the raw data based on above two criteria. Finally, the cleaned data contain 305 earthquakes and 
12,892 strong motion data records, which are all used for model construction and verification. The 
geographical locations of these earthquakes are shown in Fig. 1. They are mainly distributed along two main 
seismic belts, i.e., the circum-Pacific seismic belt and the Mediterranean-Himalayan seismic belt. The 
magnitudes of 305 historical earthquake cases range between Mw 3.2 and Mw 7.9. 
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Figure 1. Distribution map of earthquake cases used in model construction 

 
According to previous research, natural logarithm processing of peak ground motion parameters is 

performed. This needs to be done due to the large scale of variation of the original seismic peak parameters 
and the huge magnitude difference between their maximum and minimum values. Logarithm operations do 
not change the nature and correlation of data but rather compress the scale of variables and make the data 
more stable. We selected 16 characteristics strongly related to the ground motion parameters from the 
NGA-west2 database, and expressed their mathematical relationship as follows: 

൜
ሻܣܩሺܲ݊ܫ
ሻܸܩሺܲ݊ܫ

ൠ ൌ fሺ݃ܽܯ, ,݁݇݅ݎݐܵ ,݅ܦ ܴܽ݇݁, ,ݐܽܮ ,݊ܮ  ,݄ݐ݁ܦ

,݄ݐܹ݀݅,݄ݐ݃݊݁ܮ ,ܦ݅ܧ ,ܦݕܪ ܴ, ,ܦݐݏ݈ܥ ௦ܸଷ, ,ᇱݐܽܮ  ሻ,          (1)′݊ܮ
where Mag is the magnitude of the main shock, Strike is the strike of the main earthquake fault, Dip is the 
dip angle of the fault, Rake is the slip angle of the fault, Lon and Lat are the longitude and latitude of the 
epicenter, Depth is the focal depth, Length and Width are the length and width of the main fault plane, 
respectively, EpiD is the epicenter distance, HypD is the focal distance, Rjb is the Joyner-Boore distance, 
ClstD is the fault distance, Vs30 is the underground 30 m shear wave velocity, and Lon' and Lat' are the 
longitude and latitude of the target point, respectively. The above features can be classified into four major 
categories, as shown in Tab. 2, which are related to the focal source, fault, site and target points. Furthermore, 
these features are classified into subcategories and labeled to facilitate subsequent experimental discussion. 
 

Table 2. Feature categories related to ground motion parameters 
Category 

Label Features 
Major Sub 

Focal source 
Basic FOB Mag, Depth,  

Location FOL Lat, Lon 
Distance FOD EpiD, HypD 

Fault 
Basic FAB Strike, Dip, Rake, 
Scale FAS Length, Width 

Distance FAD Rjb, ClstD 
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Site / S Vs30 
Target Location TL Lat’, Lon’ 

2 METHODOLOGY 

2.1 Evaluation indicators 

The four evaluation indicators used in the article include the coefficient of determination (R2) 
(Nagelkerke, 1991), mean absolute error (MAE), mean absolute percent error (MAPE) and root mean 
squared error (RMSE). These indicators are calculated by the following formulas in the testing data sets: 

ܴଶ ൌ 1 െ
ௌௌೝೞ
ௌௌ

ൌ 1 െ
∑ሺ௫ି௬ሻమ

∑ሺ௫ି௫̅ሻమ
,                (2) 

ܧܣܯ ൌ
∑ ሺ|௫ି௬|ሻ
ಿ
సభ

ே
,                  (3) 

ܧܲܣܯ ൌ
ଵ

ே
∑ ቀቚ௫ି௬

௫
ቚቁ ,ே

ୀଵ                  (4) 

ܧܵܯܴ ൌ ටଵ

ே
∑ሺݔ െ  ሻଶ,                 (5)ݕ

where N, ݔ, ݕ, and ̅ݔ are the total number of data, the observation value, the prediction value and the 
average value of observation values, respectively. ܵܵ௦  represents the sum of residuals, and ܵܵ௧௧ 
represents the total sum of squares. It is known that the square error represents the dispersion degree of the 
numerical value, and the larger the value is, the more discrete it is. Our goal is to adopt an indicator that can 
measure the quality of regression fitting, which is not affected by numerical discreteness. We avoid the affect 
by “division” (ܵܵ௦/ܵܵ௧௧). 

2.2 LightGBM algorithm 

LightGBM is a fast, high-performance gradient boosting framework based on the decision tree 
algorithm developed by Microsoft Research Asia, which can be used in classification and regression tasks. 
The algorithm uses a histogram optimization algorithm and a leaf-wise algorithm with depth limitations. 
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Figure 2. Histogram-based decision tree algorithm. The upper part of the figure is the construction process 
of each feature histogram, and the lower part indicates the process of leaf-wise tree growth. 
 

