[1] Abdel-Rahman, A. F. M., 1994. Nature of Biotites from Alkaline, Calc-Alkaline, and Peraluminous Magmas. Journal of Petrology, 35(2): 525-541. https://doi.org/10.1093/petrology/35.2.525
[2] Alkmim, F. F., Teixeira, W., 2017. The Paleoproterozoic Mineiro Belt and the Quadrilátero Ferrífero. In: Heilbron, M., Cordani, U., Alkmim, F., eds., São Francisco Craton, Eastern Brazil: Tectonic Genealogy of a Miniature Continent (Regional Geology Reviews). Springer. 45-62. https://doi.org/10.1007/978-3-319-01715-0_5
[3] Annen, C., 2011. Implications of Incremental Emplacement of Magma Bodies for Magma Differentiation, Thermal Aureole Dimensions, and Plutonism-Volcanism Relationships. Tectonophysics, 500(1-4): 3-10. https://doi.org/10.1016/j.tecto.2009.04.010
[4] Ávila, C. A., Bezerra Filho, A. P., Oliveira, N. D. B., et al., 2006a. Resultados Preliminares da Geologia do Quartzo Diorito Dores do Campo, Região de Tiradentes-Dores do Campo, Estado de Minas Gerais. In: XLIII Congresso Brasileiro de Geologia, Aracaju. 1: 183 (in Portuguese)
[5] Ávila, C. A., Teixeira, W., Cordani, U. G., et al., 2006b. The Glória Quartz-Monzodiorite: Isotopic and Chemical Evidence of Arc-Related Magmatism in the Central Part of the Paleoproterozoic Mineiro Belt, Minas Gerais State, Brazil. Anais da Academia Brasileira de Ciencias, 78(3): 543-556. https://doi.org/10.1590/s0001-37652006000300013
[6] Ávila, C. A., Teixeira, W., Cordani, U. G., et al., 2010. Rhyacian (2.23-2.20 Ga) Juvenile Accretion in the Southern São Francisco Craton, Brazil: Geochemical and Isotopic Evidence from the Serrinha Magmatic Suite, Mineiro Belt. Journal of South America Earth Sciences, 29(2): 464-482. https://doi.org/10.1016/j.jsames.2009.07.009
[7] Ávila, C. A., Teixeira, W., Vasques, F. S. G., et al., 2012. Geoquímica e Idade U-Pb (LA-ICPMS) da Crosta Oceânica Riaciana do Cinturão Mineiro, Borda Meridional do Cráton São Francisco. Anais do Congresso Brasileiro de Geologia, 46: 4-5 http://www.researchgate.net/publication/281555887_INTERACAO_ENTRE_MAGMAS_FELSICOS_PALEOPROTEROZOICOS_ASSOCIADOS_AO_GRANITO_GENTIO_ESTADO_DE_MINAS_GERAIS
[8] Ávila, C. A., Teixeira, W., Bongiolo, E. M., et al., 2014. Rhyacian Evolution of Subvolcanic and Metasedimentary Rocks of the Southern Segment of the Mineiro Belt, São Francisco Craton, Brazil. Precambrian Research, 243(4): 221-251. https://doi.org/10.1016/j.precamres.2013.12.028
[9] Barbosa, N. S., Teixeira, W., Ávila, C. A., et al., 2015. 2.17-2.10 Ga Plutonic Episodes in the Mineiro Belt, São Francisco Craton, Brazil: U-Pb Ages, Geochemical Constraints and Tectonics. Precambrian Research, 270: 204-225. https://doi.org/10.1016/j.precamres.2015.09.010
[10] Barbosa, N. T., Teixeira, W., Ávila, C. A., et al., 2019. U-Pb Geochronology and Coupled Hf-Nd-Sr Isotopic-Chemical Constraints on the Cassiterita Orthogneiss (2.47 to 2.41 Ga) in the Mineiro Belt, São Francisco Craton: Geodynamic Fingerprints beyond the Archean- Paleoproterozoic Transition. Precambrian Research, 326: 399-416. https://doi.org/10.1016/j.precamres.2018.01.017
[11] Bea, F., 1996. Controls on the Trace Element Composition of Crustal Melts. Special Paper of the Geological Society of America, 315: 33-41. https://doi.org/10.1130/0-8137-2315-9.33
