[1] Ayalew, D., Gibson, S. A., 2009. Head-to-Tail Transition of the Afar Mantle Plume: Geochemical Evidence from a Miocene Bimodal Basalt-Rhyolite Succession in the Ethiopian Large Igneous Province. Lithos, 112(3/4): 461-476. https://doi.org/10.1016/j.lithos.2009.04.005
[2] Boutilier, R. R., Keen, C. E., 1999. Small-Scale Convection and Divergent Plate Boundaries. Journal of Geophysical Research: Solid Earth, 104(B4): 7389-7403. https://doi.org/10.1029/1998jb900076
[3] Bryan, S. E., 2007. Silicic Large Igneous Provinces. Episodes, 30: 20-31 doi: 10.18814/epiiugs/2007/v30i1/004
[4] Bryan, S. E., Ernst, R. E., 2008. Revised Definition of Large Igneous Provinces (LIPs). Earth-Science Reviews, 86: 175-202. https://doi.org/10.1016/j.earscirev.2007.08.008
[5] Bryan, S. E., Riley, T. R., Jerram, D. A., et al., 2002. Silicic Volcanism: An Undervalued Component of Large Igneous Provinces and Volcanic Rifted Margins. Geological Society of America Special Paper, 362: 97-118. https://doi.org/10.1130/0-8137-2362-0.97
[6] Cheng, Z. G., Zhang, Z. C., Xie, Q. H., et al., 2018. Subducted Slab-Plume Interaction Traced by Magnesium Isotopes in the Northern Margin of the Tarim Large Igneous Province. Earth and Planetary Science Letters, 489: 100-110. https://doi.org/10.1016/j.epsl.2018.02.039
[7] Eggleton, R. A., Tilley, D. B., 1998. Hisingerite: A Ferric Kaolin Mineral with Curved Morphology. Clays and Clay Minerals, 46(4): 400-413. https://doi.org/10.1346/ccmn.1998.0460404
[8] Ewart, A., Milner, S. C., Armstrong, R. A., et al., 1998. Etendeka Volcanism of the Goboboseb Mountains and Messum Igneous Complex, Namibia. Part II: Voluminous Quartz Latite Volcanism of the Awahab Magma System. Journal of Petrology, 39(2): 227-253. https://doi.org/10.1093/petroj/39.2.227
[9] Gaspar, M., Knaack, C., Meinert, L. D., et al., 2008. REE in Skarn Systems: A LA-ICP-MS Study of Garnets from the Crown Jewel Gold Deposit. Geochimica et Cosmochimica Acta, 72(1): 185-205. https://doi.org/10.1016/j.gca.2007.09.033
[10] He, X. H., Zhong, H., Zhao, Z. F., et al., 2018. U-Pb Geochronology, Elemental and Sr-Nd Isotopic Geochemistry of the Houyaoyu Granite Porphyries: Implication for the Genesis of Early Cretaceous Felsic Intrusions in East Qinling. Journal of Earth Science, 29(4): 920-938. https://doi.org/10.1007/s12583-018-0788-2
[11] Herzberg, C., Gazel, E., 2009. Petrological Evidence for Secular Cooling in Mantle Plumes. Nature, 458(7238): 619-622. https://doi.org/10.1038/nature07857
[12] Hu, A. Q., Jahn, B. M., Zhang, G. X., et al., 2000. Crustal Evolution and Phanerozoic Crustal Growth in Northern Xinjiang: Nd Isotopic Evidence. Part I. Isotopic Characterization of Basement Rocks. Tectonophysics, 328(1/2): 15-51. https://doi.org/10.1016/s0040-1951(00)00176-1
[13] James, D. E., 1981. The Combined Use of Oxygen and Radiogenic Isotopes as Indicators of Crustal Contamination. Annual Review of Earth and Planetary Sciences, 9(1): 311-344. https://doi.org/10.1146/annurev.ea.09.050181.001523
[14] Jones, A. P., 2005. Meteorite Impacts as Triggers to Large Igneous Provinces. Elements, 1(5): 277-281. https://doi.org/10.2113/gselements.1.5.277
[15] Kohyama, N., Sudo, T., 1975. Hisingerite Occurring as a Weathering Product of Iron-Rich Saponite. Clays and Clay Minerals, 23(3): 215-218. https://doi.org/10.1346/ccmn.1975.0230309
[16] Leake, B. E., Woolley, A. R., Arps, C. E. S., et al., 1997. Nomenclature of Amphiboles Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. European Journal of Mineralogy, 9(3): 623-651. https://doi.org/10.1127/ejm/9/3/0623
[17] Lin, C. S., Li, H., Liu, J. Y., 2012. Major Unconformities, Tectonostratigraphic Frameword, and Evolution of the Superimposed Tarim Basin, Northwest China. Journal of Earth Science, 23(4): 395-407. https://doi.org/10.1007/s12583-012-0263-4