Boosting algorithms are based on tree models, such as XGBoost, using a presorting algorithm for 
feature selection and tree splitting. The presorting algorithm computationally consumes many resources. As 
shown in Fig. 2, LightGBM uses a histogram algorithm to discretize continuous floating-point features into k 
discrete values and construct a histogram with a width of k. Then all training data are traversed, and the 
cumulative statistics of each discrete value in the histogram are counted. It is necessary to traverse the 
histogram to find the optimal segmentation point based on the discrete values of the histogram when 
selecting features. The use of histogram algorithm will greatly save time because the number of bins is much 
less than the number of station data points. The histogram will also have a regularization effect, effectively 
preventing the model from overfitting and improving the accuracy of the model. 

LightGBM uses a leaf-wise growth strategy with depth restrictions instead of the level-wise growth 
strategy currently used by most GBDT algorithms. Based on the level-wise strategy, the leaves within the 
same layer can be split at the same time to control the model’s complexity and make the model difficult to 
overfit. Level-wise splitting is an inefficient strategy because it treats the leaves within the same layer 
indiscriminately, which could introduce many unnecessary calculations. In fact, many leaves do not need to 
be searched and split because the split gain is low. Leaf-wise is a more efficient strategy. Each split identifies 
the leaf with the largest split gain from all the current leaves. For each tree node, the information gained after 
splitting can be expressed by the change in entropy as follows: 

,ܦሺܩ ሻܣ ൌ ሻ݁ݎሺܾ݂݁ݕݎݐ݊ܧ െ ሻݎ݁ݐሺ݂ܽݕݎݐ݊ܧ ൌ ∑ െ݈݃ଶ
ே
ୀଵ െ ∑ |ೌ|


∈௨௦ሺሻܦሺ݊ܧ ሻ,  (6) 

where ݕݎݐ݊ܧሺܾ݂݁݁ݎሻ represents the information entropy of collection D,  is the ratio of the number 
of categories i to the total number of D, N is the number of categories, a is the value of feature A, and ܦ is 
a subset of collection D. 

Compared with the level-wise strategy, the leaf-wise strategy can greatly reduce errors and obtain better 
accuracy when the number of splits is the same. The leaf-wise strategy may lead to a deeper decision tree and 
thus overfit the model. Therefore, LightGBM adds a maximum depth limit on the basis of the leaf-wise 
strategy to prevent overfitting while ensuring a high efficiency. 
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2.3 Geographic feature coding 

From the ground motion attenuation equation, the strong motion parameters are closely related to the 
magnitude factor and the distance factor. Theoretically, the longitude and latitude of the epicenter combined 
with the longitude and latitude of the target point can reflect the variation in strong motion parameters with 
distance. In the prediction of ground motion parameters, the longitude and latitude position of the target point 
has not been used in previous studies. However, the direct use of longitude and latitude as features will cause 
some geographic problems. Tobler (1970) once proposed the law of spatial correlation, which stated that "all 
things are related, but near things are more related than distance things"; this is also the first law of 
geography. From the point of view of geography, if a location is close in space, the corresponding ground 
motion parameters will be similar. As shown in Fig. 3, after the transformation of geographical features, the 
geographical feature space shifts from being two-dimensional to three-dimensional. In fact, the points in the 
yellow circle are geographically closer to the points in the blue circle and farther away from the points in the 
green circle. If there is no transformation, the point in the yellow circle is closer to the point in the green 
circle in the feature space, which is inconsistent with reality. 

 

 
Figure 3. The feature space before and after the transformation of geographical features. Subplot (a) shows 
the distribution of earthquake cases before the feature transformation in the spherical coordinate system, and 
subplot (b) shows the distribution of earthquake cases in the plane coordinate system. 
 

Therefore, we need to convert latitude and longitude into Cartesian coordinates. Suppose that the 
Cartesian coordinates take the center of the earth as the origin, the direction from the origin to the North Pole 
is the positive direction of the z-axis, and the direction from the origin to the point with both a longitude and 
latitude of 0 is the positive direction of the x-axis. The process of geographic feature coding (abbreviated as 
geocoding) can be expressed as follows: 

ቐ
ݔ ൌ ሻݐܽܮሺݏܴܿ ሻ݊ܮሺݏܿ
ݕ ൌ ሻݐܽܮሺݏܴܿ ሻ݊ܮሺ݊݅ݏ

ݖ ൌ ሻݐܽܮሺ݊݅ݏܴ
,                (7) 

where Lat is the latitude, Lon is the longitude, and R is the radius of the Earth, which is assumed to be 1. 
After geographic feature coding, the location of the epicenter is represented by the spatial coordinates of (Hx, 
Hy, Hz) instead of its longitude and latitude, and the location of the target point is represented by the spatial 
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coordinates of (Sx, Sy, Sz). Therefore, the features affecting the ground motion parameters can be expressed as 
follows: 

൜
ሻܣܩሺܲ݊ܫ
ሻܸܩሺܲ݊ܫ

ൠ ൌ fሺ݃ܽܯ, ,݁݇݅ݎݐܵ ,݅ܦ ܴܽ݇݁, ,௫ܪ ,௬ܪ ,௭ܪ  ,݄ݐ݁ܦ

,݄ݐܹ݀݅,݄ݐ݃݊݁ܮ ,ܦ݅ܧ ,ܦݕܪ ܴ, ,ܦݐݏ݈ܥ ௦ܸଷ, ܵ௫, ܵ௬, ܵ௭ሻ.          (8) 
There are 18 features related to ground motion parameters after geocoding. 
 
