Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 15 Issue 2
Jun 2004
Turn off MathJax
Article Contents
Yongsheng Zhou, Dalai Zhong, Changrong He. Upper Limit for Rheological Strength of Crust in Continental Subduction Zone: Constraints Imposed by Laboratory Experiments. Journal of Earth Science, 2004, 15(2): 167-174.
Citation: Yongsheng Zhou, Dalai Zhong, Changrong He. Upper Limit for Rheological Strength of Crust in Continental Subduction Zone: Constraints Imposed by Laboratory Experiments. Journal of Earth Science, 2004, 15(2): 167-174.

Upper Limit for Rheological Strength of Crust in Continental Subduction Zone: Constraints Imposed by Laboratory Experiments

Funds:

the Major Science and Technology Development Program 2002201

the Ministry of Land and Resources, and the National Natural Science Foundation of China 40002020

  • Received Date: 14 Jan 2004
  • Accepted Date: 08 Feb 2004
  • The transitional pressure of quartz coesite under the differential stress and highly strained conditions is far from the pressure of the stable field under the static pressure. Therefore, the effect of the differential stress should be considered when the depth of petrogenesis is estimated about ultrahigh pressure metamorphic (UHPM) rocks. The rheological strength of typical ultrahigh pressure rocks in continental subduction zone was derived from the results of the laboratory experiments. The results indicate the following three points. (1) The rheological strength of gabbro, similar to that of eclogite, is smaller than that of clinopyroxenite on the same condition. (2) The calculated strength of rocks (gabbro, eclogite and clinopyroxenite) related to UHPM decreases by nearly one order of magnitude with the temperature rising by 100 ℃ in the range between 600 and 900 ℃. The calculated strength is far greater than the faulting strength of rocks at 600 ℃, and is in several hundred to more than one thousand mega pascals at 700-800 ℃, which suggests that those rocks are located in the brittle deformation region at 600 ℃, but are in the semi brittle to plastic deformation region at 700-800 ℃. Obviously, the 700 ℃ is a brittle plastic transition boundary. (3) The calculated rheological strength in the localized deformation zone on a higher strain rate condition (1.6×10-12 s-1) is 2-5 times more than that in the distributed deformation zone on a lower strain rate condition (1.6×10-14 s-1). The average rheological stress (1 600 MPa) at the strain rate of 10-12 s-1 stands for the ultimate differential stress of UHPM rocks in the semi brittle flow field, and the average rheological stress (550-950 MPa) at the strain rate of 10-14 - 10-13 s-1 stands for the ultimate differential stress of UHPM rocks in the plastic flow field, suggesting that the depth for the formation of UHPM rocks is more than 20-60 km below the depth estimated under static pressure condition due to the effect of the differential stress.

     

