[1] Chen, Y. J., Chen, H. Y., Zaw, K., et al., 2007. Geodynamic Settings and Tectonic Model of Skarn Gold Deposits in China:An Overview. Ore Geology Reviews, 31(1/2/3/4):139-169. doi: 10.1016/j.oregeorev.2005.01.001
[2] Chi, G. X., Haid, T., Quirt, D., et al., 2016. Petrography, Fluid Inclusion Analysis, and Geochronology of the End Uranium Deposit, Kiggavik, Nunavut, Canada. Mineralium Deposita, 52(2):211-232. doi: 10.1007/s00126-016-0657-9
[3] Chi, G. X., Lu, H. Z., 2008. Validation and Representation of Fluid Inclusion Microthermometric Data Using the Fluid Inclusion Assemblage (FIA) Concept. Acta Petrologica Sinica, 24 (9):1945-1953 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200809001
[4] Clayton, R. N., Mayeda, T. K., 1963. The Use of Bromine Pentafluoride in the Extraction of Oxygen from Oxides and Silicates for Isotopic Analysis. Geochimica et Cosmochimica Acta, 27(1):43-52. doi: 10.1016/0016-7037(63)90071-1
[5] Driesner, T., Heinrich, C. A., 2007. The System H2O-NaCl. Part I: Correlation Formulae for Phase Relations in Temperature-Pressure-Composition Space from 0 to 1 000℃, 0 to 5 000 bar, and 0 to 1 XNaCl. Geochimica et Cosmochimica Acta, 71(20): 4880-4901. doi: 10.1016/j.gca.2006.01.033
[6] Fan, H. R., Hu, F. F., Wilde, S. A., et al., 2011. The Qiyugou Gold-Bearing Breccia Pipes, Xiong'ershan Region, Central China:Fluid-Inclusion and Stable-Isotope Evidence for an Origin from Magmatic Fluids. International Geology Review, 53(1):25-45. doi: 10.1080/00206810902875370
[7] Giggenbach, W. F., 1982. Geochemistry of Hydrothermal Ore Deposits, 2nd Edition. Geochimica et Cosmochimica Acta, 46(5):833. doi: 10.1016/0016-7037(82)90034-5
[8] Goldstein, R. H., 2001. Fluid Inclusions in Sedimentary and Diagenetic Systems. Lithos, 55(1/2/3/4):159-193. doi: 10.1016/s0024-4937(00)00044-x
[9] Greg, M. A., David, A. C., 1993. Thermodynamics in Geochemistry: The Equilibrium Model. Oxford University Press, Oxford. 1189
[10] Hedenquist, J. W., Henley, R. W., 1985. The Importance of CO2 on Freezing Point Measurements of Fluid Inclusions; Evidence from Active Geothermal Systems and Implications for Epithermal Ore Deposition. Economic Geology, 80(5):1379-1406. doi: 10.2113/gsecongeo.80.5.1379
[11] Helgeson, H. C., Kirkham, D. H., 1974. Theoretical Prediction of the Thermodynamic Behavior of Aqueous Electrolytes at High Pressures and Temperatures; II, Debye-Huckel Parameters for Activity Coefficients and Relative Partial Molal Properties. American Journal of Science, 274(10):1199-1261. doi: 10.2475/ajs.274.10.1199
[12] Hennet, R. J. C., Crerar, D. A., Schwartz, J., 1988. Organic Complexes in Hydrothermal Systems. Economy Geology, 83(4):742-764 doi: 10.2113/gsecongeo.83.4.742
[13] Hollister, L. S., Burruss, R. C., 1976. Phase Equilibria in Fluid Inclusions from the Khtada Lake Metamorphic Complex. Geochimica et Cosmochimica Acta, 40(2):163-175. doi: 10.1016/0016-7037(76)90174-5
[14] Jahn, B. M., 2004. The Central Asian Orogenic Belt and Growth of the Continental Crust in the Phanerozoic. In: Malpas, J., Fletcher, C. J. N., Ali, J. R., et al., eds., Aspects of the Tectonic Evolution of China. Special Publication 226, 73-100
[15] Jiang, S. H., Nie, F. J., Liu, Y. F., et al., 2011. Geochronology of Intrusive Rocks Occurring in and around the Mengentaolegai Silver-Polymetallic Deposit, Inner Mongolia. Journal of Jilin University (Earth Science Edition), 46(6):1755-1769 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cckjdxxb201106011