Table 3. Performance of the predictive model for PGA and PGV before and after geographic feature coding 

ID Features 
PGA PGV 

R2 MAE MAPE RMSE R2 MAE MAPE RMSE

1 

FOB, FOL(lat,lon), FOD, 

FAB, FAS, FAD, S, TL(lat’, 

lon’) 

0.965 0.358 0.119 0.479 0.973 0.337 0.995 0.453

2 

FOB, FOL(Hx, Hy, Hz), 

FOD, FAB, FAS, FAD, S, 

TL(Sx, Sy, Sz) 

0.966 0.353 0.118 0.473 0.973 0.333 0.956 0.449

 
We used a set of control experiments to demonstrate that the transformation of geographical features is 

effective for improving the model's predictive ability. The different features used in experiment 1 and 
experiment 2 only include the locations of the epicenter and target points. Table 3 shows that each indicator 
in experiment 2 is better than that in experiment 1. 

2.4 Feature selection 

In this paper, we need to further select features before building LGB-FS. The following principles need 
to be clarified in the process of feature selection. (1) Features with a relatively great importance should be 
selected. (2) Features with a high correlation are selectively deleted. (3) Features that can be obtained 
quickly after the earthquake should be selected. All optimized feature selection is performed on the dataset 
after geographic feature coding. Based on these rules, the 18 features obtained by preliminary screening were 
optimized. 

2.4.1 Feature importance and correlation 

The importance of each feature was calculated. The algorithm used in the article is LightGBM, which is 
an improved gradient boosting machine. The importance of a feature is calculated based on the total 
information gain generated when it is used as a feature of tree splitting. For a single decision tree, the feature 
importance can be defined as follows: 
ሺܫܨܵ ܺ, ܶሻ ൌ 	∑ ሺܫ∆ ܺ, ்∋ሻ,௧ݐ                 (9) 
where ∆ܫሺ ܺ,  of tree T ݐ ሻ represents a reduction in impurity due to the split on feature ܺ at nodeݐ
(Breiman et al., 1984). The node impurity ܫሺݐሻ for the regression can be defined as follows: 

ሻݐሺܫ ൌ 	∑
ሺ௬ି௬തሻమ

ேሺ௧ሻ∈௧ ,                  (10) 

where ݕ represents observation i in node t, ݕത is the mean of all observations in node t, and N(t) is the 
number of observations in node t. For the global importance of a feature, each tree needs to be considered, so 
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the average of all trees is taken as the global importance of the feature, which can be defined as follows: 

ሺܫܨ ܺሻ ൌ 	
ଵ

ெ
∑ ሺܫܨܵ ܺ, ܶሻ
ெ
ୀଵ ,                (11) 

where M is the number of trees and ܶ  is the mth tree (Friedman, 2001; Tuv et al., 2009). After 
normalization of these gains, the order of feature importance is obtained as shown in Fig. 4(a). The most 
important features are the magnitude, fault width, Joyner-Boore distance, closest distance to the fault, 
epicenter distance, etc. 

While building the model, we considered possible strong correlation between the features; otherwise, it 
may make the accurate estimation of the model’s weight parameters difficult. If there is a strong linear 
relationship between the features, their effects on the dependent variable will be indistinguishable thus the 
results cannot be clearly explained, which reduces the interpretability of the black-box model. We used the 
Pearson correlation coefficient as the correlation coefficient between features, which can be defined as 
follows: 

,ߩ 	ൌ 	
௩ሺ,ሻ

ఙఙೊ
ൌ 	

∑ ሺିതሻሺିതሻ
ಿ
సభ

ට∑ ሺିതሻమ
ಿ
సభ ∑ ሺିതሻమ

ಿ
సభ

,             (12) 

where X and Y represent two features, ߪ and ߪ represent the standard deviation of two features, തܺ and 
തܻ are the mean values of two features, respectively, and i represents the ith data point in the dataset. The 
value range of the correlation coefficient is [-1, 1]. According to Fig. 4(b), some features have high 
correlation, especially several distance parameters (EpiD, HypD, Rjb, ClstD). These distance parameters are 
related to either the focal source or fault. The difference between EpiD and Rjb in the near field is relatively 
large, and the difference decreases with increasing distance, depending on the scale of the fault (Length and 
Width) and the relative position of the epicenter on the fault. The abovementioned difference will also affect 
the estimation of ground motion parameters (Wen et al., 2017; Yenier et al., 2008). To eliminate this effect as 
much as possible, we consider the features not only related to the fault but also related to the focal source 
when selecting features. According to the feature importance map and feature correlation analysis, we can 
roughly understand those features that have a greater impact on the ground motion and the correlation 
between the features. However, how each feature independently affects the ground motion parameters needs 
to be further explored. 
 

