[1] Bach, W., Roberts, S, Vanko, D. A., et al., 2003. Controls of Fluid Chemistry and Complexation on the Rare-Earth Element Contents of Anhydrite from the Pacmanus Subseafloor Hydrothermal System, Manus Basin, Papua New Guinea. Mineralium Deposita, 38: 916–935, doi: 10.1007/s00126-002-0325-0
[2] Bao, X. S., Zhou, H. Y., Peng, X. T., et al., 2008. Geochemistry of REE and Yttrium in Hydrothermal Fluids from the Endeavour Segment, Juan de Fuca Ridge. Geochemical Journal, 42: 359–370 doi: 10.2343/geochemj.42.359
[3] Bischoff, J. L., Seyfried, W. E., 1978. Hydrothermal Chemistry of Seawater from 25 ℃ to 350 ℃. American Journal of Science, 278: 838–860 doi: 10.2475/ajs.278.6.838
[4] Bluth, G. J., Ohmoto, H., 1988. Sulfide-Sulfate Chimneys on the EPR 11° and 13° N Latitudes. Part Ⅱ: Sulfur Isotopes. Canadian Mineralogist, 26: 505–515
[5] Bowers, T. S., 1989. Stable Isotope Signatures of Water-Rock Interaction in Mid-Ocean Ridge Hydrothermal Systems: Sulfur, Oxygen and Hydrogen. Journal of Geophysical Research, 94: 5775–5786 doi: 10.1029/JB094iB05p05775
[6] Chiba, H., Uchiyama, N., Teagle, D. A. H., 1998. Stable Isotope Study of Anhydrite and Sulfide Minerals at the TAG Hydrothermal Mound, Mid-Atlantic Ridge, 26°N. Proceedings of the Ocean Drilling Program, Scientific Results, 158: 85–90
[7] Craddock, P. R., Bach, W., Seewald, J. S., et al., 2010. Rare Earth Element Abundances in Hydrothermal Fluids from the Manus Basin, Papua New Guinea: Indicators of Sub-Seafloor Hydrothermal Processes in Back-Arc Basins. Geochimica et Cosmochimica Acta, 74: 5494–5513 doi: 10.1016/j.gca.2010.07.003
[8] Ding, K., Seyfried, J. W. E., Zhang, Z., et al., 2005. The in situ pH of Hydrothermal Fluids at Mid-Ocean Ridges. Earth and Planetary Science Letters, 237(1–2): 167–174
[9] Douville, E., Bienvenu, P., Charlou, J. L., et al., 1999. Yttrium and Rare Earth Elements in Fluids from Various Deep-Sea Hydrothermal Systems. Geochimica et Cosmochimica Acta, 63(5): 627–643 doi: 10.1016/S0016-7037(99)00024-1
[10] Elderfield, H., 1988. The Oceanic Chemistry of the Rare-Earth Elements. Philosophical Transactions of the Royal Society of London, Series A: Mathematical and Physical Sciences, 325: 105–124
[11] Farrell, C. W., Holland, H. D., Petersen, U., 1978. The Isotopic Composition of Strontium in Barites and Anhydrites from Kuroko Deposits. Mining Geology, 28: 281–291
[12] Fornari, D. J., Shank, T., Von Damm, K. L., et al., 1998. Time-Series Temperature Measurements at High-Temperature Hydrothermal Vents, East Pacific Rise 9°49′–51′N: Evidence for Monitoring a Crustal Cracking Event. Earth and Planetary Science Letters, 160: 419–431 doi: 10.1016/S0012-821X(98)00101-0
[13] Graham, U. M., Bluth, G. J., Ohmoto, H., 1988. Sulfide-Sulfate Chimneys on the East Pacific Rise 11°N and 13°N, Part I: Mineralogy and Paragenesis. Canadian Mineralogist, 26: 487–504
[14] Haymon, R. M., Fornari, D. J., Damm, K. L. V., et al., 1993. Volcanic Eruption of the Mid-Ocean Ridge along the East Pacific Rise Crest at 9°45′–52′N: Direct Submersible Observations of Seafloor Phenomena Associated with an Eruption Event in April, 1991. Earth and Planetary Science Letters, 119: 85–101 doi: 10.1016/0012-821X(93)90008-W
[15] Haymon, R. M., Fornari, D. J., Edwards, M. H., et al., 1991. Hydrothermal Vent Distribution along the East Pacific Rise Crest (9°09′–54′N) and Its Relationship to Magmatic and Tectonic Processes on Fast-Spreading Mid-Ocean Ridges. Earth and Planetary Science Letters, 104(2–4): 513–534
[16] Herzig, P. M., Petersen, S., Hannington, M. D., 1998. Geochemistry and Sulfur-Isotopic Composition of the TAG Hydrothermal Mound, Mid-Atlantic Ridge, 26°N. Proceedings of the Ocean Drilling Program, Scientific Results, 158: 47–70
