[1] Abbott, D. H., Hoffman, S. E., 1984. Archaean Plate Tectonics Revisited 1. Heat Flow, Spreading Rate, and the Age of Subducting Oceanic Lithosphere and Their Effects on the Origin and Evolution of Continents. Tectonics, 3(4): 429–448. https://doi.org/10.1029/tc003i004p00429
[2] Anonymous, 1972. Ophiolites. Geotimes, 17: 24–25 http://d.old.wanfangdata.com.cn/Periodical/ysxb98200301001
[3] Bleeker, W., Hall, H. C., 2007. The Slave Craton: Geologic and Metallogenic Evolution. In: Goodfellow, W. D., ed., Mineral Deposits of Canada. Geological Association of Canada, Mineral Deposits Division, Special Publication, 5: 849–879
[4] Bradley, D. C., Kusky, T. M., 1992. Deformation History of the McHugh Accretionary Complex, Seldovia Quadrangle, South-Central Alaska. In: Bradley, D. C., Ford, A., eds., Geologic Studies in Alaska. Geologic Studies in Alaska by the U.S. Geological Survey during 1990, United States Geological Survey, Bulletin 1992. 17–32. https://alaska.usgs.gov/staff/geology/bradley/pubs/1992_Bradley_McHugh_Grewingk.pdf
[5] Brown, M., 2006. Duality of Thermal Regimes is the Distinctive Characteristic of Plate Tectonics since the Neoarchean. Geology, 34(11): 961–964. https://doi.org/10.1130/g22853a.1
[6] Brown, M., 2007. Metamorphic Conditions in Orogenic Belts: A Record of Secular Change. International Geology Review, 49(3): 193–234. https://doi.org/10.2747/0020-6814.49.3.193
[7] Brown, M., Johnson, T., 2018. Secular Change in Metamorphism and the Onset of Global Plate Tectonics. American Mineralogist, 103(2): 181–196. https://doi.org/10.2138/am-2018-6166
[8] Burke, K., Kidd, W. S. F., Kusky, T. M., 1985. The Pongola Structure of Southeastern Africa: The World's Oldest Preserved Rift?. Journal of Geodynamics, 2(1): 35–49. https://doi.org/10.1016/0264-3707(85)90031-6
[9] Calvert, A. J., Sawyer, E. W., Davis, W. J., et al., 1995. Archaean Subduction Inferred from Seismic Images of a Mantle Suture in the Superior Province. Nature, 375(6533): 670–674. https://doi.org/10.1038/375670a0
[10] Casey, J. F., Dewey, J. F., Fox, P. J., et al., 1981. Heterogeneous Nature of Oceanic Crust and Upper Mantle: A Perspective from the Bay of Islands Ophiolite Complex. The Sea, 7: 305–338 https://www.researchgate.net/publication/282186371_Heterogeneous_nature_of_oceanic_crust_and_upper_mantle_a_perspective_from_the_Bay_of_Islands_ophiolite_complex
[11] Cawood, P. A., Kröner, A., Pisarevsky, S., 2006. Precambrian Plate Tectonics: Criteria and Evidence. GSA Today, 16(7): 4–11. https://doi.org/10.1130/gsat01607.1
[12] Cawood, P. A., Kröner, A., Collins, W., et al., 2009. Earth Accretionary Orogens in Space and Time. Geological Society of London Special Publications, 318: 1–36 doi: 10.1144/SP318.1
[13] Coleman, R. G., 2012. Ophiolites: Ancient Oceanic Lithosphere?. Springer, Berlin. 229 http://www.sciencedirect.com/science/article/pii/0012825279901132
[14] Collet, L. W., 1927. The Structure of the Alps, 2nd Edition. E. Arnold, London. 304
[15] Condie, K. C., 2018. A Planet in Transition: The Onset of Plate Tectonics on Earth between 3 and 2 Ga?. Geoscience Frontiers, 9(1): 51–60. https://doi.org/10.1016/j.gsf.2016.09.001