 
Figure 4. Normalized feature importance and feature correlation graph. The greater the correlation between 
two features is, the darker the color of the corresponding square. The correlation coefficients between 
features are also marked. 
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2.4.2 Nonlinear dependence between features and predictions 

The partial dependency plot (PDP) shows the marginal effect of a feature on the predicted output of a 
previously fitted model (Friedman, 2001). A partial dependency plot can indicate whether the relationship 
between targets and features is linear, monotonic, or more complex (Molnar, 2019). The partial dependency 
function is defined as follows: 
௫݂ೄ
ሺݔௌሻ ൌ ௫ൣܧ መ݂ሺݔௌ, ሻ൧ݔ ൌ  መ݂ሺݔௌ, ሻݔ ݀ܲሺݔሻ,               (13) 
where ݔௌ is the feature selected for the partial dependency analysis, ݔ  are the other features, and መ݂ is the 
fitted model. For a well-fitted LightGBM model, if ݔௌ is the magnitude, ݔ  are the other 17 features. 
According to Fig.4, magnitude is the feature that has the most significant impact on the prediction results of 
all features. As the magnitude increases, the predicted ground motion parameters increase monotonically, and 
the trend is approximately linear. Several other features that contribute significantly to the ground motion 
parameters are Rjb, ClstD, and the site effect parameter Vs30. These features are negatively correlated with the 
ground motion parameters. The influence of the fault scale parameters on ground motion depends mainly on 
the fault width. The fault width is mainly distributed in areas with small values. When the fault width 
increases to a certain limit, the ground motion parameters will increase considerably. In addition, the location 
of the target points in the ground motion field also affects the ground motion parameters within in a certain 
value range. 

Based on the analysis above, it can be concluded that the characteristics of magnitude, distance, site 
effect, and fault scale play the most important role in the prediction of ground motion parameters. It is also 
showed that several distance parameters have high correlation coefficients with each other. Correspondingly, 
Fig. 5 shows that the change trends of these parameters are generally consistent and negatively correlated 
with the ground motion parameters. Therefore, these two phenomena can also be mutually explained. 
Through the analysis of the PDP, we can disassemble the black box model and simplify the relatively 
complex nonlinear relationship, which can better reveal the influence of each variable on the dependent 
variable and accordingly improve the interpretability of the model. 
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Figure 5. Partial dependence plot for the constructed model. Black bars on the x-axis show the data 
distribution. 

2.4.3 Control experiments 

In sections 2.4.1 and 2.4.2, the influence of feature importance, feature relationships and feature 
dependence on the prediction results were explored. Three sets of control experiments are designed, as 
shown in Tab. 4 - Tab. 6, to further confirm the features that can improve the performance of the models. 
These control experiments were carried out on the NGA-west2 dataset, and 1/4 of the data were randomly 
selected as the test data. 

 
Table 4. Performance of the predictive models with different combinations of features (control variables are 

FOD, FAD and FAS) 

ID Features 
PGA PGV 

R2 MAE MAPE RMSE R2 MAE MAPE RMSE

1 
FOB(Mag),S( Vs30), 

FAB(Rake) FOD(EpiD) 
0.941 0.477 0.153 0.622 0.955 0.447 1.208 0.581

2 
FOB(Mag), S(Vs30), 

FAB(Rake), FOD(HypoD) 
0.940 0.482 0.157 0.629 0.955 0.443 1.159 0.579

3 FOB(Mag), S(Vs30), 0.943 0.469 0.146 0.614 0.957 0.434 1.139 0.566
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FAB(Rake),FAD( ClstD) 

4 
FOB(Mag),S( Vs30), 

FAB(Rake), FAD(Rjb) 
0.943 0.468 0.144 0.614 0.957 0.435 1.084 0.565

5 

FOB(Mag), S(Vs30), 

FAB(Rake), 

FAD(Rjb),FOD(EpiD) 

0.944 0.466 0.142 0.609 0.958 0.432 1.179 0.562

6 

FOB(Mag), S(Vs30), 

FAB(Rake), 

FAD(Rjb),FOD(EpiD), 

FAS(Width, Length)  

0.945 0.463 0.141 0.605 0.958 0.428 1.138 0.558

 
As shown in Tab. 4, the control variables in this set of experiments are FOD, FAD and FAS. The feature 

combinations in experiments 3 and 4 have been adopted by many scholars in previous studies (Ambraseys et 
al., 1996; Douglas, 2003; Campbell and Bozorgnia, 2008). Experiments 1-4 reflect the influence of several 
distance parameters on the results. Among them, the distance parameters related to the fault are better than 
the distance parameters related to the focal source. Experiments 1, 4, and 5 reflect that increasing the 
distance parameters will also improve the performance of the models. 