[12] Beard, J. S., Lofgren, G. E., 1991. Dehydration Melting and Water-Saturated Melting of Basaltic and Andesitic Greenstones and Amphibolites at 1, 3, and 6.9 kb. Journal of Petrology, 32(2): 365-401. https://doi.org/10.1093/petrology/32.2.365
[13] Black, L. P., Kamo, S. L., Allen, C. M., et al., 2003. TEMORA 1: A New Zircon Standard for Phanerozoic U-Pb Geochronology. Chemical Geology, 200(1/2): 155-170. https://doi.org/10.1016/s0009-2541(03)00165-7
[14] Boehnke, P., Watson, E. B., Trail, D., et al., 2013. Zircon Saturation Re-Revisited. Chemical Geology, 351: 324-334. https://doi.org/10.1016/j.chemgeo.2013.05.028
[15] Cardoso, C. D., Ávila, C. A., Neumann, R., et al., 2019. A Rhyacian Continental Arc during the Evolution of the Mineiro Belt, Brazil: Constraints from the Rio Grande and Brumado Metadiorites. Lithos, 326/327: 246-264. https://doi.org/10.1016/j.lithos.2018.12.025
[16] Clemens, J. D., Wall, V. J., 1981. Origin and Crystallization of some Peraluminous (S-Type) Granitic Magmas. Canadian Mineralogist, 19(1): 111-131 http://www.researchgate.net/publication/279895636_Origin_and_crystallization_of_some_peraluminous_S-type_granitic_magmas
[17] Clemens, J. D., Vielzeuf, D., 1987. Constraints on Melting and Magma Production in the Crust. Earth and Planetary Science Letters, 86(2-4): 287-306. https://doi.org/10.1016/0012-821x(87)90227-5
[18] Clemens, J. D., Helps, P. A., Stevens, G., 2009. Chemical Structure in Granitic Magmas-A Signal from the Source?. Special Paper of the Geological Society of America, 472: 159-172. https://doi.org/10.1130/2010.2472(11)
[19] Condie, K., 2015. Changing Tectonic Settings through Time: Indiscriminate Use of Geochemical Discriminant Diagrams. Precambrian Research, 266: 587-591. https://doi.org/10.1016/j.precamres.2015.05.004
[20] Conrad, W. K., Nicholls, I. A., Wall, V. J., 1988. Water-Saturated and -Undersaturated Melting of Metaluminous and Peraluminous Crustal Compositions at 10 kb: Evidence for the Origin of Silicic Magmas in the Taupo Volcanic Zone, New Zealand, and Other Occurrences. Journal of Petrology, 29(4): 765-803 doi: 10.1093/petrology/29.4.765
[21] DePaolo, D. J., 1981. A Neodymium and Strontium Isotopic Study of the Mesozoic Calc-Alkaline Granitic Batholiths of the Sierra Nevada and Peninsular Ranges, California. Journal of Geophysical Research, 86(B11): 10470-10488. https://doi.org/10.1029/jb086ib11p10470
[22] Duarte, B. P., Valente, S. C., Heilbron, M., et al., 2004. Petrogenesis of the Orthogneisses of the Mantiqueira Complex, Central Ribeira Belt, SE Brazil: An Archaean to Palaeoproterozoic Basement Unit Reworked During the Pan-African Orogeny. Gondwana Research, 7(2): 437-450. https://doi.org/10.1016/s1342-937x(05)70795-4
[23] Ebadi, A., Johannes, W., 1991. Beginning of Melting and Composition of First Melts in the System Qz-Ab-Or-H2O-CO2. Contributions to Mineralogy and Petrology, 106(3): 286-295. https://doi.org/10.1007/bf00324558
[24] Elhlou, S., Belousova, E., Griffin, W. L., et al., 2006. Trace Element and Isotopic Composition of GJ-Red Zircon Standard by Laser Ablation. Geochimica et Cosmochimica Acta, 70(18): A158. https://doi.org/10.1016/j.gca.2006.06.1383
[25] Farina, F., Stevens, G., Villaros, A., 2012. Multi-Batch, Incremental Assembly of a Dynamic Magma Chamber: The Case of the Peninsula Pluton Granite (Cape Granite Suite, South Africa). Mineralogy and Petrology, 106(3/4): 193-216. https://doi.org/10.1007/s00710-012-0224-8