[16] Condie, K. C., Kröner, A., 2008. When did Plate Tectonics Begin? Evidence from the Geologic Record. In: Condie, K. C., Pease, V., eds., When did Plate Tectonics Begin on Planet Earth? Geological Society of America Special Paper, 440: 281–294
[17] Cook, F. A., van der Velden, A. J., Hall, K. W., et al., 1999. Frozen Subduction in Canada's Northwest Territories: Lithoprobe Deep Lithospheric Reflection Profiling of the Western Canadian Shield. Tectonics, 18(1): 1–24. https://doi.org/10.1029/1998tc900016
[18] de Wit, M. J., 2004. Archean Greenstone Belts do Contain Fragments of Ophiolites. In: Kusky, T. M., ed., Precambrian Ophiolites and Related Rocks. Developments in Precambrian Geology 13. Elsevier, Amsterdam. 599–614
[19] de Wit, M. J., Ashwal, L. D., 1997. Greenstone Belts. Oxford Monograph on Geology and Geophysics 35. Clarendon Press, Oxford. 809
[20] de Wit, M. J., Furnes, H., MacLennan, S., et al., 2018. Paleoarchean Bedrock Lithologies Across the Makhonjwa Mountains of South Africa and Swaziland Linked to Geochemical, Magnetic and Tectonic Data Reveal Early Plate Tectonic Genes Flanking Subduction Margins. Geoscience Frontiers, 9(3): 603–665. https://doi.org/10.1016/j.gsf.2017.10.005
[21] Dewey, J. F., 1977. Suture Zone Complexities: A Review. Tectonophysics, 40(1/2): 53–67. https://doi.org/10.1016/0040-1951(77)90029-4
[22] Dewey, J. F., Bird, J. M., 1970. Mountain Belts and the New Global Tectonics. Journal of Geophysical Research, 75(14): 2625–2647. https://doi.org/10.1029/jb075i014p02625
[23] Dhuime, B., Hawkesworth, C. J., Cawood, P. A., et al., 2012. A Change in the Geodynamics of Continental Growth 3 Billion Years Ago. Science, 335(6074): 1334–1336. https://doi.org/10.1126/science.1216066
[24] Dilek, Y., Furnes, H., 2011. Ophiolite Genesis and Global Tectonics: Geochemical and Tectonic Fingerprinting of Ancient Oceanic Lithosphere. Geological Society of America Bulletin, 123(3/4): 387–411. https://doi.org/10.1130/b30446.1
[25] Dokukina, K. A., Kaulina, T. V., Konilov, A. N., et al., 2014. Archaean to Palaeoproterozoic High-Grade Evolution of the Belomorian Eclogite Province in the Gridino Area, Fennoscandian Shield: Geochronological Evidence. Gondwana Research, 25(2): 585–613. https://doi.org/10.1016/j.gr.2013.02.014
[26] Dolan, J. F., Mann, P., 1998. Active Strike-Slip and Collisional Tectonics of the Northern Caribbean Plate Boundary Zone. Geological Society of America Special Paper, 326: 174 http://cn.bing.com/academic/profile?id=f17c771b57c9b194dcef6a76bdfcf1c8&encoded=0&v=paper_preview&mkt=zh-cn
[27] Drabon, N., Lowe, D. R., Byerly, G. R., et al., 2017. Detrital Zircon Geochronology of Sandstones of the 3.6–3.2 Ga Barberton Greenstone Belt: No Evidence for Older Continental Crust. Geology, 45(9): 803–806. https://doi.org/10.1130/g39255.1
[28] Drummond, B. J., Goleby, B. R., Swager, C. P., 2000. Crustal Signature of Late Archaean Tectonic Episodes in the Yilgarn Craton, Western Australia: Evidence from Deep Seismic Sounding. Tectonophysics, 329(1/2/3/4): 193–221. https://doi.org/10.1016/s0040-1951(00)00196-7
[29] Duncan, M. S., Dasgupta, R., 2017. Rise of Earth's Atmospheric Oxygen Controlled by Efficient Subduction of Organic Carbon. Nature Geoscience, 10(5): 387–392. https://doi.org/10.1038/ngeo2939