[17] Humphris, S. E., 1998. Rare Earth Element Composition of Anhydrite: Implications for Deposition and Mobility within the Active TAG Hydrothermal Mound. Proceedings of the Ocean Drilling Program, Scientific Results, 158: 143–159
[18] Humphris, S. E., Bach, W., 2005. On the Sr Isotope and REE Compositions of Anhydrites from the TAG Seafloor Hydrothermal System. Geochimica et Cosmochimica Acta, 69(6): 1511–1525 doi: 10.1016/j.gca.2004.10.004
[19] Kim, J., Lee, I., Lee, K. -Y., 2004. S, Sr, and Pb Isotopic Systematics of Hydrothermal Chimney Precipitates from the Eastern Manus Basin, Western Pacific: Evaluation of Magmatic Contribution to Hydrothermal System. Journal of Geophysical Research: Solid Earth, 109(B12): 159–163. doi: 10.1029/2003JB002912
[20] Klinkhammer, G. P., Chin, C. S., Wilson, C., et al., 1995. Venting from the Mid-Atlantic Ridge at 37°17′: The Lucky Strike Hydrothermal Site. In: Parson, L. M., Walker, C. L., Dixon, D. R., eds., Hydrothermal Vents and Processes. Geological Society, London, Special Publication, 87: 87–96
[21] Klinkhammer, G. P., Elderfield, H., Edmond, J. M., et al., 1994. Geochemical Implications of Rare Earth Element Patterns in Hydrothermal Fluids from Mid-Ocean Ridges. Geochimica et Cosmochimica Acta, 58(23): 5105–5113 doi: 10.1016/0016-7037(94)90297-6
[22] Klinkhammer, G. P., Elderfield, H., Hudson, A., 1983. Rare Earth Elements in Seawater near Hydrothermal Vents. Nature, 305: 185–188 doi: 10.1038/305185a0
[23] Kuhn, T., Herzig, P. M., Hannington, M. D., et al., 2003. Origin of Fluids and Anhydrite Precipitation in the Sediment-Hosted Grimsey Hydrothermal Field North of Iceland. Chemical Geology, 202: 5–21 doi: 10.1016/S0009-2541(03)00207-9
[24] Kusakabe, M., Chiba, H., 1979. Oxygen Isotope Geothermometry Applied to Sulfate Minerals from the Kuroko Deposits. Mining Geology, 29: 257–264
[25] Lin, L., Pang, Y. C., Ma, L. Y., et al., 2010. Submarine Hydrothermal/Hot Spring Deposition of Early Cambrian Niutitang Formation in South China. Journal of Earth Science, 21(1): 40–43
[26] Mills, R. A., Elderfried, H., 1995. Rare Earth Element Geochemistry of Hydrothermal Deposits from the Active TAG Mound, 26°N Mid-Atlantic Ridge. Geochimica et Cosmochimica Acta, 59(17): 3511–3524 doi: 10.1016/0016-7037(95)00224-N
[27] Mills, R. A., Teagle, D. A. H., Tivey, M. K., 1998. Fluid Mixing and Anhydrite Precipitation within the TAG Mound. Proceedings of the Ocean Drilling Program, Scientific Results, 158: 119–127 http://www.researchgate.net/publication/235846591_Fluid_mixing_and_anhydrite_precipitation_within_the_TAG_mound
[28] Mills, R. A., Tivey, M. K., 1999. Seawater Entrainment and Fluid Evolution with TAG Hydrothermal Mound: Evidence from Analysis of Anhydrite. In: Cann, J. R., Elderfield, H., Laughton, A., eds., Mid-Ocean Ridge. Cambridge University Press, Cambridge. 224–248
[29] Mitra, A., Elderfield, H., Greaves, M. J., 1994. Rare Earth Elements in Submarine Hydrothermal Fluids and Plumes from the Mid-Atlantic Ridge. Marine Chemistry, 46: 217–235 doi: 10.1016/0304-4203(94)90079-5
[30] Ogawa, Y., Shikazono, N., Ishiyama, D., et al., 2007. Mechanisms for Anhydrite and Gypsum Formation in the Kuroko Massive Sulfide-Sulfate Deposits, North Japan. Mineralium Deposita, 42: 219–233 doi: 10.1007/s00126-006-0101-7
[31] Owen, R. M., Oliverez, A. M., 1988. Geochemistry of Rare Earth Elements in Pacific Hydrothermal Sediments. Marine Chemistry, 25: 183–196 doi: 10.1016/0304-4203(88)90063-1
[32] Ravizza, G., Blusztajn, J., Damm, K. L. V., et al., 2001. Sr Isotope Variations in Vent Fluids from 9°46′–9°54′N East Pacific Rise: Evidence of a Non-Zero-Mg Fluid Component. Geochimica et Cosmochimica Acta, 65(5): 729–739 doi: 10.1016/S0016-7037(00)00590-1