  • loading
  • Akella, J., 1979. Quartz-Coesite Transition and the Comparative Friction Measurements in Piston-Cylinder Apparatus Using Talc-Alsimagglass(TAG)and NaCl High-Pressure Cells, Neues Jabrb. Mineral. Monatsh. , 5: 217-224
    Bohlen, S. R., Boettcher, A. L., 1982. The Quartz-Coesite Transformation: A Precise Determination and Effects of Other Components. J. Geophy. Res. , 87(B8): 7073-7078 doi: 10.1029/JB087iB08p07073
    Bose, K., Ganguly, J., 1995. Quartz-Coesite Transition Revisited: Reversed Experimental Determination at 500- 1 200℃ and Retrieved Thermochemical Properties. American Mineralogist, 80: 231-238 doi: 10.2138/am-1995-3-404
    Boyd, F. R., 1964. Geological Aspects of High-Pressure Research. Science, 145: 13-20 doi: 10.1126/science.145.3627.13
    Boyd, F. R., England, J. L., 1960. The Quartz-Coesite Transition, J. Geophy. Res. , 65: 749-756 doi: 10.1029/JZ065i002p00749
    Brace, W. F., Kohlstedt, D. L., 1980. Limits on Lithospheric Stress Imposed by Laboratory Experiments. J. Geophys. Res. , 85: 6438-6252 doi: 10.1029/JB085iB11p06248
    Bystricky, M., Mackwell, S., 2001. Creep of Clinopyroxene Aggregates. J. Geophys. Res. , 106(B7): 13443-13454 doi: 10.1029/2001JB000333
    Carter, N. L., Tsenn, M.C., 1987. FlowProperties of Continental Lithosphere. Tectonophysics, 136: 27-63 doi: 10.1016/0040-1951(87)90333-7
    Chen, J., 2000. Study of Plastic Deformation of Garnet and Calculation of Fossil Differential Stress. Journal of Geomechanics, 6 (3): 78- 82(in Chinese with English Abstract)
    Chen, J., Wang, Q. C., Zhai, M.G., et al., 1996. Plastic Deformation of Garnet in Eclogite. Science in China(Series D), 39(1): 18-25 https://www.cnki.com.cn/Article/CJFDTOTAL-JDXG199601002.htm
    Cohen, L. H., Klement, W., 1967. High-Low Quartz Inversion: Determination to 35 Kilobars. J. Geophys. Res. , 72: 4245-4251 doi: 10.1029/JZ072i016p04245
    Green, H. W., 1972. Metastable Growth of Coesite in Highly Strained Quartz. J. Geophy. Res. , 77(4): 2478-2482 doi: 10.1029/JB077i014p02478
    He, C. R., Zhou, Y. S., Sang, Z. N., 2003. An Experimental Study on Semi-brittle and Plastic Rheology of Panzhihua Gabbro. Science in China(Series D), 46(7): 730-742 doi: 10.1360/03yd9064
    Hirth, G., Tullis, J., 1994. The Brittle-Plastic Transition in Experimentally Deformed Quartz Aggregates. J. Geophy. Res. , 99 (B6): 11731-11747 doi: 10.1029/93JB02873
    Hobbs, B. E., 1968. Recrystallization of Single Crystals of Quartz. Tectonophysics, 6: 353-401 doi: 10.1016/0040-1951(68)90056-5
    Ji, S. C., Saruwatari, K., Mainprice, D., et al., 2003. Microstructures, Petrofabrics and Seismic Properties of UltrahighPressure Eclogites from Sulu Region, China: Implications for Rheology of Subducted Continental Crust and Origin of Mantle Reflections. Tectonophysics, 370: 49-76 doi: 10.1016/S0040-1951(03)00177-X
    Jin, Z.M., Zhang, J., Green, Ⅱ H.W., et al., 2001. Eclogite Rheology: Implications for Subducted Lithosphere. Geology, 29(8): 667-670 doi: 10.1130/0091-7613(2001)029<0667:ERIFSL>2.0.CO;2
    Karaato, S., 1989. Plasticity-Crystal Structure Systematics in Dense Oxides and Its Implications for the Creep Strength of the Earth' s Deep Interior: A Preliminary Result. Physics of the Earth and Planetary Interiors, 55: 234-240 doi: 10.1016/0031-9201(89)90071-X
    Kitahara, S., Kennedy, G. C., 1964. The Quartz-Coesite Transition. J. Geophys. Res. , 69: 5395-5400 doi: 10.1029/JZ069i024p05395
    Kohlstedt, D. L., Evans, B., Mackwell, S. J., 1995. Strength of the Lithosphere: Constraints Imposed by Laboratory Experiments. J. Geophys. Res. , 100: 17587-17602 doi: 10.1029/95JB01460
    Liu, J. B., Ye, K., Cong, B. L., et al., 2001. Coesite Inclusions in Zircon from Gneisses Identified by Laser Raman Microspectrometer in Ultra-high Pressure Zone of Dabie Mountains, China. Chinese Science Bulletin, 46(22): 1912-1916 doi: 10.1007/BF02901171
    Liu, J. B., You, Z. D., Zhong, Z. Q., et al., 1996. Eclogites from the Middle and North of Dabie Mountains in Southern Henan and Northern Hubei, China. Science in China(Series D), 39(3): 292-299
    Lü, G. X., Chen, J., Ding, T. P., et al., 2000. On the Depth of the Formation of Coesite-Bearing Eclogite of Dabie UHPM Zone, Central China. Journal of Geomechanics, 6(3): 14- 24 (in Chinese with English Abstract)
    Lü, G. X., Chen, J., Li, X. B., et al., 1998. Study of Additional Tectono-Induced Hydrostatic Pressure and the Depth of the Formation of Coesite-Bearing Eclogite of Dabie UHPM Rocks. Chinese Science Bulletin, 43(24): 2590-2602 doi: 10.1360/csb1998-43-24-2590
