Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 19 Issue 5
Oct 2008
Turn off MathJax
Article Contents
Zhongwu MA, Chaoyong HU, Jiaxin YAN, Xinong JIE. Biogeochemical Records at Shangsi Section, Northeast Sichuan in China: The Permian Paleoproductivity Proxies. Journal of Earth Science, 2008, 19(5): 461-470.
Citation: Zhongwu MA, Chaoyong HU, Jiaxin YAN, Xinong JIE. Biogeochemical Records at Shangsi Section, Northeast Sichuan in China: The Permian Paleoproductivity Proxies. Journal of Earth Science, 2008, 19(5): 461-470.

Biogeochemical Records at Shangsi Section, Northeast Sichuan in China: The Permian Paleoproductivity Proxies

Funds:

the SINOPEC project G0800-06-ZS-319

the National Natural Science Foundation of China 40531004

More Information
  • Corresponding author: Hu Chaoyong, Email: chyhu@cug.edu.cn
  • Received Date: 21 May 2008
  • Accepted Date: 01 Jul 2008
  • The marine primary producers assimilate the atmospheric CO2 to form the organic carbon in surface water. The organic carbon then settles down through the water column and is removed from the oceans by final preservation in sediments in the form of petroleum or nature gases. The reconstruction of paleoproductivity will thus improve our understanding of the biological processes in the formation of fossil energy resource and help to locate new sites for future exploration. In this study, biorelated elements P, Cd, Al, Ba, as well as redox sensitive element Mo, were analyzed in the 448 rock samples collected from Permian strata at the Shangsi (上寺) Section, Guangyuan (广元), Northeast Sichuan (四川) in China. On the basis of the Ti content, the nondetrital contents of P, Ca, and Al, denoted as Pxs, Cdxs, and Alxs, were calculated and found to coincide with the TOC content throughout the whole section, with some enrichment intervals being found in the middle part of Chihsia Formation, topmost Maokou (茅口) Formation, and Dalong (大隆) Formation. This suggests that the biorelated elements could he used as proxies for the paleoproductivity here in this section. Baxs, a paleoproductivity indicator widely used in the paleoceanography, shows insignificant correlation with TOC, Pxs, Cdxs, and Alxs, probably arising from the loss of biological barium in anoxic conditions. Compiled with the data of TOC content and Pxs, Cdxs, and Alxs, three episodes of enhanced paleoproductivity were identified in Permian strata including the middle part of Chihsia Formation, topmost Maokou Formation, and Dalong Formation.

     