[33] Sato, T., 1973. A Chloride Complex Model for Kuroko Mineralization. Geochemical Journal, 7: 245–270 doi: 10.2343/geochemj.7.245
[34] Shannon, R. D., 1976. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distance in Halides and Chalcogenides. Acta Crystallographica Section A, 32: 751–767 doi: 10.1107/S0567739476001551
[35] Shikazono, N., Holland, H. D., Quirk, R. F., 1983. Anhydrite in Kuroko Deposits: Mode of Occurrence and Depositional Mechanisms. Economic Geology Monograph, 5: 329–344
[36] Styrt, M. M., Brackmann, A. J., Holland, H. D., et al., 1981. The Mineralogy and the Isotopic Composition of Sulfur in Hydrothermal Sulphide/Sulfate Deposits on the East Pacific Rise, 21°N Latitude. Earth and Planetary Science Letters, 53: 382–390 doi: 10.1016/0012-821X(81)90042-X
[37] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42: 313–345 doi: 10.1144/GSL.SP.1989.042.01.19
[38] Teagle, D. A. H., Alt, J. C., Chiba, H., et al., 1998a. Dissecting an Active Hydrothermal Deposit: The Strontium and Oxygen Isotopic Anatomy of the TAG Hydrothermal Mound—Anhydrite. Proceedings of the Ocean Drilling Program, Scientific Results, 158: 129–142
[39] Teagle, D. A. H., Alt, J. C., Chiba, H., et al., 1998b. Strontium and Oxygen Isotopic Constraints on Fluid Mixing Alteration and Mineralization in the TAG Hydrothermal Deposit. Chemical Geology, 149: 1–24 doi: 10.1016/S0009-2541(98)00030-8
[40] Teagle, D. A. H., Alt, J. C., Halliday, A. N., 1998c. Tracing the Chemical Evolution of Fluids during Hydrothermal Recharge: Constraints from Anhydrite Recovered in ODP Hole 504B. Earth and Planetary Science Letters, 155: 167–182 doi: 10.1016/S0012-821X(97)00209-4
[41] Thompson, G., Humphris, S. E., Shroeder, B., et al., 1988. Hydrothermal Mineralization on the Mid-Atlantic Ridge. Canadian Mineralogist, 26: 691–711
[42] Von Damm, K. L., 2000. Chemistry of Hydrothermal Vent Fluids from 9–10°N, East Pacific Rise: "Time Zero", the Immediate Posteruptive Period. Journal of Geophysical Research, 105(B5): 11203–11222 doi: 10.1029/1999JB900414
[43] Von Damm, K. L., 2004. Evolution of the Hydrothermal System at East Pacific Rise 9°54′N: Geochemical Evidence for Changes in the Upper Oceanic Crust. In: German, C. R., Lin, J., Parson, L. M., eds., Mid-Ocean Ridges: Hydrothermal Interactions Between the Lithosphere and Oceans. American Geophysical Union, Washington DC. 285–304
[44] Von Damm, K. L., Buttermore, L. G., Oosting, S. E., et al., 1997. Direct Observation of the Evolution of a Seafloor 'Black Smoker' from Vapor to Brine. Earth and Planetary Science Letters, 149(1–4): 101–111
[45] Von Damm, K. L., Lilley, M. D., 2004. Diffuse Flow Hydrothermal Fluids from 9°50′N East Pacific Rise: Origin, Evolution and Biogeochemical Controls. In: Wilcock, W. S. D., Delong, E. F., Kelley, D. S., et al., eds., The Subseafloor Biosphere at Mid-Ocean Ridges. AGU, Washington DC. 245–268
[46] Von Damm, K. L., Oosting, S. E., Kozlowskl, R., et al., 1995. Evolution of East Pacific Rise Hydrothermal Vent Fluids Following a Volcanic Eruption. Nature, 375: 47–50 doi: 10.1038/375047a0
[47] Woodruff, L. G., Shanks Ⅲ, W. C., 1988. Sulfur Isotope Study of Chimney Minerals and Vent Fluids from 21°N, East Pacific Rise: Hydrothermal Sulfur Sources and Disequilibrium Sulfate Reduction. Journal of Geophysical Research, 93(B5): 4562–4572 doi: 10.1029/JB093iB05p04562
[48] Zhou, J. X., Huang, Z. L., Bao, G. P., et al., 2013. Sources and Thermo-Chemical Sulfate Reduction for Reduced Sulfur in the Hydrothermal Fluids, Southeastern SYG Pb-Zn Metallogenic Province, SWChina. Journal of Earth Science, 24(5): 759–771 doi: 10.1007/s12583-013-0372-8