    Lü, G. X., Liu, R. X., 1999. The Principle for Estimating the Depth of Petrogenesis. Chinese Science Bulletin, 44(24): 2293 -2295 doi: 10.1007/BF02885942
    Mancktelow, N. S., 1995. Nonlithostatic Pressure during Sediment Subduction and the Development and Exhumation of High Pressure Metamorphic Rocks. J. Geophys. Res. , 100(B1): 571 -583 doi: 10.1029/94JB02158
    Mancktelow, N. S., 1993. Tectonic Overpressure in Compotent Mafic Layers and the Development of Isolated Eclogites. J. Metamorph. Geol. , 11: 801-812 doi: 10.1111/j.1525-1314.1993.tb00190.x
    Mirwald, P. W., Massonne, H. J., 1980. The Low-High Quartz and Quartz-Coesite Transition to 40 kbar between 600℃ and 1 600℃ and Some Reconnaissance Data on the Effectof NaAlO2 Component on the LowQuartz-Coesite Transition. J. Geophy. Res. , 85: 6983-6990 doi: 10.1029/JB085iB12p06983
    Mosenfelder, J. L., Bohlen, S. R., 1977. Kinetics of the Coesite to Quartz Transformation. Earth and Planetary Science Letters, 153: 133-147 https://www.sciencedirect.com/science/article/pii/S0012821X97001593
    Renner, J., Stockhert, B., Zerbian, A., et al., 2001. An Experimental Study into the Rheology of Synthetic Polycrystalline Coesite Aggregates. J. Geophy. Res. , 106(B9): 19411-19429 doi: 10.1029/2001JB000431
    Renner, J., Zerbian, A., Stockhert, B., 1997. Microstructures of Synthetic Polycrystalline Coesite Aggregates: The Effect of Pressure, Temperature and Time. Lithos. , 41: 169-184 doi: 10.1016/S0024-4937(97)82011-7
    Rybacki, E., Renner, J., Konrad, K., et al., 1998. AServohydraulically-Controlled Deformation Apparatus for Rock Deformation under Conditions of Ultra-high Pressure Metamorphism. Pure and Applied Geophysics, 152: 579-606 doi: 10.1007/s000240050168
    Stockhertb, B., Brix, M. R., Kleinschrodt, R., et al., 1999. Thermochronometry andMicrostructures of Quartz— AComparison with Experimental Flow Laws and Predictions on the Temperature of the Brittle-Plastic Transition. Jour. Struct. Geol. , 21: 351-369 doi: 10.1016/S0191-8141(98)00114-X
    Su, W., Cong, B. L., You, Z. D., et al., 2001. Plastic Mechanism of Deformation of Garnet: Water Weakening. Science in China(Series D), 31(12): 999-1005
    Wang, Q. C., Cong, B. L., 1996. Tectonic Implication of UHP Rocks from the Dabie Mountains. Science in China(Series D), 39(3): 311-318
    Wang, Q. C., Liu, J. B., Cong, B. L., 1999. Could Overpressure Cause Ultrahigh-Pressure Metamorphism? Chinese Science Bulletin, 44(21): 2346- 2350(in Chinese) doi: 10.1360/csb1999-44-21-2346
    Yang, J. S., Song, S. G., Xu, Z. Q., et al., 2001. Typical UHPM Mineral— Coesite in Early Paleozoic High-UltrahighPressure Metamorphic Zone at Northern Edge of Chaidamu Basin. Acta Geologica Sinica, 75(2): 175- 179(in Chinese with English Abstract)
    Zhang, J. X., Yang, J. S., Xu, Z. Q., et al., 2002. Evidence for UHPMetamorphism of Eclogites from the AltunMountains. Chinese Science Bulletin, 47(9): 751-755 doi: 10.1360/02tb9170
    Zhang, R. Y., Liou, J. G., 1997. Partial Transformation of Gabbro to Coesite-Bearing Eclogite from Yangkou, the Sulu Terrane, Eastern China. J. Metamorphic Geol. , 15: 183-202 doi: 10.1111/j.1525-1314.1997.00012.x
    Zhao, Z. Y., Fang, A. M., Yu, L. J., 2002. Coesite Eclogite FaciesMetamorphic Tectonite: Evidence for Ultrahigh Pressure Deformation. Chinese Science Bulletin, 47(16): 1388-1392 doi: 10.1360/02tb9306
    Zhou, Y. S., He, C. R., 2000. Deformation Behavior Transition of Crustal Rocks and Its Temperature-Pressure Conditions. Seismology and Geology, 22(2): 167- 178(in Chinese with English Abstract)
    Zhou, Y. S., He, C. R., 1999. Discussing of Some Problem about Explaining Lithosphere Rheology UsingHigh Temperature Great Pressure Creep Tests of Rocks. Recent Developments in World Seismology, 12: 1- 3(in Chinese with English Abstract)
    Zhou, Y.S., He, C. R., Ma, S. L., et al., 2003. The Effectof Differential Stress during Formation of Ultra-high Pressure Metamorphic Rocks: The Evidence of High Temperature and High Pressure Experiments about Transition of Quartz-Coesite. Seismology and Geology, 25(4)566- 573(in Chinese with English Abstract)
    Zhou, Y. S., Ma, S. L., He, C. R., 2000. The Temperature and Pressure of Ultrahigh-Pressure Rocks in Dabie-shan: Review and Discuss. Progress in Geophysics, 15(3): 1- 5(in Chinese with English Abstract)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(3)

    Article Metrics

    Article views(1127) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return