[30] Ernst, W. G., 1972. Occurrence and Mineralogic Evolution of Blueschist Belts with Time. American Journal of Science, 272(7): 657–668. https://doi.org/10.2475/ajs.272.7.657
[31] Ernst, W. G., 1973. Blueschist Metamorphism and P-T Regimes in Active Subduction Zones. Tectonophysics, 17(3): 255–272. https://doi.org/10.1016/0040-1951(73)90006-1
[32] Fitch, T. J., 1972. Plate Convergence, Transcurrent Faults, and Internal Deformation Adjacent to Southeast Asia and the Western Pacific. Journal of Geophysical Research, 77(23): 4432–4460. https://doi.org/10.1029/jb077i023p04432
[33] Foley, B. J., Bercovici, D., Elkins-Tanton, L. T., 2014. Initiation of Plate Tectonics from Post-Magma Ocean Thermochemical Convection. Journal of Geophysical Research: Solid Earth, 119(11): 8538–8561. https://doi.org/10.1002/2014jb011121
[34] Foley, S. F., Buhre, S., Jacob, D. E., 2003. Evolution of the Archaean Crust by Delamination and Shallow Subduction. Nature, 421(6920): 249–252. https://doi.org/10.1038/nature01319
[35] Fritz, H., Abdelsalam, M., Ali, K. A., et al., 2013. Orogen Styles in the East African Orogens: A Review of Neoproterozoic to Early Phanerozoic Tectonic Evolution. Journal of African Earth Sciences, 86: 65–106 doi: 10.1016/j.jafrearsci.2013.06.004
[36] Furnes, H., de Wit, M., Dilek, Y., 2014. Four Billion Years of Ophiolites Reveal Secular Trends in Oceanic Crust Formation. Geoscience Frontiers, 5(4): 571–603. https://doi.org/10.1016/j.gsf.2014.02.002
[37] Furnes, H., de Wit, M., Staudigel, H., et al., 2007. A Vestige of Earth's Oldest Ophiolite. Science, 315(5819): 1704–1707. https://doi.org/10.1126/science.1139170
[38] Furnes, H., Dilek, Y., de Wit, M., 2015. Precambrian Greenstone Sequences Represent Different Ophiolite Types. Gondwana Research, 27(2): 649–685. https://doi.org/10.1016/j.gr.2013.06.004
[39] Ganne, J., De Andrade, V., Weinberg, R. F., et al., 2011. Modern-Style Plate Subduction Preserved in the Palaeoproterozoic West African Craton. Nature Geoscience, 5(1): 60–65. https://doi.org/10.1038/ngeo1321
[40] Gold, D. J. C., 2006. The Pongola Supergroup. In: Johnson, M. R., Anhaeusser, C. R., Thomas, R. J., eds., The Geology of South Africa. Geological Society of South Africa, Johannesburg. 135–147
[41] Grosch, E., Slama, J., 2017. Evidence for 3.3-Billion-Year-Old Oceanic Crust in the Barberton Greenstone Belt, South Africa. Geology, 45: 695–698. https://doi.org/10.1130/g39035.1
[42] Harrison, T. M., 2009. The Hadean Crust: Evidence from > 4 Ga Zircons. Annual Review of Earth and Planetary Sciences, 37(1): 479–505. https://doi.org/10.1146/annurev.earth.031208.100151
[43] Hickman, A. H., 2012. Review of the Pilbara Craton and Fortescue Basin, Western Australia: Crustal Evolution Providing Environments for Early Life. Island Arc, 21(1): 1–31. https://doi.org/10.1111/j.1440-1738.2011.00783.x
[44] Hildebrand, R. S., 2005. Autochthonous and Allochthonous Strata of the El Callao Greenstone Belt: Implications for the Nature of the Paleoproterozoic Trans-Amazonian Orogeny and the Origin of Gold-Bearing Shear Zones in the El Callao Mining District, Guayana Shield, Venezuela. Precambrian Research, 143(1/2/3/4): 75–86. https://doi.org/10.1016/j.precamres.2005.09.009