[16] Johnson, J. W., Oelkers, E. H., Helgeson, H. C., 1992. SUPCRT92:A Software Package for Calculating the Standard Molal Thermodynamic Properties of Minerals, Gases, Aqueous Species, and Reactions from 1 to 5 000 Bar and 0 to 1 000℃. Computers & Geosciences, 18(7):899-947. doi: 10.1016/0098-3004(92)90029-q
[17] Kissin, S. A., Mango, H., 2014. Silver Vein Deposits. Treatise on Geochemistry, Elsevier, Oxford. 425-432
[18] Klemm, L. M., Pettke, T., Heinrich, C. A., et al., 2007. Hydrothermal Evolution of the El Teniente Deposit, Chile:Porphyry Cu-Mo Ore Deposition from Low-Salinity Magmatic Fluids. Economic Geology, 102(6):1021-1045. doi: 10.2113/gsecongeo.102.6.1021
[19] Li, X. M., Li, Z. K., Xiong, S. K., et al., 2019. Mineralization Characteristics of the Laoliwan Ag-Pb-Zn Deposit and Geochemical Features of the Ore-Bearing Granite Porphyry in the Southern North China Craton:Implications for Ore Genesis. Earth Science, 44(1):69-87. doi: 10.3799/dqkx.2018.147 (in Chinese with English Abstract)
[20] Liu, C. H., Bagas, L., Wang, F. X., 2016. Isotopic Analysis of the Super-Large Shuangjianzishan Pb-Zn-Ag Deposit in Inner Mongolia, China:Constraints on Magmatism, Metallogenesis, and Tectonic Setting. Ore Geology Reviews, 75:252-267. doi: 10.1016/j.oregeorev.2015.12.019
[21] Liu, Y. F., Jiang, S. H., Bagas, L., 2016. The Genesis of Metal Zonation in the Weilasituo and Bairendaba Ag-Zn-Pb-Cu-(Sn-W) Deposits in the Shallow Part of a Porphyry Sn-W-Rb System, Inner Mongolia, China. Ore Geology Reviews, 75:150-173. doi: 10.1016/j.oregeorev.2015.12.006
[22] Maanijou, M., Rasa, I., Lentz, D. R., 2012. Petrology, Geochemistry, and Stable Isotope Studies of the Chehelkureh Cu-Zn-Pb Deposit, Zahedan, Iran. Economic Geology, 107(4):683-712. doi: 10.2113/econgeo.107.4.683
[23] Mao, J. W., Xie, G. Q., Zhang, Z. H., et al., 2005. Mesozoic Large-Scale Metallogenic Pluses in North China and Corresponding Geodynamic Settings. Acta Petrolei Sinica, 21:169-188 (in Chinese with English Abstract) doi: 10.1007/s10114-004-0408-1
[24] Ohmoto, H., 1972. Systematics of Sulfur and Carbon Isotopes in Hydrothermal Ore Deposits. Economic Geology, 67(5):551-578. doi: 10.2113/gsecongeo.67.5.551
[25] Ohmoto, H., Goldhaber, M. B., 1997. Sulfur and Carbon Isotopes. In: Barnes, H. L., ed., Geochemistry of Hydrothermal Ore Deposits, Wiley, New York. 517-611
[26] Ouyang, H. G., Mao, J. W., Santosh, M., et al., 2014. The Early Cretaceous Weilasituo Zn-Cu-Ag Vein Deposit in the Southern Great Xing'an Range, Northeast China:Fluid Inclusions, H, O, S, Pb Isotope Geochemistry and Genetic Implications. Ore Geology Reviews, 56:503-515. doi: 10.1016/j.oregeorev.2013.06.015
[27] Qi, J. P., Chen, Y. J., Pirajno, F., 2005. Geological Characteristics and Tectonic Setting of the Epithermal Deposits in the Northeast China. Journal of Mineralogy & Petrology, 25:47-59 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwys200502009
[28] Robinson, B. W., Kusakabe, M., 1975. Quantitative Preparation of Sulfur Dioxide, for Sulfur-34/Sulfur-32 Analyses, from Sulfides by Combustion with Cuprous Oxide. Analytical Chemistry, 47(7):1179-1181. doi: 10.1021/ac60357a026
