[1] Andersen, T. B., Jamtveit, B., 1990. Uplift of Deep Crust during Orogenic Extensional Collapse: A Model Based on Field Studies in the Sogn-Sunnfjord Region of Western Norway. Tectonics, 9(5): 1097-1111. https://doi.org/10.1029/tc009i005p01097
[2] Andréasson, P. G., 1994. The Baltoscandian Margin in Neoproterozoic- Early Palaeozoic Times: Some Constraints on Terrane Derivation and Accretion in the Arctic Scandinavian Caledonides. Tectonophysics, 231(1-3): 1-32. https://doi.org/10.1016/0040-1951(94)90118-x
[3] Andréasson, P. G., Gorbatschev, R., 1980. Metamorphism in Extensive Nappe Terrains: A Study of the Central Scandinavian Caledonides. Geologiska Föreningen i Stockholm Förhandlingar, 102(4): 335-357. https://doi.org/10.1080/11035898009454492
[4] Andréasson, P. G., Svenningsen, O. M., Albrecht, L., 1998. Dawn of Phanerozoic Orogeny in the North Atlantic Tract; Evidence from the Seve-Kalak Superterrane, Scandinavian Caledonides. Geologiska Föreningen i Stockholm Förhandlingar, 120(2): 159-172. https://doi.org/10.1080/11035899801202159
[5] Arnbom, J. O., 1980. Metamorphism of the Seve Nappes at Åreskutan, Swedish Caledonides. Geologiska Föreningen i Stockholm Förhandlingar, 102(4): 359-371. https://doi.org/10.1080/11035898009454493
[6] Barnes, C., Majka, J., Schneider, D., et al., 2019. High-Spatial Resolution Dating of Monazite and Zircon Reveals the Timing of Subduction-Exhumation of the Vaimok Lens in the Seve Nappe Complex (Scandinavian Caledonides). Contributions to Mineralogy and Petrology, 174(1): 1-18. https://doi.org/10.1007/s00410-018-1539-1
[7] Bender, H., Ring, U., Almqvist, B. S. G., et al., 2018. Metamorphic Zonation by Out-of-Sequence Thrusting at Back-Stepping Subduction Zones: Sequential Accretion of the Caledonian Internides, Central Sweden. Tectonics, 37(10): 3545-3576. https://doi.org/10.1029/2018tc005088
[8] Benisek, A., Dachs, E., Kroll, H., 2010. A Ternary Feldspar-Mixing Model Based on Calorimetric Data: Development and Application. Contributions to Mineralogy and Petrology, 160(3): 327-337. https://doi.org/10.1007/s00410-009-0480-8
[9] Bergman, S., 1992. P-T Paths in the Handöl Area, Central Scandinavia: Record of Caledonian Accretion of Outboard Rocks to the Baltoscandian Margin. Journal of Metamorphic Geology, 10(2): 265-281. https://doi.org/10.1111/j.1525-1314.1992.tb00082.x
[10] Brandelik, A., 2009. CALCMIN-An EXCEL™ Visual Basic Application for Calculating Mineral Structural Formulae from Electron Microprobe Analyses. Computers & Geosciences, 35(7): 1540-1551. https://doi.org/10.1016/j.cageo.2008.09.011
[11] Brown, M., 2007. Crustal Melting and Melt Extraction, Ascent and Emplacement in Orogens: Mechanisms and Consequences. Journal of the Geological Society, 164(4): 709-730. https://doi.org/10.1144/0016-76492006-171
[12] Brueckner, H. K., van Roermund, H. L. M., 2004. Dunk Tectonics: A Multiple Subduction/Eduction Model for the Evolution of the Scandinavian Caledonides. Tectonics, 23(2): 1-20. https://doi.org/10.1029/2003tc001502
[13] Brueckner, H. K., van Roermund, H. L. M., 2007. Concurrent HP Metamorphism on both Margins of Iapetus: Ordovician Ages for Eclogites and Garnet Pyroxenites from the Seve Nappe Complex, Swedish Caledonides. Journal of the Geological Society, 164(1): 117-128. https://doi.org/10.1144/0016-76492005-139