[18] Liu, Y. S., Hu, Z. C., Zong, K. Q., et al., 2010. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535-1546. https://doi.org/10.1007/s11434-010-3052-4
[19] Liu, H. Q., Xu, Y. G., Tian, W., et al., 2014. Origin of Two Types of Rhyolites in the Tarim Large Igneous Province: Consequences of Incubation and Melting of a Mantle Plume. Lithos, 204: 59-72. https://doi.org/10.1016/j.lithos.2014.02.007
[20] Liu, H. Q., Xu, Y. G., Zhong, Y. T., et al., 2019. Crustal Melting above a Mantle Plume: Insights from the Permian Tarim Large Igneous Province, NW China. Lithos, 326-327: 370-383. https://doi.org/10.1016/j.lithos.2018.12.031
[21] Liu, S. X., Xu, H. J., 2019. Geochemistry, Zircon U-Pb Age and Hf Isotope of the Huilanshan Granitoids in the North Dabie Terrane: Implications for Syn-Collapse Magmatism of Orogen. Journal of Earth Science, 30(3): 636-646. https://doi.org/10.1007/s12583-019-0892-y
[22] Long, X. P., Yuan, C., Sun, M., et al., 2010. Archean Crustal Evolution of the Northern Tarim Craton, NW China: Zircon U-Pb and Hf Isotopic Constraints. Precambrian Research, 180(3/4): 272-284. https://doi.org/10.1016/j.precamres.2010.05.001
[23] Mahoney, J. J., Saunders, A. D., Storey, M., et al., 2008. Geochemistry of the Volcan de L'Androy Basalt-Rhyolite Complex, Madagascar Cretaceous Igneous Province. Journal of Petrology, 49(6): 1069-1096. https://doi.org/10.1093/petrology/egn018
[24] Meyer, R., Nicoll, G. R., Hertogen, J., et al., 2009. Trace Element and Isotope Constraints on Crustal Anatexis by Upwelling Mantle Melts in the North Atlantic Igneous Province: An Example from the Isle of Rum, NW Scotland. Geological Magazine, 146(3): 382-399. https://doi.org/10.1017/s0016756809006244
[25] McDonough, W. F., Sun, S. S., 1995. The Composition of the Earth. Chemical Geology, 120(3/4): 223-253. https://doi.org/10.1016/0009-2541(94)00140-4
[26] McIntire, W. L., 1963. Trace Element Partition Coefficients—A Review of Theory and Applications to Geology. Geochimica et Cosmochimica Acta, 27(12): 1209-1264. https://doi.org/10.1016/0016-7037(63)90049-8
[27] Milner, S. C., Duncan, A. R., Ewart, A., 1992. Quartz Latite Rheoignimbrite Flows of the Etendeka Formation, North-Western Namibia. Bulletin of Volcanology, 54(3): 200-219. https://doi.org/10.1007/bf00278389
[28] Milner, S. C., Duncan, A. R., Whittingham, A. M., et al., 1995. Trans-Atlantic Correlation of Eruptive Sequences and Individual Silicic Volcanic Units within the Paraná-Etendeka Igneous Province. Journal of Volcanology and Geothermal Research, 69(3/4): 137-157. https://doi.org/10.1016/0377-0273(95)00040-2
[29] Ngia, N. R., Hu, M. Y., Gao, D., et al., 2019. Application of Stable Strontium Isotope Geochemistry and Fluid Inclusion Microthermometry to Studies of Dolomitization of the Deeply Buried Cambrian Carbonate Successions in the West-Central Tarim Basin, NW China. Journal of Earth Science, 30(1): 176-193. https://doi.org/10.1007/s12583-017-0954-y
[30] Pan, Y., Pan, M., Tian, W., et al., 2013. Redefined Distribution of the Permian Basalt in the Central Tarim Area: A New Approach Based on Down Hole Logging Data Explanation. Acta Geologica Sinica, 87(10): 1542-1550 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=DZXE201310005&dbcode=CJFD&year=2013&dflag=pdfdown
[31] Pankhurst, M. J., Schaefer, B. F., Betts, P. G., 2011. Geodynamics of Rapid Voluminous Felsic Magmatism through Time. Lithos, 123(1/2/3/4): 92-101. https://doi.org/10.1016/j.lithos.2010.11.014
[32] Putirka, K., 2016. Amphibole Thermometers and Barometers for Igneous Systems and Some Implications for Eruption Mechanisms of Felsic Magmas at Arc Volcanoes. American Mineralogist, 101(4): 841-858. https://doi.org/10.2138/am-2016-5506
[33] Shangguan, S. M., Peate, I. U., Tian, W., et al., 2016. Re-Evaluating the Geochronology of the Permian Tarim Magmatic Province: Implications for Temporal Evolution of Magmatism. Journal of the Geological Society, 173(1): 228-239. https://doi.org/10.1144/jgs2014-114
