Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 17 Issue 1
Mar 2006
Turn off MathJax
Article Contents
Linbo Shang, Ruizhong Hu, Wenling Fan. A Preliminary Study of the Solubility of Copper in Water Vapor at Elevated Temperatures and Pressures. Journal of Earth Science, 2006, 17(1): 84-88.
Citation: Linbo Shang, Ruizhong Hu, Wenling Fan. A Preliminary Study of the Solubility of Copper in Water Vapor at Elevated Temperatures and Pressures. Journal of Earth Science, 2006, 17(1): 84-88.

A Preliminary Study of the Solubility of Copper in Water Vapor at Elevated Temperatures and Pressures

Funds:

the Knowledge Innovation Program of the Chinese Academy of Sciences KZCX3-SW-125

the National Natural Science Foundation of China 40503007

the National Natural Science Foundation of China 40373020

the Western Light Program 

More Information
  • In order to understand the capacity of water vapor to transport copper and its mechanism, using the solubility method, the solubility of copper in undersaturated water vapor was investigated experimentally at temperatures from 310 ℃ to 350 ℃ and pressures from 42×105 to 100×105 Pa. Results of these experiments show that the presence of water vapor increases the concentration of Cu in the gas. At a constant temperature, the solubility of copper increases with increasing water vapor pressure. Copper may exist as hydrated gaseous particles in the vapor phase, and the dissolution process can be described by the following reaction: CuClmsolid+nH2Ogas = CuClm· (H2O)ngas (m=1, 2). The hydration number decreases with increasing temperature, varying from ~6 at 310 ℃, to ~5 at 330 ℃, and ~4 at 350 ℃. The results show that interactions between gas-solvent H2O and copper will significantly enhance the dissolution and transport capacity of copper in the gas phase.

     

  • loading
  • Archibald, S. M., Migdisov, A. A., Williams-Jones, A. E., 2001. The Stability of Au-Chloride Complexes in Water Vapor at Elevated Temperatures and Pressures. Geochimicaet Cosmochimica Acta, 65 (23): 4413-4423 doi: 10.1016/S0016-7037(01)00730-X
    Archibald, S. M., Migdisov, A. A., Williams-Jones, A. E., 2002. An Experi mental Study of the Stability of Copper Chloride Complexes in Water Vapor at Elevated Temperatures and Pressures. Geochimicaet Cosmochimica Acta, 66 (9): 1611-1619 doi: 10.1016/S0016-7037(01)00867-5
    Barnes, H. L., 1997. Geochemistry of Hydrothermal Ore Deposits. 3rd Edition. John Wiley and Sons, New York
    Brewer, L., Lofgren, N., 1950. The Thermodynamics of Gaseous Cuprous Chloride, Monomer and Trimer. J. Am. Chem. Soc. , 72: 3038-3045 doi: 10.1021/ja01163a066
    Dienstbach, F., Emmenegger, F. P., Schlaepfer, C. W., 1977. Vaporization of Copper (Ⅱ) Chloride and the Structure of Vapor Studied Using UV/Visible and Raman Spectroscopy. Inst. Anorg. Anal. Chem. Helv. Chim. Acta, 60: 2460-2470
    Gemmell, J. B., 1987. Geochemistry of Metallic Trace Elements in Fumarole Condenstates from Nicaraguan and Costa Rican Volcanoes. Journal of Volcanology and Geothermal Research, 33: 161-181 doi: 10.1016/0377-0273(87)90059-X
    Heinrich, C. A., Günther, D., Audétat, A., 1999. Metal Fractionation between Magmatic Brine and Vapor, Determinded by Microanalysis of Fluid Inclusions. Geology, 87: 755-758 https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201505020.htm
    Heinrich, C. H., Ryan, C. G., Mernagh, T. P., et al., 1992. Segregation of Ore Metals between Magmatic Brine and Vapor: A Fluid Inclusion Study Using PIXE Microanalysis. Economic Geology, 87: 1566-1583 doi: 10.2113/gsecongeo.87.6.1566
    Kestin, J., Sengers, J. V., Kamgar-Parsi, B., et al., 1984. Thermophysical Properties of Fluid H2O. J. Phys. Chem. Ref. Data, 13: 175-183 doi: 10.1063/1.555707
    Migdisov, A. A., Williams-Jones, A. E., 2005. An Experimental Study of Cassiterite Solubilityin HCl-Bearing Water Vapour at Temperature up to 350 ℃: Implications for Tin Ore Formation. Chemical Geology, 217: 29-40 doi: 10.1016/j.chemgeo.2004.11.018
    Migdisov, A. A., Williams-Jones, A. E., Sulei menov, O. M., 1999. Solubility of Chlorargyrite (AgCl) in the Water Vapor at Elevated Temperatures and Pressures. Geochimicaet Cosmochimica Acta, 63 (22): 3817-3827 doi: 10.1016/S0016-7037(99)00213-6
    Peterson, D. E., 1973. Sublimation Thermodynamics and Kinetics of Cuprous-Chloride. Part Ⅰ: Vacuum Balance-Torsion Experiments. Part Ⅱ: Mass-Spectrometer Experiments: [Dissertation]. University of Kansas, Kansas. 484
    Pokrovski, G. B., Zakirov, I. V., Roux, J., et al., 2002. Experi mental Study of Arsenic Speciationin Vapor Phase to 500 ℃: Implications for As Transport and Fractionation in Low-Density Crustal Fluids and Volcanic Gases. Geochimicaet Cosmochimica Acta, 66 (19): 3453-3480 doi: 10.1016/S0016-7037(02)00946-8
    Seward, T. M., Henderson, C. M., Charnock, J. M., etal., 1996. An X-Ray Absorption (EXAFS) Spectroscopic Study of Aquated Ag+ in Hydrothermal Solutions to 350 ℃. Geochim. Cosmochim. Acta, 60: 2273-2282 doi: 10.1016/0016-7037(96)00098-1
    Sheller, B., 1976. A Transpiration-Mass Spectrometric Technique for the Determination of the Thermodynamic Properties of Chloride Vapor Transport Reactions: [Dissertation]. Colorado School of Mines, Golden, Colorado. 197
    Taran, Y. A., Bernard, A., Gavilanes, J. C., et al., 2000. Native Gold in Mineral Precipitates from High Temperature Volcanic Gases of Colima Volcano, Mexico. Applied Geochemistry, 15: 337-346 doi: 10.1016/S0883-2927(99)00052-9
    Ulrich, T., Günther, D., Heinrich, C. A., 1999. Gold Concentrations of Magmatic Brines and the Metal Budget of Porphyry Copper Deposits. Nature, 399 (17): 676-679
    Williams-Jones, A. E., Migdisov, A. A., Archibald, A. M., et al., 2002. Vapor-Transport of Ore Metals. Water-Rock Interactions, Ore Deposits, and Envrionmental Geochemistry, 7: 279-305
    Xiao, Z., 1999. Experi mental and Theoretical Studies of the Solubility of Copper in Liquid and Vapor in the System NaCl-HCl-H2O: [Dissertation]. Mcgill University, Montreal
    Zakaznova-Iakovleva, V. P., Migdisov, A. A., Sulei menov, O. M., et al., 2001. An Experi mental Study of Stibnite Solubility in Gaesous Hydrogen Sulphside from 200 to 320 ℃. Geochimicaet Cosmochimica Acta, 65 (2): 289-298
    Zhang, R. H., Hu, S. M., 2002. A Case Study of the Influx of Upper Mantle Fluids into the Crust. Journal of Volcanology and Geothermal Research, 118: 319-338
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(1)

    Article Metrics

    Article views(885) PDF downloads(26) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return