[14] Bukała, M., Klonowska, I., Barnes, C., et al., 2018. UHP Metamorphism Recorded by Phengite Eclogite from the Caledonides of Northern Sweden: P-T Path and Tectonic Implications. Journal of Metamorphic Geology, 36(5): 547-566. https://doi.org/10.1111/jmg.12306
[15] Butler, J. P., Jamieson, R. A., Steenkamp, H. M., et al., 2013. Discovery of Coesite-Eclogite from the Nordøyane UHP Domain, Western Gneiss Region, Norway: Field Relations, Metamorphic History, and Tectonic Significance. Journal of Metamorphic Geology, 31(2): 147-163. https://doi.org/10.1111/jmg.12004
[16] Carswell, D. A., Tucker, R. D., O'Brien, P. J., et al., 2003. Coesite Micro-Inclusions and the U/Pb Age of Zircons from the Hareidland Eclogite in the Western Gneiss Region of Norway. Lithos, 67(3/4): 181-190. https://doi.org/10.1016/s0024-4937(03)00014-8
[17] Chen, S., Li, X. P., Kong, F. M., et al., 2018. Metamorphic Evolution and Zircon U-Pb Ages of the Nanshankou Mafic High Pressure Granulites from the Jiaobei Terrane, North China Craton. Journal of Earth Science, 29(5): 1219-1235. https://doi.org/10.1007/s12583-017-0956-9
[18] Connolly, J. A. D., 2005. Computation of Phase Equilibria by Linear Programming: A Tool for Geodynamic Modeling and Its Application to Subduction Zone Decarbonation. Earth and Planetary Science Letters, 236(1/2): 524-541. https://doi.org/10.1016/j.epsl.2005.04.033
[19] Corfu, F., Gasser, D., Chew, D. M., 2014. New Perspectives on the Caledonides of Scandinavia and Related Areas: Introduction. Geological Society, London, Special Publications, 390(1): 1-8. https://doi.org/10.1144/sp390.28
[20] Cuthbert, S. J., Carswell, D. A., Krogh-Ravna, E. J., et al., 2000. Eclogites and Eclogites in the Western Gneiss Region, Norwegian Caledonides. Lithos, 52(1-4): 165-195. https://doi.org/10.1016/s0024-4937(99)00090-0
[21] Davies, J. H., von Blanckenburg, F., 1995. Slab Breakoff: A Model of Lithosphere Detachment and Its Test in the Magmatism and Deformation of Collisional Orogens. Earth and Planetary Science Letters, 129(1-4): 85-102. https://doi.org/10.1016/0012-821x(94)00237-s
[22] Day, H. W., 2012. A Revised Diamond-Graphite Transition Curve. American Mineralogist, 97(1): 52-62. https://doi.org/10.2138/am.2011.3763
[23] Dobrzhinetskaya, L. F., Eide, E. A., Larsen, R. B., et al., 1995. Microdiamond in High-Grade Metamorphic Rocks of the Western Gneiss Region, Norway. Geology, 23(7): 597-600. https://doi.org/10.1130/0091-7613(1995)0230597:mihgmr>2.3.co;2 doi: 10.1130/0091-7613(1995)0230597:mihgmr>2.3.co;2
[24] Faryad, S. W., 2012. High-Pressure Polymetamorphic Garnet Growth in Eclogites from the Mariánské Lázně Complex (Bohemian Massif). European Journal of Mineralogy, 24(3): 483-497. https://doi.org/10.1127/0935-1221/2012/0024-2184
[25] Faryad, S. W., Cuthbert, S. J., 2020. High-Temperature Overprint in (U)HPM Rocks Exhumed from Subduction Zones: A Product of Isothermal Decompression or a Consequence of Slab Break-off (Slab Rollback)? Earth-Science Reviews, 202: 103108. https://doi.org/10.1016/j.earscirev.2020.103108
[26] Fassmer, K., Klonowska, I., Walczak, K., et al., 2017. Middle Ordovician Subduction of Continental Crust in the Scandinavian Caledonides: An Example from Tjeliken, Seve Nappe Complex, Sweden. Contributions to Mineralogy and Petrology, 172(11/12): 1-21. https://doi.org/10.1007/s00410-017-1420-7