[45] Hildebrand, R. S., 2013. Mesozoic Assembly of the North American Cordillera. Geological Society of America Special Paper, 495: 178 http://cn.bing.com/academic/profile?id=7cd8d7616c91d2585e898d5a17f90c78&encoded=0&v=paper_preview&mkt=zh-cn
[46] Kato, Y., Nakamura, K., 2003. Origin and Global Tectonic Significance of Early Archean Cherts from the Marble Bar Greenstone Belt, Pilbara Craton, Western Australia. Precambrian Research, 125(3/4): 191–243. https://doi.org/10.1016/s0301-9268(03)00043-3
[47] Kato, Y., Ohta, I., Tsunematsu, T., et al., 1998. Rare Earth Element Variations in Mid-Archean Banded Iron Formations: Implications for the Chemistry of Ocean and Continent and Plate Tectonics. Geochimica et Cosmochimica Acta, 62(21/22): 3475–3497. https://doi.org/10.1016/s0016-7037(98)00253-1
[48] Keller, B., Schoene, B., 2018. Plate Tectonics and Continental Basaltic Geochemistry throughout Earth History. Earth and Planetary Science Letters, 481: 290–304. https://doi.org/10.1016/j.epsl.2017.10.031
[49] Kersting, A., 1995. Pb Isotope Ratios of North Pacific Sediments, Sites 881, 883, and 884: Implications for Sediment Recycling in the Kamchatkan Arc. In: Rea, D. K., Baslov, I. A., Scholl, D. W., et al., eds., Proceedings of the Ocean Drilling Program, Scientific Results, 145: 383–388
[50] Komiya, T., Yamamoto, S., Aoki, S., et al., 2015. Geology of the Eoarchean, > 3.95 Ga, Nulliak Supracrustal Rocks in the Saglek Block, Northern Labrador, Canada: The Oldest Geological Evidence for Plate Tectonics. Tectonophysics, 662: 40–66. https://doi.org/10.1016/j.tecto.2015.05.003
[51] Komiya, T., Yamamoto, S., Aoki, S., et al., 2017. A Prolonged Granitoid Formation in Saglek Block, Labrador: Zonal Growth and Crustal Reworking of Continental Crust in the Eoarchean. Geoscience Frontiers, 8(2): 355–385. https://doi.org/10.1016/j.gsf.2016.06.013
[52] Korenaga, J., 2006. Archean Geodynamics and the Thermal Evolution of Earth. In: Benn, K., Mareschal, J.-C., Condie, K. C., eds., Archean Geodynamics and Environments. American Geophysical Union Monograph, 164: 7–32
[53] Korenaga, J., 2013. Initiation and Evolution of Plate Tectonics on Earth: Theories and Observations. Annual Review of Earth and Planetary Sciences, 41(1): 117–151. https://doi.org/10.1146/annurev-earth-050212-124208
[54] Korsch, R. J., Kositcin, N., Champion, D. C., 2011. Australian Island Arcs through Time: Geodynamic Implications for the Archean and Proterozoic. Gondwana Research, 19(3): 716–734. https://doi.org/10.1016/j.gr.2010.11.018
[55] Krapez, B., Barley, M. E., 1987. Archaean Strike-Slip Faulting and Related Ensialic Basins: Evidence from the Pilbara Block, Australia. Geological Magazine, 124(6): 555–567. https://doi.org/10.1017/s0016756800017386
[56] Kusky, T. M., 1989. Accretion of the Archean Slave Province. Geology, 17(1): 63–67. https://doi.org/10.1130/0091-7613(1989)017<0063:aotasp>2.3.co;2 doi: 10.1130/0091-7613(1989)017<0063:aotasp>2.3.co;2
[57] Kusky, T. M., 1993. Collapse of Archean Orogens and the Generation of Late- to Postkinematic Granitoids. Geology, 21(10): 925–928. https://doi.org/10.1130/0091-7613(1993)021<0925:coaoat>2.3.co;2 doi: 10.1130/0091-7613(1993)021<0925:coaoat>2.3.co;2
