Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 17 Issue 4
Dec 2006
Turn off MathJax
Article Contents
Lin MOU, Dexing WU, Xueen CHEN. Changes in Atlantic Thermohaline Circulation under Different Atmospheric CO2 Scenarios in a Climate Model. Journal of Earth Science, 2006, 17(4): 326-331.
Citation: Lin MOU, Dexing WU, Xueen CHEN. Changes in Atlantic Thermohaline Circulation under Different Atmospheric CO2 Scenarios in a Climate Model. Journal of Earth Science, 2006, 17(4): 326-331.

Changes in Atlantic Thermohaline Circulation under Different Atmospheric CO2 Scenarios in a Climate Model

Funds:

the National Natural Science Foundation of China 90411010

the German Academic Exchange Service(DAAD)and the German Cli mate Center 

More Information
  • Corresponding author: Mu Lin:lin.mu@dkrz.de
  • Received Date: 05 Jul 2006
  • Accepted Date: 15 Sep 2006
  • The changes in the thermohaline circulation (THC) because of the increased CO2 in the atmosphere play an important role in future climate regimes. In this article, a new climate model developed at the Max-Planck Institute for Meteorology is used to study the variation in THC strength, the changes of North Atlantic deep-water (NADW) formation, and the regional responses of the THC in the North Atlantic to increasing atmospheric CO2. From 2000 to 2100, under increased CO2 scenarios (B1, A1B, and A2), the strength of THC decreases by 4 Sv (106 m3/s), 5.1 Sv, and 5.2 Sv, respectively, equivalent to a reduction of 20%, 25%, and 25.1% of the present THC strength. The analyses show that the oceanic deep convective activity significantly strengthens in the Greenland-Iceland-Norway (GIN) Seas owing to saltier (denser) upper oceans, whereas weakens in the Labrador Sea and in the south of the Denmark Strait region (SDSR) because of surface warming and freshening due to global warming. The saltiness of the GIN Seas is mainly caused by the increase of the saline North Atlantic inflow through the Faro-Bank (FB) Channel. Under the scenario A1B, the deep-water formation rate in the North Atlantic decreases from 16.2 Sv to 12.9 Sv with increasing CO2.

     

  • loading
  • Broecker, W. S., 1991. The Great Ocean Conveyor. Oceanography, 4: 79-89. doi: 10.5670/oceanog.1991.07
    Cheng, W., 2000. Climate Variability in the North Atlantic on Decadal and Multi-decadal Time Scales: A Numerical Study: [Dissertation]. University of Miami, Miami. 171.
    Dai, A., Meehl, G. A., Washington, W. M., et al., 2001a. Ensemble Simulation of Twenty-First Century Climate Changes: Business-as-Usual versus CO2 Stablization. Bull. Amer. Meteor. Soc. , 82: 2377-2388. doi: 10.1175/1520-0477(2001)082<2377:ESOTFC>2.3.CO;2
    Dai, A., Wigley, T. M. L., Boville, B. A., et al., 2001b. Climates of the Twentieth and Twenty-First Centuries Simulated by the NCAR Climate System Model. J. Climate, 14: 485-519. doi: 10.1175/1520-0442(2001)014<0485:COTTAT>2.0.CO;2
    Del worth, T., Manabe, S., Stouffer, R. J., 1993. Interdecadal Variations of the Thermohaline Circulationin a Coupled Ocean-At mosphere Model. J. Climate, 6: 1993-2011. doi: 10.1175/1520-0442(1993)006<1993:IVOTTC>2.0.CO;2
    Houghton, J. T., Ding, Y., Griggs, D. J., et al., 2001. Intergovernmental Panel on Climate Change (IPCC), 2001: The Scientific Basis. Contribution of Working Group Ⅰ to the Third Assessment Report of the IPCC. Cambridge University Press, Cambridge.
    Manabe, S., Stouffer, R. J., 1994. Multicentury Response of a Coupled Ocean-At mosphere Model to an Increase of Atmospheric Carbon Dioxide. J. Climate, 7: 5-23. doi: 10.1175/1520-0442(1994)007<0005:MCROAC>2.0.CO;2
    Marotzke, J., 2000. Abrupt Cli mate Change and Ther mohaline Circulation: Mechanisms and Predictablity. Proceedings of the National Academy of Sciences (U. S. A. ), 97: 1347-1350.
    Marsland, S. J., 2003. The Max-Planck-Institute Global Ocean/Sea Ice Model with Orthogonal Curvilinear Coordinates. Ocean Modelling, 5: 91-127. doi: 10.1016/S1463-5003(02)00015-X
    Mauritzen, C., 1996a. Production of Dense Overflow Waters Feeding the North Atlantic across the Greenland-Scotland Ridge. Part1: Evidence for a Revised Circulation Scheme. Deep-Sea Research I, 43: 769-806. doi: 10.1016/0967-0637(96)00037-4
    Mauritzen, C., 1996b. Production of Dense Overflow Waters Feeding the North Atlantic across the Greenland-Scotland Ridge. Part2: An Inverse Model. Deep-Sea Research I, 43: 807-835. doi: 10.1016/0967-0637(96)00038-6
    Roeckner, E., 2003. The At mospheric General Circulation Model ECHAM5, Part Ⅰ: Model Description. Max-Planck-Institut FFLR Meteorologie, Report No. 349.127.
    Voss, R., Mikolajewicz, U., 2001. Long-Term Climate Changes due to Increased CO2 Concentration in the Coupled At mosphere-Ocean General Circulation Model ECHAM3/LSG. Climate Dyn. , 17: 45-60. doi: 10.1007/PL00007925
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views(592) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return