[27] Fossen, H., 2000. Extensional Tectonics in the Caledonides: Synorogenic or Postorogenic? Tectonics, 19(2): 213-224. https://doi.org/10.1029/1999tc900066
[28] Garfunkel, Z., Greiling, R. O., 1998. A Thin Orogenic Wedge upon Thick Foreland Lithosphere and the Missing Foreland Basin. Geologische Rundschau, 87(3): 314-325. https://doi.org/10.1007/s005310050212
[29] Gee, D. G., 2020. Chapter 23 Swedish Caledonides: Key Components of an Early-Middle Paleozoic Himalaya-Type Collisional Orogen. Geological Society, London, Memoirs, 50(1): 577-599. https://doi.org/10.1144/m50-2019-20
[30] Gee, D. G., Janák, M., Majka, J., et al., 2013. Subduction along and within the Baltoscandian Margin during Closing of the Iapetus Ocean and Baltica-Laurentia Collision. Lithosphere, 5(2): 169-178. https://doi.org/10.1130/l220.1
[31] Gee, D. G., Juhlin, C., Pascal, C., et al., 2010. Collisional Orogeny in the Scandinavian Caledonides (COSC). GFF, 132 (1): 29-44. https://doi.org/10.1080/11035891003759188
[32] Gee, D. G., Kumpulainen, R., Roberts, D., et al., 1985. Scandinavian Caledonides, Tectonostratigraphic Map, Scale 1: 2 000 000. In: Gee, D. G., Sturt, B. A., eds., The Caledonide Orogen-Scandinavia and Related Areas. Wiley, Chichester
[33] Giuntoli, F., Menegon, L., Warren, C. J., 2018. Replacement Reactions and Deformation by Dissolution and Precipitation Processes in Amphibolites. Journal of Metamorphic Geology, 36(9): 1263-1286. https://doi.org/10.1111/jmg.12445
[34] Griffin, W. L., Brueckner, H. K., 1980. Caledonian Sm-Nd Ages and a Crustal Origin for Norwegian Eclogites. Nature, 285(5763): 319-321. https://doi.org/10.1038/285319a0
[35] Grimmer, J. C., Glodny, J., Drüppel, K., et al., 2015. Early-to Mid-Silurian Extrusion Wedge Tectonics in the Central Scandinavian Caledonides. Geology, 43(4): 347-350. https://doi.org/10.1130/g36433.1
[36] Gromet, L. P., Sjöström, H., Bergman, S., et al., 1996. Contrasting Ages of Metamorphism in the Seve Nappes: U-Pb Results from the Central and Northern Swedish Caledonides. GFF, 118(Suppl. 4): 36-37. https://doi.org/10.1080/11035899609546308
[37] Hacker, B. R., Gans, P. B., 2005. Continental Collisions and the Creation of Ultrahigh-Pressure Terranes: Petrology and Thermochronology of Nappes in the Central Scandinavian Caledonides. Geological Society of America Bulletin, 117(1): 117-134. https://doi.org/10.1130/b25549.1
[38] Holland, T. J. B., Powell, R., 2011. An Improved and Extended Internally Consistent Thermodynamic Dataset for Phases of Petrological Interest, Involving a New Equation of State for Solids. Journal of Metamorphic Geology, 29(3): 333-383. https://doi.org/10.1111/j.1525-1314.2010.00923.x
[39] Holland, T., Baker, J., Powell, R., 1998. Mixing Properties and Activity-Composition Relationships of Chlorites in the System MgO-FeO-Al2O3-SiO2-H2O. European Journal of Mineralogy, 10(3): 395-406. https://doi.org/10.1127/ejm/10/3/0395
[40] Holland, T., Powell, R., 1996. Thermodynamics of Order-Disorder in Minerals: Ⅱ, Symmetric Formalism Applied to Solid Solutions. American Mineralogist, 81(11/12): 1425-1437. https://doi.org/10.2138/am-1996-11-1215
[41] Holness, M. B., Cesare, B., Sawyer, E. W., 2011. Melted Rocks under the Microscope: Microstructures and Their Interpretation. Elements, 7(4): 247-252. https://doi.org/10.2113/gselements.7.4.247