 
Table 5. Performance of the predictive models with different combinations of features (control variables are 

FOL, TL, and FAB) 

ID Features 
PGA PGV 

R2 MAE MAPE RMSE R2 MAE MAPE RMSE

1 

FOB(Mag), S(Vs30), 

FAD(Rjb), FOD(EpiD), 

FAS(Width, Length) 

0.945 0.463 0.141 0.605 0.958 0.432 1.128 0.561

2 

FOB(Mag), S(Vs30), 

FAD(Rjb), FOD(EpiD), 

FAS(Width, Length), 

FOL(lat, lon), TL(lat’, 

lon’), FAB(Rake) 

0.965 0.357 0.121 0.479 0.973 0.336 1.015 0.453

3 

FOB(Mag), S(Vs30), 

FAD(Rjb), FOD(EpiD), 

FAS(Width, Length), 

FOL(lat, lon), TL(lat’, 

lon’) 

0.965 0.358 0.121 0.478 0.974 0.328 0.978 0.444

 

The control variables of the experiments shown in Tab. 5 are FOL, TL and FAB. The result of 
experiment 3 is significantly better than that of experiment 1, indicating that the addition of location 
information will greatly improve the performance of the models. Compared with experiment 3, experiment 2 
uses Rake, but its performance is worse. 

 
Table 6. Performance of the predictive models with different combinations of features (after geocoding, the 

control variables are FAD and FAS) 
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ID Features 
PGA PGV 

R2 MAE MAPE RMSE R2 MAE MAPE RMSE

1 
FOB, FOL, FOD, FAB, 

FAS, FAD, S, TL 
0.966 0.353 0.118 0.473 0.973 0.333 0.956 0.449

2 

FOB(Mag), FOD(EpiD), 

FOL(Hx, Hy, Hz), S(Vs30), 

TL(Sx, Sy, Sz) 

0.966 0.349 0.117 0.472 0.973 0.330 0.960 0.448

3 

FOB(Mag), FOL(Hx, Hy, 

Hz), FAD(Rjb), 

FOD(EpiD), S(Vs30), 

TL(Sx, Sy, Sz) 

0.966 0.350 0.119 0.472 0.974 0.326 0.869 0.441

4 

FOB(Mag), FOL(Hx, Hy, 

Hz), FOD(EpiD), 

FAS(Width, Length), 

FAD(Rjb), S(Vs30), TL(Sx, 

Sy, Sz) 

0.966 0.350 0.119 0.472 0.974 0.327 0.901 0.442

 

The features of the experiments in Tab. 6 have been geocoded, and the control variables are FAD and 
FAS. The overall performance is better than the results in Tabs. 4 and 5. All features were used in experiment 
1, but the results were not as good as the results of experiments 2-4. It is not the case that the inclusion of 
more features yielded better results. The use of too many features may negatively affect the results. 
Compared with experiment 3, experiment 4 used the FAS features, while experiment 2 did not use Rjb. The 
results of experiments 2 to 4 are similar, and the results of experiment 3 are the best. 

When the number of features reaches 10, the performance of the model is best. The features used are 
FOB(Mag), FOL(Hx, Hy, Hz), FOD(EpiD), FAD(Rjb), S(Vs30), and TL(Sx, Sy, Sz), as well as key information 
related to focal source, fault, site and target point characteristics. 

In addition, the location of the epicenter, magnitude and target point can be obtained quickly after an 
earthquake. The size of the fault can be estimated according to previous research experience. However, it is 
difficult to guarantee the accuracy of the fault-scale features obtained in this way. Previous studies have 
shown that the shear wave velocity 30 m underground is often used to represent the site effect. Based on the 
terrain slope, Heath et al. (2020) launched the global Vs30 product with a spatial resolution of 1 km, which 
can be used as an input of LGB-FS in this study and provides the possibility to calculate ground motion 
parameters globally. Therefore, in the construction of the model, we finally selected the following 9 factors: 
FOB(Mag), FOL(Hx, Hy, Hz), FOD(EpiD), S(Vs30), and TL(Sx, Sy, Sz). We also constructed two models based 
on the feature combination of experiment 2 and experiment 4 as comparisons. If accurate fault parameters 
and Rjb are obtained from the corresponding inversion after the earthquake, the model can be improved 
accordingly. 

2.5 Model construction 

The prediction model of strong motion parameters is based on the LightGBM algorithm. We randomly 
divided the original data into 11 equal parts, of which one was used as test data. Another 10 pieces of data 
were used to construct 10 submodels. Each submodel was constructed with 9 pieces of data as training data 
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and validation data, and the other acted as the test data. The submodels obtained are independent of each 
other, and their accuracy are inconsistent, which means that there must be differences between them. It is 
difficult to determine which submodel should be selected as the final model. Therefore, we synthesize all the 
submodels and average the predictive ability of each model to obtain a comprehensive model. The idea of 
building the model utilizes the bagging idea of ensemble learning. 

3 RESULTS AND DISCUSSION 

3.1 Model fitting and testing from the perspective of feature optimization 

Because the training of each submodel is independent, the comprehensive model deals with the 
prediction results of submodels, and it has no independent training process. Therefore, the training curves of 
each submodel are shown in Fig. 6. When the number of training iterations reaches 2000, the model almost 
reaches convergence. 

 

 
Figure 6. Training curves of the submodels. Subplot (a) is the training curve of the PGA submodel, and 
subplot (b) is the training curve of the PGV submodel. 

 
Figure 7. Prediction results of the model on the testing data. Subplots a, b, and c correspond to the PGA 
prediction results of the three kinds of models, respectively. Subplots d, e, and f correspond to the PGV 
prediction results of the three kinds of models, respectively. The three columns subplots from left to right 
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represent the results of the three feature combinations shown as experiments 2-4 in Tab. 6. 
 