[58] Kusky, T. M., 1998. Tectonic Setting and Terrane Accretion of the Archean Zimbabwe Craton. Geology, 26(2): 163–166. https://doi.org/10.1130/0091-7613(1998)026<0163:tsatao>2.3.co;2 doi: 10.1130/0091-7613(1998)026<0163:tsatao>2.3.co;2
[59] Kusky, T. M., Li, J. H., Tucker, R. D., 2001. The Archean Dongwanzi Ophiolite Complex, North China Craton: 2.505-Billion-Year-Old Oceanic Crust and Mantle. Science, 292(5519): 1142–1145. https://doi.org/10.1126/science.1059426
[60] Kusky, T. M., 2004. Precambrian Ophiolites and Related Rocks, Introduction. In: Kusky, T. M., ed., Precambrian Ophiolites and Related Rocks, Developments in Precambrian Geology 13. Elsevier, Amsterdam. 1–35
[61] Kusky, T. M., 2011. Geophysical and Geological Tests of Tectonic Models of the North China Craton. Gondwana Research, 20(1): 26–35. https://doi.org/10.1016/j.gr.2011.01.004
[62] Kusky, T. M., Bradley, D. C., 1999. Kinematic Analysis of Mélange Fabrics: Examples and Applications from the McHugh Complex, Kenai Peninsula, Alaska. Journal of Structural Geology, 21(12): 1773–1796. https://doi.org/10.1016/s0191-8141(99)00105-4
[63] Kusky, T. M., Li, J. H., 2010. Origin and Emplacement of Archean Ophiolites of the Central Orogenic Belt, North China Craton. Journal of Earth Science, 21(5): 744–781. https://doi.org/10.1007/s12583-010-0119-8
[64] Kusky, T. M., Li, X. Y., Wang, Z. S., et al., 2014a. Are Wilson Cycles Preserved in Archean Cratons? A Comparison of the North China and Slave Cratons. Canadian Journal of Earth Sciences, 51(3): 297–311. https://doi.org/10.1139/cjes-2013-0163
[65] Kusky, T. M., Windley, B. F., Wang, L., et al., 2014b. Flat Slab Subduction, Trench Suction, and Craton Destruction: Comparison of the North China, Wyoming, and Brazilian Cratons. Tectonophysics, 630: 208–221. https://doi.org/10.1016/j.tecto.2014.05.028
[66] Kusky, T. M., Polat, A., 1999. Growth of Granite-Greenstone Terranes at Convergent Margins, and Stabilization of Archean Cratons. Tectonophysics, 305(1/2/3): 43–73. https://doi.org/10.1016/s0040-1951(99)00014-1
[67] Kusky, T. M., Polat, A., Windley, B. F., et al., 2016. Insights into the Tectonic Evolution of the North China Craton through Comparative Tectonic Analysis: A Record of Outward Growth of Precambrian Continents. Earth-Science Reviews, 162: 387–432. https://doi.org/10.1016/j.earscirev.2016.09.002
[68] Kusky, T. M., Stern, R. J., Dewey, J. F., 2013a. Secular Changes in Geologic and Tectonic Processes. Gondwana Research, 24(2): 451–452. https://doi.org/10.1016/j.gr.2013.03.015
[69] Kusky, T. M., Windley, B. F., Safonova, I., et al., 2013b. Recognition of Ocean Plate Stratigraphy in Accretionary Orogens through Earth History: A Record of 3.8 Billion Years of Sea Floor Spreading, Subduction, and Accretion. Gondwana Research, 24(2): 501–547. https://doi.org/10.1016/j.gr.2013.01.004
[70] Kusky, T. M., Vearncombe, J., 1997. Structure of Archean Greenstone Belts. In: de Wit, M. J., Ashwal, L. D., eds., Tectonic Evolution of Greenstone Belts. Oxford Monograph on Geology and Geophysics. Clarendon Press, Oxford. 95–128
[71] Kusky, T. M., Wang, L., Dilek, Y., et al., 2011. Application of the Modern Ophiolite Concept with Special Reference to Precambrian Ophiolites. Science China Earth Sciences, 54(3): 315–341. https://doi.org/10.1007/s11430-011-4175-4