[42] Janák, M., van Roermund, H., Majka, J., et al., 2013. UHP Metamorphism Recorded by Kyanite-Bearing Eclogite in the Seve Nappe Complex of Northern Jämtland, Swedish Caledonides. Gondwana Research, 23(3): 865-879. https://doi.org/10.1016/j.gr.2012.06.012
[43] Klonowska, I., Janák, M., Majka, J., et al., 2016. Eclogite and Garnet Pyroxenite from Stor Jougdan, Seve Nappe Complex, Sweden: Implications for UHP Metamorphism of Allochthons in the Scandinavian Caledonides. Journal of Metamorphic Geology, 34(2): 103-119. https://doi.org/10.1111/jmg.12173
[44] Klonowska, I., Janák, M., Majka, J., et al., 2017. Microdiamond on Åreskutan Confirms Regional UHP Metamorphism in the Seve Nappe Complex of the Scandinavian Caledonides. Journal of Metamorphic Geology, 35(5): 541-564. https://doi.org/10.1111/jmg.12244
[45] Klonowska, I., Majka, J., Janák, M., et al., 2014. Pressure-Temperature Evolution of a Kyanite-Garnet Pelitic Gneiss from Åreskutan: Evidence of Ultra-High-Pressure Metamorphism of the Seve Nappe Complex, West-Central Jämtland, Swedish Caledonides. Geological Society, London, Special Publications, 390(1): 321-336. https://doi.org/10.1144/sp390.7
[46] Kretz, R., 1983. Symbols for Rock Forming Minerals. American Mineralogist, 68(1/2): 277-279 http://petrology.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=gsammin&resid=68/1-2/277
[47] Kriegsman, L. M., Álvarez-Valero, A. M., 2010. Melt-Producing versus Melt-Consuming Reactions in Pelitic Xenoliths and Migmatites. Lithos, 116(3/4): 310-320. https://doi.org/10.1016/j.lithos.2009.09.001
[48] Kylander-Clark, A. R. C., Hacker, B. R., Mattinson, J. M., 2008. Slow Exhumation of UHP Terranes: Titanite and Rutile Ages of the Western Gneiss Region, Norway. Earth and Planetary Science Letters, 272(3/4): 531-540. https://doi.org/10.1016/j.epsl.2008.05.019
[49] Li, B. T., Massonne, H. -J., 2016. Early Variscan P-T Evolution of an Eclogite Body and Adjacent Orthogneiss from the Northern Malpica-Tuy Shear-Zone in NW Spain. European Journal of Mineralogy, 28(6): 1131-1154. https://doi.org/10.1127/ejm/2016/0028-2569
[50] Li, B. T., Massonne, H. -J., Koller, F., et al., 2021. Metapelite from the High-to Ultrahigh-Pressure Terrane of the Eastern Alps (Pohorje Mountains, Slovenia)-New Pressure, Temperature and Time Constraints on a Polymetamorphic Rock. Journal of Metamorphic Geology. https://doi.org/10.1111/jmg.12581
[51] Li, B. T., Massonne, H. -J., Opitz, J., 2017. Clockwise and Anticlockwise P-T Paths of High-Pressure Rocks from the 'La Pioza' Eclogite Body of the Malpica-Tuy Complex, NW Spain. Journal of Petrology, 58(7): 1363-1392. https://doi.org/10.1093/petrology/egx057
[52] Li, B. T., Massonne, H. -J., Zhang, J. F., 2020. Evolution of a Gneiss in the Seve Nappe Complex of Central Sweden-Hints at an Early Caledonian, Medium-Pressure Metamorphism. Lithos, 376/377: 105746. https://doi.org/10.1016/j.lithos.2020.105746
[53] Li, Z. Y., Li, Y. L., Zhao, L. M., et al., 2019. Petrology and Metamorphic P-T Paths of Metamorphic Zones in the Huangyuan Group, Central Qilian Block, NW China. Journal of Earth Science, 30(6): 1280-1292. https://doi.org/10.1007/s12583-018-0879-0
[54] Litjens, A., 2002. PT Estimates of High-Pressure Metamorphic Rocks from the Seve Nappe Complex, Jämtland, Central Scandinavian Caledonides: [Dissertation]. University of Utrecht, The Netherlands