According to the exploration of feature selection in section 2.4, we have established three prediction 
models with different feature combinations, and their feature settings correspond to previous control 
experiments 2-4 in Tab. 6. The feature settings of the three types models are (1) FOB(Mag), S(Vs30), 
FOD(EpiD), FOL(Hx, Hy, Hz), and TL(Sx, Sy, Sz); (2) FOB(Mag), S(Vs30), FAD(Rjb), FOD(EpiD), FOL(Hx, Hy, 
Hz), and TL(Sx, Sy, Sz); and (3) FOB(Mag), S(Vs30), FAD(Rjb), FOD(EpiD), FAS(Width, Length), FOL(Hx, Hy, 
Hz), and TL(Sx, Sy, Sz), respectively. 

The predicted values of ln(PGA) and ln(PGV) were obtained by estimating the testing data with the 
constructed prediction model. Regression analysis of the predicted value and the original value shows that 
the regression curves are nearly straight lines. The R2 values of the (a)-(c) and (d)-(f) subplots are 
approximately 0.96 and 0.97, respectively. As shown in Fig. 7, a strong correlation is available between the 
estimated and actual values, which further manifests the validity of the proposed models. Using the predicted 
values of the ground motion parameters, their true values can be well represented and explained in the testing 
set. Most of the testing data were distributed along regression lines; however, individual data deviated 
considerably, which did not lead to a large impact on the overall predictive ability of the model.  The reason 
for these predicted abnormal values is due to the abnormal data feature values, especially the important 
magnitude or distance in the feature. However, these outliers are correct and real, rather than errors caused 
by data entry or processing. The colors in Fig. 7 reflect the frequency distribution of the data. The slopes of 
the regression lines are all less than 1. Combining the regression lines with the line y=x, LGB-FS favors the 
underestimation of ground motion parameters. 

3.2 LGB-FS versus other existing methods 

There are many other methods to predict or estimate the ground motion parameters. Three main types of 
methods are considered for comparison with LGB-FS. They include regression learning methods, GMPEs 
and a revised interpolation scheme adopted by ShakeMap. 

3.2.1 Regression learning methods 

Several models have been developed for the estimation of principal ground motion parameters based on 
the NGA database that was released in 2003 referred to as NGA-west1. As mentioned before, the extension 
of this database, known as NGA-west2, is used for modeling in the current study. The new model will be 
compared with other models constructed based on the NGA-west1 database or NGA-west2 database by 
different methods, including artificial neural networking combined with simulated annealing (ANN/SA) 
(Alavi and Gandomi, 2011), genetic programming coupled with orthogonal least squares (GP/OLS) 
(Gandomi et al., 2011), multiexpression programming (MEP) (Alavi et al., 2011), genetic programming 
coupled with simulated annealing (GP/SA) (Mohammadnejad et al., 2012) and deep neural networks (DNNs) 
(Derakhshani and Foruzan, 2019). 

 
Table 7. Performance comparison of the predictive models for PGA and PGV with other methods based on 

NGA-west1 

Related study Methods 
PGA PGV 

R2 MAE MAPE RMSE R2 MAE MAPE RMSE
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Derakhshani 

and Foruzan 

(2019) 

DNN 0.814 0.395 0.115 0.504 0.808 0.397 0.737 0.503

Alavi and 

Gandomi (2011) 
ANN/SA 0.731 0.460 0.130 / 0.764 0.450 2.170 / 

Gandomi et al. 

(2011) 
GP/OLS 0.593 0.488 / 0.637 0.661 0.506 / 0.637

Alavi et al. 

(2011) 
MEP 0.696 0.697 / 0.624 0.686 0.726 / 0.671

Mohammadnejad 

et al. (2012) 
GP/SA 0.704 / 0.144 0.617 0.701 / 2.350 0.648

Our study LGB-FS 0.882 0.284 0.039 0.374 0.889 0.287 0.606 0.389

 
Table 7 lists four evaluation indicators of different models based on NGA-west1. To compare with other 

methods, the feature combination we used includes Mag, Vs30, Rake, and ClstD, similar to previous research. 
It can be seen that the LGB-FS is optimal on all evaluation indicators. PGA and PGV are predicted on the 
testing dataset by LGB-FS. The R2 values of the predicted results are above 0.88, the MAE values are less 
than 0.3, and the RMSE values are less than 0.4. Table 8 lists four evaluation indicators of different models 
based on NGA-west2. LGB-FS still outperforms the DNN method on this data set. In this set of control 
experiments, the feature combination of LGB-FS is consistent with the DNN method, and a random 1/4 of 
the data set is used as the test data. 