[29] Robinson, B. W., Ohmoto, H., 1973. Mineralogy, Fluid Inclusions, and Stable Isotopes of the Echo Bay U-Ni-Ag-Cu Deposits, Northwest Territories, Canada. Economic Geology, 68(5):635-656. doi: 10.2113/gsecongeo.68.5.635
[30] Roedder, E., 1984, Fluid Inclusions. In: Ribbe, P. H., ed., Reviews in Mineralogy. Mineralogical Society of America, Chantilly. 644
[31] Ruan, B. X., Lü, X. B., Yang, W., et al., 2015. Geology, Geochemistry and Fluid Inclusions of the Bianjiadayuan Pb-Zn-Ag Deposit, Inner Mongolia, NE China:Implications for Tectonic Setting and Metallogeny. Ore Geology Reviews, 71:121-137. doi: 10.1016/j.oregeorev.2015.05.004
[32] Shu, Q. H., Chang, Z. S., Lai, Y., et al., 2016. Regional Metallogeny of Mo-Bearing Deposits in Northeastern China, with New Re-Os Dates of Porphyry Mo Deposits in the Northern Xilamulun District. Economic Geology, 111(7):1783-1798. doi: 10.2113/econgeo.111.7.1783
[33] Shu, Q., Lai, Y., Sun, Y., et al., 2013. Ore Genesis and Hydrothermal Evolution of the Baiyinnuo'er Zinc-Lead Skarn Deposit, Northeast China:Evidence from Isotopes (S, Pb) and Fluid Inclusions. Economic Geology, 108(4):835-860. doi: 10.2113/econgeo.108.4.835
[34] Skirrow, R. G., Walshe, J. L., 2002. Reduced and Oxidized Au-Cu-Bi Iron Oxide Deposits of the Tennant Creek Inlier, Australia:An Integrated Geologic and Chemical Model. Economic Geology, 97(6):1167-1202. doi: 10.2113/gsecongeo.97.6.1167
[35] Steele-MacInnis, M., Lecumberri-Sanchez, P., Bodnar, R. J., 2012. HOKIEFLINCS_H2O-NACL: A Microsoft Excel Spreadsheet for Interpreting Microthermometric Data from Fluid Inclusions Based on the PVTX Properties of H2O-NaCl. Computers & Geosciences 49 (Complete), 334-337
[36] Su, W. C., Hu, R. Z., Qi, L., et al., 2001. Trace Elements in Fluid Inclusions in the Carlin-Type Gold Deposits, Southwestern Guizhou Province. Chinese Journal of Geochemistry, 20(3):233-239. doi: 10.1007/bf03166144
[37] Taylor, H. P. Jr, 1974. The Application of Oxygen and Hydrogen Isotope Studies to Problem of Hydrothermal Alteration and Ore Deposition. Economic Geology, 69(6): 843-883
[38] Wang, Z. G., Wang, K. Y., Wan, D., et al., 2017. Metallogenic Age and Hydrothermal Evolution of the Jidetun Mo Deposit in Central Jilin Province, Northeast China:Evidence from Fluid Inclusions, Isotope Systematics, and Geochronology. Ore Geology Reviews, 89:731-751. doi: 10.1016/j.oregeorev.2017.07.014
[39] Wilde, S. A., Zhou, J. B., 2015. The Late Paleozoic to Mesozoic Evolution of the Eastern Margin of the Central Asian Orogenic Belt in China. Journal of Asian Earth Sciences, 113:909-921. doi: 10.1016/j.jseaes.2015.05.005
[40] Wilkinson, J. J., 2001. Fluid Inclusions in Hydrothermal Ore Deposits. Lithos, 55(1/2/3/4):229-272. doi: 10.1016/s0024-4937(00)00047-5
[41] Wu, H. Y., Zhang, L. C., Wan, B., et al., 2011a. Re-Os and 40Ar/39Ar Ages of the Jiguanshan Porphyry Mo Deposit, Xilamulun Metallogenic Belt, NE China, and Constraints on Mineralization Events. Mineralium Deposita, 46(2):171-185. doi: 10.1007/s00126-010-0320-9
[42] Wu, H. Y., Zhang, L. C., Wan, B., et al., 2011b. Geochronological and Geochemical Constraints on Aolunhua Porphyry Mo-Cu Deposit, Northeast China, and Its Tectonic Significance. Ore Geology Reviews, 43(1):78-91. doi: 10.1016/j.oregeorev.2011.07.007