  • loading
  • Benitez-Nelson, C. R., 2000. The Biogeochemical Cycling of Phosphorus in Marine Systems. Earth-Science Reviews, 51: 109-135 doi: 10.1016/S0012-8252(00)00018-0
    Cao, J., Zhang, Y. J., Hu, W. X., et al., 2005. The Permian Hybrid Petroleum System in the Northwest Margin of the Junggar Basin, Northwest China. Marine and Petroleum Geology, 22: 331-349 doi: 10.1016/j.marpetgeo.2005.01.005
    Dai, J. X., Li, J. X., Luo, X., et al., 2005. Stable Carbon Isotope Compositions and Source Rock Geochemistry of the Giant Gas Accumulations in the Ordos Basin, China. Organic Geochemistry, 36: 1617-1635 doi: 10.1016/j.orggeochem.2005.08.017
    Dymond, J., Suess, E., Lyle, M., 1992. Barium in Deep-Sea Sediment: A Geochemical Proxy for Paleoproductivity. Paleoceanography, 7: 163-181 doi: 10.1029/92PA00181
    Elderfield, H. R., Rickaby, R. E. M., 2000. Oceanic Cd/P Ratio and Nutrient Utilization in the Glacial Southern Ocean. Nature, 405: 305-310 doi: 10.1038/35012507
    Falkowski, G., Barber, R. T., Smetacek, V., 1998. Biogeochemical Controls and Feedbacks on Ocean Primary Production. Science, 281: 200-206 doi: 10.1126/science.281.5374.200
    Follmi, K. B., 1996. The Phosphorus Cycle, Phosphogenesis and Marine Phosphate-Rich Deposits. Earth-Science Reviews, 40: 55-124 doi: 10.1016/0012-8252(95)00049-6
    Francois, R. S., Honjo, S. J., Manganini, G. E., et al., 1995. Biogenic Barium Fluxes to the Deep Sea: Implications for Paleoproductivity Reconstruction. Global Biogeochemical Cycles, 9: 289-303 doi: 10.1029/95GB00021
    Heydari, E., Hassandzadeh, J., Wade, W. J., 2000. Geochemistry of Central Tethyan Upper Permian and Lower Triassic Strata, Abadeh Region, Iran. Sedimentary Geology, 137: 85-99 doi: 10.1016/S0037-0738(00)00138-X
    Isozaki, Y., Kawahata, H., Ota, A., 2007. A Unique Carbon Isotope Record across the Guadalupian-Lopingian (Middle-Upper Permian) Boundary in Mid-Oceanic Paleo-atoll Carbonates: The High-Productivity "Kamura Event" and Its Collapse in Panthalassa. Global and Planetary Change, 55: 21-38 doi: 10.1016/j.gloplacha.2006.06.006
    Kryc, K. A., Murray, R. W., Murray, D. W., 2003. Al-to-Oxide and Ti-to-Organic Linkages in Biogenic Sediment: Relationships to Paleo-export Production and Bulk Al/Ti. Earth and Planetary Science Letters, 211: 125-141 doi: 10.1016/S0012-821X(03)00136-5
    Li, J., Xie, Z. Y., Dai, J. X., et al., 2005. Geochemistry and Origin of Sour Gas Accumulations in the Northeastern Sichuan Basin, SW China. Organic Geochemistry, 36: 1703-1716 doi: 10.1016/j.orggeochem.2005.08.006
    Li, Y. H., 1991. Distribution Patterns of the Elements in the Ocean: A Synthesis. Geochimica et Cosmochimica Acta, 55: 3223-3240 doi: 10.1016/0016-7037(91)90485-N
    Ma, Y. S., Zhang, S. C., Guo, T. L., et al., 2008. Petroleum Geology of the Puguang Sour Gas Field in the Sichuan Basin, SW China. Marine and Petroleum Geology, 25: 357-370 doi: 10.1016/j.marpetgeo.2008.01.010
    McManus, J., Berelson, W. M., Klinkhammer, G. P., et al., 1998. Geochemistry of Barium in Marine Sediments: Implications for Its Use as a Paleoproxy. Geochimica et Cosmochimica Acta, 62: 3453-3473 doi: 10.1016/S0016-7037(98)00248-8
    Morford, J. L., Emerson, S., 1999. The Geochemistry of Redox Sensitive Trace Metals in Sediments. Geochimica et Cosmochimica Acta, 63: 1735-1750 doi: 10.1016/S0016-7037(99)00126-X
    Morford, J. L., Russell, A. D., Emerson, S., 2001. Trace Metal Evidence for Changes in the Redox Environment Associated with the Transition from Terrigenous Clay to Diatomaceous Sediment, Saanich Inlet, BC. Marine Geology, 174: 355-369 doi: 10.1016/S0025-3227(00)00160-2
    Mu, X., Kershaw, S., Li, Y., et al., 2008. High-Resolution Carbon Isotope Changes in the Permian-Triassic Boundary Interval, Chongqing, South China: Implications for Control and Growth of Earliest Triassic Microbialites. Journal of Asian Earth Sciences (in Press)
    Murray, R. W., Leinen, M., 1996. Scavenged Excess Aluminum and Its Relationship to Bulk Titanium in Biogenic Sediment from the Central Equatorial Pacific Ocean. Geochimica et Cosmochimica Acta, 60: 3869-3878 doi: 10.1016/0016-7037(96)00236-0
    Murray, R. W., Leinen, M., Isern, A. R., 1993. Biogenic Flux of Al to Sediment in the Central Equatorial Pacific Ocean: Evidence for Increased Productivity during Glacial Periods. Paleoceanography, 8: 651-670 doi: 10.1029/93PA02195
    Oschlies, A., 2001. Model-Derived Estimates of New Production: New Results Point towards Lower Values. Deep Sea Research Part II: Topical Studies in Oceanography, 48: 2173-2197 doi: 10.1016/S0967-0645(00)00184-3