[55] Liu, P. L., Massonne, H. -J., 2019. An Anticlockwise P-T Path at High-Pressure, High-Temperature Conditions for a Migmatitic Gneiss from the Island of Fjørtoft, Western Gneiss Region, Norway, Indicates Two Burial Events during the Caledonian Orogeny. Journal of Metamorphic Geology, 37(4): 567-588. https://doi.org/10.1111/jmg.12476
[56] Majka, J., Be'eri-Shlevin, Y., Gee, D. G., et al., 2012. Multiple Monazite Growth in the Åreskutan Migmatite: Evidence for a Polymetamorphic Late Ordovician to Late Silurian Evolution in the Seve Nappe Complex of West-Central Jämtland, Sweden. Journal of Geosciences, 57(1): 3-23. https://doi.org/10.3190/jgeosci.112
[57] Majka, J., Janák, M., Andersson, B., et al., 2014a. Pressure-Temperature Estimates on the Tjeliken Eclogite: New Insights into the (Ultra)-High-Pressure Evolution of the Seve Nappe Complex in the Scandinavian Caledonides. Geological Society, London, Special Publications, 390(1): 369-384. https://doi.org/10.1144/sp390.14
[58] Majka, J., Rosén, Å., Janák, M., et al., 2014b. Microdiamond Discovered in the Seve Nappe (Scandinavian Caledonides) and Its Exhumation by the "Vacuum-Cleaner" Mechanism. Geology, 42(12): 1107-1110. https://doi.org/10.1130/g36108.1
[59] Massonne, H. -J., 2010. Phase Relations and Dehydration Behaviour of Calcareous Sediments at Very-Low to Low Grade Metamorphic Conditions. Periodico di Mineralogia, 79(2): 21-43. https://doi.org/10.2451/2010PM0008
[60] Massonne, H. -J., 2012. Formation of Amphibole and Clinozoisite-Epidote in Eclogite Owing to Fluid Infiltration during Exhumation in a Subduction Channel. Journal of Petrology, 53(10): 1969-1998. https://doi.org/10.1093/petrology/egs040
[61] Massonne, H. -J., 2016. Hydration of the Lithospheric Mantle by the Descending Plate in a Continent-Continent Collisional Setting and Its Geodynamic Consequences. Journal of Geodynamics, 96: 50-61. https://doi.org/10.1016/j.jog.2015.06.006
[62] Massonne, H. -J., 2021. Key Patterns of S-Type Granitic Gneiss to Define the Baric (Low-to High-Pressure) Nature of Phanerozoic Basement Terranes. Terra Nova, 33(3): 225-239. https://doi.org/10.1111/ter.12510
[63] Massonne, H. -J., Cruciani, G., Franceschelli, M., et al., 2018. Anti-clockwise Pressure-Temperature Paths Record Variscan Upper-Plate Exhumation: Example from Micaschists of the Porto Vecchio Region, Corsica. Journal of Metamorphic Geology, 36(1): 55-77. https://doi.org/10.1111/jmg.12283
[64] Massonne, H. -J., Li, B. T., 2020. Zoning of Eclogitic Garnet Cores——A Key Pattern Demonstrating the Dominance of Tectonic Erosion as Part of the Burial Process of Worldwide Occurring Eclogites. Earth-Science Reviews, 210: 103356. https://doi.org/10.1016/j.earscirev.2020.103356
[65] Nicholson, R., 1984. An Eclogite from the Caledonides of Southern Norrbotten. Norsk Geologisk Tidsskrift, 64: 165-169 http://www.geologi.no/images/NJG_articles/NGT_64_2_165-169.pdf
[66] Petrík, I., Janák, M., Klonowska, I., et al., 2019. Monazite Behaviour during Metamorphic Evolution of a Diamond-Bearing Gneiss: A Case Study from the Seve Nappe Complex, Scandinavian Caledonides. Journal of Petrology, 60(9): 1773-1796. https://doi.org/10.1093/petrology/egz051
[67] Powell, R., Holland, T., 1999. Relating Formulations of the Thermodynamics of Mineral Solid Solutions: Activity Modeling of Pyroxenes, Amphiboles, and Micas. American Mineralogist, 84(1/2): 1-14. https://doi.org/10.2138/am-1999-1-201