[72] Kusky, T. M., Zhai, M. G., 2012. The Neoarchean Ophiolite in the North China Craton: Early Precambrian Plate Tectonics and Scientific Debate. Journal of Earth Science, 23(3): 277–284. https://doi.org/10.1007/s12583-012-0253-6
[73] Liou, J. G., Maruyama, S., Wang, X., et al., 1990. Precambrian Blueschist Terranes of the World. Tectonophysics, 181(1/2/3/4): 97–111. https://doi.org/10.1016/0040-1951(90)90010-6
[74] Maruyama, S., Kawai, T., Windley, B. F., 2010. Ocean Plate Stratigraphy and Its Imbrication in an Accretionary Orogen: The Mona Complex, Anglesey-Lleyn, Wales, UK. Geological Society, London, Special Publications, 338(1): 55–75. https://doi.org/10.1144/sp338.4a
[75] Maruyama, S., Santosh, M., Azuma, S., 2018. Initiation of Plate Tectonics in the Hadean: Eclogitization Triggered by the ABEL Bombardment. Geoscience Frontiers, 9(4): 1033–1048. https://doi.org/10.1016/j.gsf.2016.11.009
[76] McClay, K. R., 2012. Thrust Tectonics. Springer, Netherlands. 447
[77] Mohan, M. R., Satyanarayanan, M., Santosh, M., et al., 2013. Neoarchean Suprasubduction Zone Arc Magmatism in Southern India: Geochemistry, Zircon U-Pb Geochronology and Hf Isotopes of the Sittampundi Anorthosite Complex. Gondwana Research, 23(2): 539–557. https://doi.org/10.1016/j.gr.2012.04.004
[78] Moyen, J.-F., Stevens, G., Kisters, A. F. M., 2006. 3.2 Ga High-Pressure, Low-Temperature Metamorphism in the Barberton Greenstone Belt: The Evidence for Archaean Mountain Belts and Subduction Zones. In: Condie, K. C., Kröner, A., Stein, R. J., eds., When did Plate Tectonics Begin on Earth? Theoretical and Empirical Constraints. GSA Penrose Conference, Geological Society of America. 13–18 June 2006, Lander, Wyoming
[79] Musacchio, G., White, D. J., Asudeh, I., et al., 2004. Lithospheric Structure and Composition of the Archean Western Superior Province from Seismic Refraction/Wide-Angle Reflection and Gravity Modeling. Journal of Geophysical Research, 109(B3): B03304. https://doi.org/10.1029/2003jb002427
[80] Myers, J. S., 1995. The Generation and Assembly of an Archaean Supercontinent: Evidence from the Yilgarn Craton, Western Australia. Geological Society, London, Special Publications, 95(1): 143–154. https://doi.org/10.1144/gsl.sp.1995.095.01.09
[81] Næraa, T., Scherstén, A., Rosing, M. T., et al., 2012. Hafnium Isotope Evidence for a Transition in the Dynamics of Continental Growth 3.2 Gyr Ago. Nature, 485(7400): 627–630. https://doi.org/10.1038/nature11140
[82] Nutman, A. P., Bennett, V. C., Friend, C. R. L., 2015. The Emergence of the Eoarchaean Proto-Arc: Evolution of a C. 3 700 Ma Convergent Plate Boundary at Isua, Southern West Greenland. Geological Society, London, Special Publications, 389(1): 113–133. https://doi.org/10.1144/sp389.5
[83] Percival, J. A., Skulski, T., Sanborn-Barrie, M., et al., 2012. Geology and Tectonic Evolution of the Superior Province, Canada. In: Percival, J. A., Cook, F. A., Clowes, R. M., eds., Tectonic Styles in Canada: The Lithoprobe Perspective. Geological Association of Canada Special Paper, 49: 321–378
[84] Plank, T., Ludden, J. N., Escutia, C., et al., 2000. Site 1149. Proceedings of the Ocean Drilling Program, Initial Reports. 185