 
Table 8. Performance comparison of the predictive models for PGA and PGV with other methods based on 

NGA-west2 

Related study Methods 
PGA PGV 

R2 MAE MAPE RMSE R2 MAE MAPE RMSE

Derakhshani 

and Foruzan 

(2019) 

DNN 0.910 0.597 1.488 0.789 0.935 0.532 0.807 0.708

Our study LGB-FS 0.943 0.469 0.146 0.614 0.957 0.434 1.139 0.566

3.2.2 GMPEs and ShakeMap 

ShakeMap is a system that can quickly describe the range and distribution of strong ground motion after 
major global earthquakes. It is used by the USGS and NEIC to develop important global seismograms. The 
revised interpolation scheme is a weighted-average approach used to incorporate various types of data into 
the ShakeMap ground motion and intensity mapping framework (Worden et al., 2010). This approach 
represents a fundamental revision of the existing ShakeMap methodology. The approach allows the 
combination of direct observations (ground-motion measurements or reported intensities), the conversion of 
intensity observations to ground motion, and the estimation of ground motions and intensities from 
prediction equations or numerical models. ShakeMap ground-motion and intensity estimates are an 
uncertainty-weighted combination of these various data and estimates. 

ShakeMap uses GMPEs and monitoring data when estimating ground motion after an earthquake. 
GMPEs are used to estimate ground motion in some areas where there are no stations or where it is not 
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possible to quickly obtain station data after an earthquake. We selected GMPEs, which were also developed 
based on the NGA-west2 database, to estimate ground motion. These GMPEs were constructed by different 
teams, including ASK14 (Abrahamson et al., 2014), BSSA14 (Boore et al., 2013), CB14 (Campbell and 
Bozorgnia, 2014), CY14 (Chious and Youngs, 2014) and I14 (Idriss. 2013). The scope of application of these 
GMPEs is different. When calculating ground motion, it is necessary to select the corresponding equations 
according to the characteristics of earthquake magnitude, source distance, etc. 

 

 
Figure 8. Two verified cases (Lushan earthquake and Ludian earthquake) and two cases to be analyzed 
(Yangbi earthquake and Maduo earthquake). The red dots represent the locations of monitoring stations 
around the epicenters, and their observational data are used as verification data for the model. 
 

To compare and analyze LGB-FS and ShakeMap, two historical earthquake cases are selected for 
experiment. The two cases are the April 20th, 2013 Mw 6.6 earthquake in Lushan, China (abbreviated as 
Lushan earthquake) and the August 3rd, 2014 Mw 6.2 earthquake in Ludian, China (abbreviated as Ludian 
earthquake). The ShakeMap estimation results of the two earthquake cases were released by the USGS 
immediately after the earthquakes and were not revised by the observational data of the monitoring stations. 
Therefore, these two earthquake cases can be regarded as cases without observation data available. The two 
earthquake cases shown in Fig. 8 both occurred in China. The figure shows the locations of monitoring 
stations around the epicenters. The monitoring data of these stations are used as the verification data for all 
models. Although ShakeMap will revise the initial results based on the observation data collected later, a 
time interval is required between them. The time interval is often relatively large, which affects emergency 
rescue efforts after such earthquakes. When using LGB-FS to estimate the ground motion of the two 
earthquake cases, we used the first feature combination in section 3.1, including Mag, Vs30, EpiD, Hx, Hy, Hz, 
Sx, Sy, and Sz. After an earthquake, accurate fault parameters are often not quickly obtained, which will 
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inevitably affect the calculation of the corresponding fault distance. Therefore, the fault-scale parameters and 
fault distance are not considered in the model for comparison with ShakeMap. If there is technical support 
available to obtain accurate fault parameters immediately after an earthquake, we can further modify the 
model to improve its predictive performance. 

 
Figure 9. Model comparison of Lushan earthquake on observation stations. Subplots (a)-(c) are the PGA 
evaluation of ShakeMap, LightGBM and GMPEs, subplots (d)-(f) are the PGV evaluation of ShakeMap, 
LightGBM and GMPEs respectively. Different colors represent the frequency of test data points distributed 
around the corresponding observation or predicted value. 

··········· 

Figure 10. Model comparison of Ludian earthquake on observation stations. Subplots (a)-(c) are the PGA 
evaluation of ShakeMap, LightGBM and GMPEs, subplots (d)-(f) are the PGV evaluation of ShakeMap, 
LightGBM and GMPEs respectively. Different colors represent the frequency of test data points distributed 
around the corresponding observation or predicted value. 
 

In the case of Lushan earthquake, a total of 62 sample points were selected to verify the model 
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estimation results. The observation data of these sample points are from China Earthquake Administration. 
The ground motion distribution results of ShakeMap, LightGBM and GMPEs are calculated respectively, 
and the values of the sample points are extracted to calculate evaluation indicators further, which are used for 
prediction evaluation and eliminating the effect from the discrete verification points. As shown in Fig. 9, the 
MAE and RMSE of the LightGBM are smaller than those of ShakeMap and GMPEs, which indicates that 
the model in this paper is more applicable than ShakeMap in the area without observation data available.  

Similarly, in the case of Ludian earthquake, a total of 29 sample points were selected to verify the 
model estimation results. MAE and RMSE were used to evaluate the results in Ludian earthquake. As shown 
in Fig. 10, for the ground motion parameters, the MAE and RMSE of the LightGBM are smaller than those 
of ShakeMap and GMPEs. 