[68] Rahimi, G., Massonne, H. -J., 2020. Metamorphic Evolution of Chloritoid-Bearing Micaschist from the Variscan Elstergebirge: Evidences for Stacking of High-Pressure Rocks in the Saxothuringian Zone of Central Europe. Journal of Earth Science, 31(3): 425-446. https://doi.org/10.1007/s12583-020-1300-3
[69] Roberts, D., 2003. The Scandinavian Caledonides: Event Chronology, Palaeogeographic Settings and Likely Modern Analogues. Tectonophysics, 365(1-4): 283-299. https://doi.org/10.1016/s0040-1951(03)00026-x
[70] Rosenberg, C. L., Handy, M. R., 2005. Experimental Deformation of Partially Melted Granite Revisited: Implications for the Continental Crust. Journal of Metamorphic Geology, 23(1): 19-28. https://doi.org/10.1111/j.1525-1314.2005.00555.x
[71] Santallier, D. S., 1988. Mineralogy and Crystallization of the Seve Eclogites in the Vuoggatjålme Area, Swedish Caledonides of Norrbotten. Geologiska Föreningen i Stockholm Förhandlingar, 110(2): 89-98. https://doi.org/10.1080/11035898809452646
[72] Sjöström, H., 1983. The Seve-Köli Nappe Complex of the Handöl-Storlien-Essandsjøen Area, Scandinavian Caledonides. Geologiska Föreningen i Stockholm Förhandlingar, 105(2): 93-117. https://doi.org/10.1080/11035898309454553
[73] Smith, D. C., 1984. Coesite in Clinopyroxene in the Caledonides and Its Implications for Geodynamics. Nature, 310(5979): 641-644. https://doi.org/10.1038/310641a0
[74] Spear, F. S., 2017. Garnet Growth after Overstepping. Chemical Geology, 466: 491-499. https://doi.org/10.1016/j.chemgeo.2017.06.038
[75] Stephens, M. B., Gee, D. G., 1985. A Plate Tectonic Model for the Evolution of the Eugeoclinal Terranes in the Central Scandinavian Caledonides. In: Gee, D. G., Sturt, B. A., eds., The Caledonide Orogen- Scandinavia and Related Areas. Wiley, Chichester. 953-978
[76] Sun, G. M., Li, X. P., Duan, W. L., et al., 2018. Metamorphic Characteristics and Tectonic Implications of the Kadui Blueschist in the Central Yarlung Zangbo Suture Zone, Southern Tibet. Journal of Earth Science, 29(5): 1026-1039. https://doi.org/10.1007/s12583-018-0854-9
[77] Terry, M. P., Robinson, P., Krogh Ravna, E. J., 2000. Kyanite Eclogite Thermobarometry and Evidence for Thrusting of UHP over HP Metamorphic Rocks, Nordøyane, Western Gneiss Region, Norway. American Mineralogist, 85(11/12): 1637-1650. https://doi.org/10.2138/am-2000-11-1207
[78] Tomkins, H. S., Powell, R., Ellis, D. J., 2007. The Pressure Dependence of the Zirconium-in-Rutile Thermometer. Journal of Metamorphic Geology, 25(6): 703-713. https://doi.org/10.1111/j.1525-1314.2007.00724.x
[79] Törnebohm, A. E., 1888. Om Fjällproblemet. Geologiska Föreningen i Stockholm Förhandlingar, 10(5): 328-336. https://doi.org/10.1080/11035898809444211
[80] van Roermund, H., 1989. High-Pressure Ultramafic Rocks from the Allochthonous Nappes of the Swedish Caledonides. The Caledonide Geology of Scandinavia. Springer Netherlands, Dordrecht. 205-219. https://doi.org/10.1007/978-94-009-2549-6_17
[81] van Roermund, H., 1985. Eclogites of the Seve Nappe, Central Scandinavian Caledonides. In: Gee, D. G., Sturt, B. A., eds., The Caledonide Orogen-Scandinavia and Related Areas. Wiley, Chichester. 873-886
[82] van Roermund, H., Bakker, E., 1983. Structure and Metamorphism of the Tången-Inviken Area, Seve Nappes, Central Scandinavian Caledonides. Geologiska Föreningen i Stockholm Förhandlingar, 105(4): 301-319. https://doi.org/10.1080/11035898309454568