[85] Polat, A., 2012. Growth of Archean Continental Crust in Oceanic Island Arcs. Geology, 40(4): 383–384. https://doi.org/10.1130/focus042012.1
[86] Richardson, S. H., Shirey, S. B., 2008. Continental Mantle Signature of Bushveld Magmas and Coeval Diamonds. Nature, 453(7197): 910–913. https://doi.org/10.1038/nature07073
[87] Richardson, S. H., Shirey, S. B., Harris, J. W., et al., 2001. Archean Subduction Recorded by Re-Os Isotopes in Eclogitic Sulfide Inclusions in Kimberley Diamonds. Earth and Planetary Science Letters, 191(3/4): 257–266. https://doi.org/10.1016/s0012-821x(01)00419-8
[88] Rollinson, H., 2010. Coupled Evolution of Archean Continental Crust and Subcontinental Lithospheric Mantle. Geology, 38(12): 1083–1086. https://doi.org/10.1130/g31159.1
[89] Sajeev, K., Windley, B. F., Connolly, J. A. D., et al., 2009. Retrogressed Eclogite (20 kbar, 1 020 ℃) from the Neoproterozoic Palghat-Cauvery Suture Zone, Southern India. Precambrian Research, 171(1/2/3/4): 23–36. https://doi.org/10.1016/j.precamres.2009.03.001
[90] Sawaki, Y., Shibuya, T., Kawai, T., et al., 2010. Imbricated Ocean-Plate Stratigraphy and U-Pb Zircon Ages from Tuff Beds in Cherts in the Ballantrae Complex, SW Scotland. Geological Society of America Bulletin, 122(3/4): 454–464. https://doi.org/10.1130/b26329.1
[91] Șengör, A. M. C., Natal'in, B. A., Sunal, G., et al., 2014. A New Look at the Altaids: A Superorogenic Complex in Northern and Central Asia as a Factory of Continental Crust. Part Ⅰ: Geological Data Compilation (Exclusive of Palaeomagnetic Observations). Austrian Journal of Earth Sciences, 107: 169–232
[92] Shibuya, T., Komiya, T., Nakamura, K., et al., 2010. Highly Alkaline, High-Temperature Hydrothermal Fluids in the Early Archean Ocean. Precambrian Research, 182(3): 230–238. https://doi.org/10.1016/j.precamres.2010.08.011
[93] Shipboard Scientific Party, 2000. Leg 190 Preliminary Report: Deformation and Fluid Flow Processes in the Nankai Trough Accretionary Prism. ODP Prelim. Rpt., 190. [2018-10-29]. http://www-odp.tamu.edu/publications/prelim/190_prel/190Prel.pdf
[94] Shirey, S. B., Richardson, S. H., 2011. Start of the Wilson Cycle at 3 Ga Shown by Diamonds from Subcontinental Mantle. Science, 333(6041): 434–436. https://doi.org/10.1126/science.1206275
[95] Sleep, N. H., Windley, B. F., 1982. Archean Plate Tectonics: Constraints and Inferences. The Journal of Geology, 90(4): 363–379. https://doi.org/10.1086/628691
[96] Smart, K. A., Tappe, S., Stern, R. A., et al., 2016. Early Archaean Tectonics and Mantle Redox Recorded in Witwatersrand Diamonds. Nature Geoscience, 9(3): 255–259. https://doi.org/10.1038/ngeo2628
[97] Smithies, R. H., Van Kranendonk, M. J., Champion, D. C., 2007. The Mesoarchean Emergence of Modern-Style Subduction. Gondwana Research, 11(1/2): 50–68. https://doi.org/10.1016/j.gr.2006.02.001
[98] Sol, S., Thomson, C. J., Kendall, J. M., et al., 2002. Seismic Tomographic Images of the Cratonic Upper Mantle beneath the Western Superior Province of the Canadian Shield—A Remnant Archean Slab?. Physics of the Earth and Planetary Interiors, 134(1/2): 53–69. https://doi.org/10.1016/s0031-9201(02)00081-x