3.3 Model application in Yangbi and Maduo earthquakes 

Through the verification of the model in Lushan and Ludian earthquake cases, it can be found that the 
machine learning model constructed is better than GMPEs and ShakeMap. 

 

 
Figure 11. Ground motion parameters distribution of Yangbi earthquake. Subplots (a) and (b) represent the 
PGA distribution of LGB-FS and ShakeMap. Subplots (c) and (d) represent the PGV distribution of LGB-FS 
and ShakeMap. 

  
The ground motion distribution of Yangbi earthquake and Maduo earthquake are predicted by using the 
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established models. Since it is difficult to obtain fault related parameters quickly after the earthquake, the 
feature combination is still the same as before, including the following nine features: FOB(Mag), FOL(Hx, 
Hy, Hz), FOD(EpiD), S(Vs30), TL(Sx, Sy, Sz). Since the data of the stations around the two cases were not 
obtained in time after the earthquake, we compared the prediction results with those of ShakeMap. As shown 
in Fig. 8, the four earthquake cases are all located in western China and are very close in geographical 
location. The model has achieved good results in verifying the earthquake cases, so we think that the model 
is also applicable to the Yangbi earthquake and the Maduo earthquake. 

The distribution of PGA and PGV predicted by the LightGBM and ShakeMap are shown in Figs. 11 and 
12. As shown in Fig. 11, we use the LightGBM to predict the ground motion near the epicenter of Yangbi 
earthquake. Then the prediction results of PGA and PGV models can be obtained and the corresponding 
ShakeMap results are shown respectively. Several ground motion attenuation equations were used in 
ShakeMap to form PGA and PGV distribution maps of Yangbi earthquake. The distance factor and site effect 
factor were considered in these attenuation equations. Therefore, it can be seen that the distribution maps 
formed do not only change with distance, but also present some irregular changes in some areas. 

In the case of Maduo earthquake, ShakeMap used ground motion attenuation equations to calculate the 
ground motion parameters, and each equation was given weight. Distance and site effect factors are also 
considered in these attenuation equations. In the Yangbi earthquake, the distribution of ground motion mainly 
reflected its correlation with distance, and the site effect did not have a significant impact on the overall 
shape of its distribution. This can also roughly reflect that the underlying surface of the area only changes in 
individual locations rather than in a wide range. 

 

 
Figure 12. Ground motion parameters distribution of Maduo earthquake. Subplots (a) and (b) represent the 
PGA distribution of LGB-FS and ShakeMap. Subplots (c) and (d) represent the PGV distribution of LGB-FS 
and ShakeMap. 
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Table 9. Correlation analysis between model prediction results and ShakeMap results 
 PGA PGV 

R2 σ of residuals R2 σ of residuals 
Yangbi 0.939 0.264 0.710 0.404 
Maduo 0.871 0.300 0.586 0.447 

 

It can be seen from Tab. 9 that the R-square between prediction results and ShakeMap results is larger in 
PGA distribution than in PGV distribution. The σ of residuals between prediction results and ShakeMap 
results is smaller in PGA distribution, which shows that the performance of PGA prediction model is more 
similar to that of ShakeMap. Similarly, the prediction effect of the model is more similar to that of ShakeMap 
in Yangbi earthquake. 

The prediction model is a data-driven model and the distribution range of the data has a great influence 
on model transferability. Ground motion parameters are mainly functions of magnitude and distance. The 
magnitude of the training data is distributed between Mw3.2 to Mw7.9, and the Rjb ranges from 0 to 1500km, 
most of which are within 400km. Regardless of some abnormal values, most of the faults are less than 8.2km 
in width, and less than 10km in length. In summary, if the features of data are distributed within the above 
range, the transferability of the model should be better. 

4 CONCLUSION 

Aimed at resolving the shortcomings of the current methods of earthquake prediction and estimation, 
we propose a ground motion prediction model based on historical ground motion data and the LightGBM 
algorithm. Before the construction of the model, the features of the model are optimized and transformed, 
and then the model is verified by actual earthquake cases and be applied to Yangbi and Maduo earthquake. 
The following conclusions can be drawn: 

(1) The magnitude, fault scale, site effect and distance parameters are the most important factors 
affecting ground motion. The transformation of the geographical features of the target points can further 
improve the prediction effect of the model. In addition, the use of a partial dependence plot (PDP) revealed 
the complex relationships between the various influences and ground shaking parameters for the first time, 
enabling us to understand the mechanisms and connections between them. 

(2) Compared with other machine learning methods and GMPEs, the accuracy of the proposed LGB-FS 
model is best. 

(3) Compared with the method based on real-time observation data (ShakeMap), the LGB-FS model has 
a better applicability in the region without observation data available. The model in this paper can be used as 
a supplement to other traditional models in some areas with fewer stations. 

Due to the relative uncertainty of the fault parameters, the case validation in this paper does not use the 
fault-scale parameters, such as Joyner-Boore distance with the best performance in distance parameters. In 
future research or practical applications, if it is possible to obtain accurate fault parameters, the model can be 
revised and improved to achieve better results. 
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