    Pattan, J. N., Shane, P., 1999. Excess Aluminum in Deep Sea Sediments of the Central Indian Basin. Marine Geology, 161: 247-255 doi: 10.1016/S0025-3227(99)00042-0
    Paytan, A., Griffith, E. M., 2007. Marine Barite: Recorder of Variations in Ocean Export Productivity: Deep Sea Research Part II. Topical Studies in Oceanography, 54: 687-705 doi: 10.1016/j.dsr2.2007.01.007
    Paytan, A., Kastner, M., Chavez, F., 1996. Glacial to Interglacial Fluctuations in Productivity in the Equatorial Pacific as Indicated by Marine Barite. Science, 274: 1355-1357 doi: 10.1126/science.274.5291.1355
    Paytan, A., Lyle, M., Mix, A., et al., 2004. Climatically Driven Changes in Oceanic Processes throughout the Equatorial Pacific. Paleoceanography, 19: 1-6 http://www.researchgate.net/profile/Adina_Paytan/publication/251438845_Climatically_driven_changes_in_oceanic_processes_throughout_the_equatorial_Pacific/links/53df91340cf27a7b830686ef
    Paytan, A., McLaughlin, K., 2007. The Oceanic Phosphorus Cycle. Chemical Reviews, 107: 563-576 doi: 10.1021/cr0503613
    Piper, D. Z., Perkins, R. B., 2004. A Modern vs. Permian Black Shale—The Hydrography, Primary Productivity, and Water-Column Chemistry of Deposition. Chemical Geology, 206: 177-197 doi: 10.1016/j.chemgeo.2003.12.006
    Prokoph, A., Shields, G. A., Veizer, J., 2008. Compilation and Time-Series Analysis of a Marine Carbonate δ18O, δ13C, 87Sr/86Sr and δ34S Database through Earth History. Earth-Science Reviews, 87: 113-133 doi: 10.1016/j.earscirev.2007.12.003
    Rosenthal, Y., Lam, P., Boyle, E. A., et al., 1995. Authigenic Cadmium Enrichments in Suboxic Sediments: Precipitation and Postdepositional Mobility. Earth and Planetary Science Letters, 132: 99-111 doi: 10.1016/0012-821X(95)00056-I
    Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell, Oxford. 28
    Timothy, D. A., Calvert, S. E., 1998. Systematics of Variations in Excess Al and Al/Ti in Sediments from the Central Equatorial Pacific. Paleoceanography, 13: 127-130 doi: 10.1029/97PA03646
    Tribovillard, N., Algeo, T. J., Lyons, T., et al., 2006. Trace Metals as Paleoredox and Paleoproductivity Proxies: An Update. Chemical Geology, 232: 12-32 doi: 10.1016/j.chemgeo.2006.02.012
    van den Berg, C. M. G., Boussemart, M., Yokoi, K., et al., 1994. Speciation of Aluminium, Chromium and Titanium in the NW Mediterranean. Marine Chemistry, 45: 267-282 doi: 10.1016/0304-4203(94)90074-4
    van Geen, A., McCorckle, D. C., Klinkhammer, G. P., 1995. Sensitivity of the Phosphate-Cd-C Isotope Relation in the Ocean to Cd Removal by Suboxic Sediments. Paleoceanography, 10: 159-169 doi: 10.1029/94PA03352
    Winguth, A. M. E., Maier-Reimer, E., 2005. Causes of the Marine Productivity and Oxygen Changes Associated with Ma Zhongwu, Hu Chaoyong, Yan Jiaxin and Xie Xinong the Permian-Triassic Boundary: A Reevaluation with Ocean General Circulation Models. Marine Geology, 217: 283-304 doi: 10.1016/j.margeo.2005.02.011
    Xiao, X. M., Zhao, B. Q., Thu, Z. L., et al., 2005. Upper Paleozoic Petroleum System, Ordos Basin, China. Marine and Petroleum Geology, 22: 945-963 doi: 10.1016/j.marpetgeo.2005.04.001
    Xie, S. C., Pancost, R. D., Huang, J. H., et al., 2007a. Changes in the Global Carbon Cycle Occurred as Two Episodes during the Permian-Triassic Crisis. Geology, 35: 1083-1086 doi: 10.1130/G24224A.1
    Xie, S. C., Pancost, R. D, Huang, X., et al., 2007b. Molecular and Isotopic Evidence for Episodic Environmental Change across the Permo/Triassic Boundary at Meishan in South China. Global and Planetary Change, 55: 56-65 doi: 10.1016/j.gloplacha.2006.06.016
    Xie, S. C., Pancost, R. D., Yin, H. F., et al., 2005. Two Episodes of Microbial Change Coupled with Permo/Triassic Faunal Mass Extinction. Nature, 434: 494-497 doi: 10.1038/nature03396
    Xie, X. N., Li, H. J., Xiong, X., et al., 2008. Main Controlling Factors of Organic Matter Richness in a Permian Section of Guangyuan, Northeast Sichuan. Journal of China University of Geosciences, 19(5): 507-517 doi: 10.1016/S1002-0705(08)60056-4
    Yan, J. X., Ma, Z. X., Xie, X. N., et al., 2008. Subdivision of Permian Fossil Communities and Habitat Types in Northeast Sichuan, South China. Journal of China University of Geosciences, 19(5): 441-450 doi: 10.1016/S1002-0705(08)60049-7
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article Metrics

    Article views(922) PDF downloads(31) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return