[99] Stern, R. J., 2007. When and how did Plate Tectonics Begin? Theoretical and Empirical Considerations. Chinese Science Bulletin, 52(5): 578–591. https://doi.org/10.1007/s11434-007-0073-8
[100] Stern, R. J., 2008. Modern-Style Plate Tectonics Began in Neoproterozoic Time: An Alternative Interpretation of Earth's Tectonic History. Geological Society of America Special Paper, 440: 265–280 http://cn.bing.com/academic/profile?id=cc547c57b3c627c31bf61b537f9ebeef&encoded=0&v=paper_preview&mkt=zh-cn
[101] Szilas, K., Tusch, J., Hoffmann, J. E., et al., 2016. Hafnium Isotope Constraints on the Origin of Mesoarchaean Andesites in Southern West Greenland, North Atlantic Craton. Geological Society, London, Special Publications, 449(1): 19–38. https://doi.org/10.1144/sp449.2
[102] van Hunen, J., Moyen, J. F., 2012. Archean Subduction: Fact or Fiction?. Annual Review of Earth and Planetary Sciences, 40(1): 195–219. https://doi.org/10.1146/annurev-earth-042711-105255
[103] von Huene, R., Scholl, D. W., 1993. The Return of Sialic Material to the Mantle Indicated by Terrigeneous Material Subducted at Convergent Margins. Tectonophysics, 219(1/2/3): 163–175. https://doi.org/10.1016/0040-1951(93)90294-t
[104] Wakita, K., 1997. Accretionary Complex and Ocean Plate Stratigraphy. Earth Science (Chikyu Kagaku), 51: 300–310 (in Japanese) http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0227903014/
[105] Wakita, K., 2012. Mappable Features of Mélanges Derived from Ocean Plate Stratigraphy in the Jurassic Accretionary Complexes of Mino and Chichibu Terranes in Southwest Japan. Tectonophysics, 568/569: 74–85. https://doi.org/10.1016/j.tecto.2011.10.019
[106] Wang, J. P., Kusky, T. M., Polat, A., et al., 2013. A Late Archean Tectonic Mélange in the Central Orogenic Belt, North China Craton. Tectonophysics, 608: 929–946. https://doi.org/10.1016/j.tecto.2013.07.025
[107] Wang, J. P., Kusky, T. M., Wang, L., et al., 2016. Structural Relationships along a Neoarchean Arc-Continent Collision Zone, North China Craton. Geological Society of America Bulletin, 129(1/2): 59–75. https://doi.org/10.1130/b31479.1
[108] Wilson, J. T., 1965. A New Class of Faults and Their Bearing on Continental Drift. Nature, 207(4995): 343–347. https://doi.org/10.1038/207343a0
[109] Wilson, J. T., 1968. Static or Mobile Earth: The Current Scientific Revolution. Proceedings American Philosophical Society, 112: 309–320 http://d.old.wanfangdata.com.cn/NSTLHY/NSTL_HYCC0214758256/
[110] Windley, B. F., 1993. Uniformitarianism Today: Plate Tectonics is the Key to the Past. Journal of the Geological Society, 150(1): 7–19. https://doi.org/10.1144/gsjgs.150.1.0007
[111] Windley, B. F., Garde, A. A., 2009. Arc-Generated Blocks with Crustal Sections in the North Atlantic Craton of West Greenland: Crustal Growth in the Archean with Modern Analogues. Earth-Science Reviews, 93(1/2): 1–30. https://doi.org/10.1016/j.earscirev.2008.12.001
[112] Zibra, I., Korhonen, F. J., Peternell, M., et al., 2017. On Thrusting, Regional Unconformities and Exhumation of High-Grade Greenstones in Neoarchean Orogens. the Case of the Waroonga Shear Zone, Yilgarn Craton. Tectonophysics, 712/713: 362–395. https://doi.org/10.1016/j.tecto.2017.05.017