[34] Shayan, A., 1984. Hisingerite Material from a Basalt Quarry Near Geelong, Victoria, Australia. Clays and Clay Minerals, 32(4): 272-278. https://doi.org/10.1346/ccmn.1984.0320404
[35] Sobolev, A. V., Hofmann, A. W., Kuzmin, D. V., et al., 2007. The Amount of Recycled Crust in Sources of Mantle-Derived Melts. Science, 316: 412-417. https://doi.org/ 10.1126/science. 1138113 doi: 10.1126/science.1138113
[36] Stern, R. J., Li, S. M., Keller, G. R., 2018. Continental Crust of China: A Brief Guide for the Perplexed. Earth-Science Reviews, 179: 72-94. https://doi.org/10.1016/j.earscirev.2018.01.020
[37] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematic of Oceanic Basalts: Implications for Mantle Composition and Process. In: Saunders, A. D., Norry, M. J., eds., Magmatism in Ocean Basins. Geological Society London Special Publications, 42: 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
[38] Tang, L. J., Huang, T. Z., Qiu, H. J., et al., 2014. Fault Systems and Their Mechanisms of the Formation and Distribution of the Tarim Basin, NW China. Journal of Earth Science, 25(1): 169-182. https://doi.org/10.1007/s12583-014-0410-1
[39] Tian, W., Campbell, I. H., Allen, C. M., et al., 2010. The Tarim Picrite-Basalt-Rhyolite Suite, a Permian Flood Basalt from Northwest China with Contrasting Rhyolites Produced by Fractional Crystallization and Anatexis. Contributions to Mineralogy and Petrology, 160(3): 407-425. https://doi.org/10.1007/s00410-009-0485-3
[40] Turner, S., Rushmer, T., 2009. Similarities between Mantle-Derived A-Type Granites and Voluminous Rhyolites in Continental Flood Basalt Provinces. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 100(1/2): 51-60. https://doi.org/10.1017/s1755691009016181
[41] Wang, F. Y., Ge, C., Ning, S. Y., et al., 2017. A New Approach to LA-ICP-MS Mapping and Application in Geology. Acta Petrologica Sinica, 33(11): 3422-3436 (in Chinese with English Abstract) http://www.zhangqiaokeyan.com/academic-journal-cn_acta-petrologica-sinica_thesis/0201252013664.html
[42] Whelan, J. A., Goldich, S. S., 1961. New Data for Hisingerite and Neotocite. The American Mineralogist, 46: 1412-1423 http://ci.nii.ac.jp/naid/10008768203
[43] White, R. S., 1992. Magmatism during and after Continental Break-Up. In: Storey, B. C., Alabaster, T., Pankhurst, R. J., eds., Magmatism and the Causes of Continental Break-Up. Geological Society London Special Publication, 68: 1-16. https://doi.org/10.1144/gsl.sp.1992.068.01.01
[44] Xiao, X., Zhou, T. F., White, N. C., et al., 2018. The Formation and Trace Elements of Garnet in the Skarn Zone from the Xinqiao Cu-S-Fe-Au Deposit, Tongling Ore District, Anhui Province, Eastern China. Lithos, 302-303: 467-479. https://doi.org/10.1016/j.lithos.2018.01.023
[45] Xu, Y. G., Wei, X., Luo, Z. Y., et al., 2014. The Early Permian Tarim Large Igneous Province: Main Characteristics and a Plume Incubation Model. Lithos, 204: 20-35. https://doi.org/10.1016/j.lithos.2014.02.015
[46] Yang, S. F., Chen, H. L., Li, Z. L., et al., 2013. Early Permian Tarim Large Igneous Province in Northwest China. Science China Earth Sciences, 56(12): 2015-2026. https://doi.org/10.1007/s11430-013-4653-y
[47] Yang, Z. Y., Luo, P., Liu, B., et al., 2019. Depositional Characteristics of Early Cambrian Hydrothermal Fluid: A Case Study of Siliceous Rocks from Yurtus Formation in Aksu Area of Tarim Basin, Northwest China. Earth Science, 44(11): 3845-3870 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201911022.htm
[48] Yu, J. C., Mo, X. X., Dong, G. C., et al., 2011. Felsic Volcanic Rocks from Northern Tarim, NW China: Zircon U-Pb Dating and Geochemical Characteristics. Acta Petrologica Sinia, 27(7): 2184-2194. https://doi.org/10.1016/j.sedgeo.2011.06.007