[43] Zartman, R. E., Doe, B. R., 1981. Plumbotectonics-The Model. Tectonophysics, 75(1/2):135-162. doi: 10.1016/0040-1951(81)90213-4
[44] Zeng, Q. D., Liu, J. M., Zhang, Z. L., et al., 2009. Geology and Lead-Isotope Study of the Baiyinnuoer Zn-Pb-Ag Deposit, South Segment of the Da Hinggan Mountains, Northeastern China. Resource Geology, 59(2):170-180. doi: 10.1111/j.1751-3928.2009.00088.x
[45] Zeng, Q. D., Liu, J. M., Zhang, Z. L., et al., 2011. Geology and Geochronology of the Xilamulun Molybdenum Metallogenic Belt in Eastern Inner Mongolia, China. International Journal of Earth Sciences, 100(8):1791-1809. doi: 10.1007/s00531-010-0617-z
[46] Zhai, D. G., Liu, J. J., 2014. Gold-Telluride-Sulfide Association in the Sandaowanzi Epithermal Au-Ag-Te Deposit, NE China:Implications for Phase Equilibrium and Physicochemical Conditions. Mineralogy and Petrology, 108(6):853-871. doi: 10.1007/s00710-014-0334-6
[47] Zhai, D. G., Liu, J. J., Cook, N. J., et al., 2018. Mineralogical, Textural, Sulfur and Lead Isotope Constraints on the Origin of Ag-Pb-Zn Mineralization at Bianjiadayuan, Inner Mongolia, NE China. Mineralium Deposita, 54(1):47-66. doi: 10.1007/s00126-018-0804-6
[48] Zhai, D. G., Liu, J. J., Wang, J. P., et al., 2013. Fluid Evolution of the Jiawula Ag-Pb-Zn Deposit, Inner Mongolia:Mineralogical, Fluid Inclusion, and Stable Isotopic Evidence. International Geology Review, 55(2):204-224. doi: 10.1080/00206814.2012.692905
[49] Zhai, D. G., Liu, J. J., Wang, J. P., et al., 2014a. Zircon U-Pb and Molybdenite Re-Os Geochronology, and Whole-Rock Geochemistry of the Hashitu Molybdenum Deposit and Host Granitoids, Inner Mongolia, NE China. Journal of Asian Earth Sciences, 79:144-160. doi: 10.1016/j.jseaes.2013.09.008
[50] Zhai, D. G., Liu, J. J., Zhang, H. Y., et al., 2014b. Origin of Oscillatory Zoned Garnets from the Xieertala F-Zn Skarn Deposit, Northern China:In-situ LA-ICP-MS Evidence. Lithos, 190-191:279-291. doi: 10.1016/j.lithos.2013.12.017
[51] Zhai, D. G., Liu, J. J., Zhang, H. Y., et al., 2014c. S-Pb Isotopic Geochemistry, U-Pb and Re-Os Geochronology of the Huanggangliang Fe-Sn Deposit, Inner Mongolia, NE China. Ore Geology Reviews, 59:109-122. doi: 10.1016/j.oregeorev.2013.12.005
[52] Zhang, Q., Zhan, X. Z., Liu, Z. H., et al., 2004. Trace Element Geochemistry of Meng'entaolegai Ag-Pb-Zn-In Deposit, Inner Mongolia, China. Acta Mineralogica Sinica, 24(1):39-47 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwxb200401007
[53] Zhang, Q., Zhu, X. Q., He, Y. L., et al., 2006. Indium Enrichment in the Meng'entaolegai Ag-Pb-Zn Deposit, Inner Mongolia, China. Resource Geology, 56(3):337-346. doi: 10.1111/j.1751-3928.2006.tb00287.x
[54] Zhao, Y. M., Zhang, D. Q., 1997. Metallogeny and Prospective Evaluation of Copper-Polymetallic Deposits in the Da Hinggan Mountains and Its Adjacent Regions. Seismological Press, Beijing. 83-106 (in Chinese with English Abstract)
[55] Zhu, J. J., Hu, R., Richards, J. P., et al., 2015. Genesis and Magmatic-Hydrothermal Evolution of the Yangla Skarn Cu Deposit, Southwest China. Economic Geology, 110(3):631-652. doi: 10.2113/econgeo.110.3.631
[56] Zhu, X. Q., Zhang, Q., He, Y. L., et al., 2006. Hydrothermal Source Rocks of the Meng'entaolegai Ag-Pb-Zn Deposit in the Granite Batholith, Inner Mongolia, China:Constrained by Isotopic Geochemistry. Geochemical Journal, 40(3):265-275. doi: 10.2343/geochemj.40.265