[83] Wain, A., 1997. New Evidence for Coesite in Eclogite and Gneisses: Defining an Ultrahigh-Pressure Province in the Western Gneiss Region of Norway. Geology, 25(10): 927-930. https://doi.org/10.1130/0091-7613(1997)0250927:nefcie>2.3.co;2 doi: 10.1130/0091-7613(1997)0250927:nefcie>2.3.co;2
[84] Wain, A., Waters, D., Jephcoat, A., et al., 2000. The High-Pressure to Ultrahigh-Pressure Eclogite Transition in the Western Gneiss Region, Norway. European Journal of Mineralogy, 12(3): 667-687. https://doi.org/10.1127/0935-1221/2000/0012-0667
[85] Waizenhöfer, F., Massonne, H. -J., 2017. Monazite in a Variscan Mylonitic Paragneiss from the Münchberg Metamorphic Complex (NE Bavaria) Records Cadomian Protolith Ages. Journal of Metamorphic Geology, 35(4): 453-469. https://doi.org/10.1111/jmg.12240
[86] Wei, C. J., Powell, R., Zhang, L. F., 2003. Eclogites from the South Tianshan, NW China: Petrological Characteristic and Calculated Mineral Equilibria in the Na2O-CaO-FeO-MgO-Al2O3-SiO2-H2O System. Journal of Metamorphic Geology, 21(2): 163-179. https://doi.org/10.1046/j.1525-1314.2003.00435.x
[87] White, R. W., Powell, R., Holland, T. J. B., 2001. Calculation of Partial Melting Equilibria in the System Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O (NCKFMASH). Journal of Metamorphic Geology, 19(2): 139-153. https://doi.org/10.1046/j.0263-4929.2000.00303.x
[88] White, R. W., Powell, R., Holland, T. J. B., 2007. Progress Relating to Calculation of Partial Melting Equilibria for Metapelites. Journal of Metamorphic Geology, 25(5): 511-527. https://doi.org/10.1111/j.1525-1314.2007.00711.x
[89] Wu, C. M., Chen, H. X., 2015. Revised Ti-in-Biotite Geothermometer for Ilmenite-or Rutile-Bearing Crustal Metapelites. Science Bulletin, 60(1): 116-121. https://doi.org/10.1007/s11434-014-0674-y
[90] Xiang, H., Zhang, Z. M., Zhao, L. M., et al., 2018. Metamorphic P-T-t Path of UHT Granulites from the North Tongbai Orogen, Central China. Journal of Earth Science, 29(5): 1116-1131. https://doi.org/10.1007/s12583-018-0855-8
[91] Yin, C., Zhao, G., Sun, M., 2015. High-Pressure Pelitic Granulites from the Helanshan Complex in the Khondalite Belt, North China Craton: Metamorphic P-t Path and Tectonic Implications. American Journal of Science, 315(9): 846-879. https://doi.org/10.2475/09.2015.03
[92] Zeh, A., Holland, T. J. B., Klemd, R., 2005. Phase Relationships in Grunerite-Garnet-Bearing Amphibolites in the System CFMASH, with Applications to Metamorphic Rocks from the Central Zone of the Limpopo Belt, South Africa. Journal of Metamorphic Geology, 23(1): 1-17. https://doi.org/10.1111/j.1525-1314.2005.00554.x
[93] Zhang, Y. C., Li, X. P., Sun, G. M., et al., 2019. Metamorphic Petrology of Clinopyroxene Amphibolite from the Xigaze Ophiolite, Southern Tibet: P-T Constraints and Phase Equilibrium Modeling. Journal of Earth Science, 30(3): 549-562. https://doi.org/10.1007/s12583-019-1222-0
[94] Zhou, G. S., Zhang, J. X., Li, Y. S., et al., 2019. Metamorphic Evolution and Tectonic Implications of the Granulitized Eclogites from the Luliangshan Terrane in the North Qaidam Ultrahigh Pressure Metamorphic Belt, NW China: New Constraints from Phase Equilibrium Modeling. Journal of Earth Science, 30(3): 585-602. https://doi.org/10.1007/s12583-019-0897-6