[26] Frost, B. R., Barnes, C. G., Collins, W. J., et al., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42(11): 2033-2048. https://doi.org/10.1093/petrology/42.11.2033
[27] Heilbron, M., Duarte, B. P., Valeriano, C. M., et al., 2010. Evolution of Reworked Paleoproterozoic Basement Rocks within the Ribeira Belt (Neoproterozoic), SE-Brazil, Based on U-Pb Geochronology: Implications for Paleogeographic Reconstructions of the São Francisco-Congo Paleocontinent. Precambrian Research, 178(1-4): 136-148. https://doi.org/10.1016/j.precamres.2010.02.002
[28] Heilbron, M., Ribeiro, A., Valeriano, C. M., et al., 2017. The Ribeira Belt. In: Heilbron, M., Cordani, U., Alkmim, F., eds., São Francisco Craton, Eastern Brazil: Tectonic Genealogy of a Miniature Continent (Regional Geology Reviews). Springer. 277-302
[29] Higgins, M. D., 1999. Origin of Megacrysts in Granitoids by Textural Coarsening; A Crystal Size Distribution (CSD) Study of Microcline in the Cathedral Peak Granodiorite, Sierra Nevada, California. In: Fernandez, C., Castro, A., Vigneresse, J. L., eds., Understanding Granites: Integrating Modern and Classical Techniques. Geological Society Special, 168: 207-219
[30] Holtz, F., Barbey, P., Johannes, W., et al., 1989. Composition and Temperature at the Minimum Point in the Qz-Ab-Or System for H2O-Undersaturated Conditions: Experimental Investigation. Terra Cognita, 1: 271-272
[31] Holtz, F., Johannes, W., 1991. Genesis of Peraluminous Granites: I. Experimental Investigation of Melt Composition at 3 and 5 kb and Various H2O Activities. Journal of Petrology, 32(5): 935-958. https://doi.org/10.1093/petrology/32.5.935
[32] Holtz, F., Johannes, W., Tamic, N., et al., 2001. Maximum and Minimum Water Contents of Granitic Melts Generated in the Crust: A Reevaluation and Implications. Lithos, 56(1): 1-14. https://doi.org/10.1016/s0024-4937(00)00056-6
[33] Johannes, W., Holtz, F., 1996. Petrogenesis and Experimental Petrology of Granitic Rocks. Springer, Berlin. 335
[34] Johnson, B. R., Glazner, A. F., 2010. Formation of K-Feldspar Megacrysts in Granodioritic Plutons by Thermal Cycling and Late-Stage Textural Coarsening. Contributions to Mineralogy and Petrology, 159(5): 599-619. https://doi.org/10.1007/s00410-009-0444-z
[35] Kösler, J., Fonneland, H., Sylvester, P., et al., 2002. U-Pb Dating of Detrital Zircons for Sediment Provenance Studies-A Comparison of Laser Ablation ICPMS and SIMS Techniques. Chemical Geology, 182(2): 605-618. https://doi.org/10.1016/s0009-2541(01)00341-2
[36] Ludwig, K. R., 2001. Squid (1.13b): A User's Manual. Berkeley Geochronology Center Special Publication, Berkeley. 2
[37] Ludwig, K. R., 2003. User's Manual for ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronological Center Special Publication, Berkeley. 4: 70
[38] Luth, W. C., Jahns, R. H., Tuttle, O. F., 1964. The Granite System at Pressure of 4 to 10 Kilobars. Journal of Geophysical Research, 69: 759-773 doi: 10.1029/JZ069i004p00759
[39] Maaløe, S., Wyllie, P. J., 1975. Water Content of a Granite Magma Deduced from the Sequence of Crystallization Determined Experimentally with Water-Undersaturated Conditions. Contributions to Mineralogy and Petrology, 52(3): 175-191. https://doi.org/10.1007/bf00457293
[40] Middlemost, E. A. K., 1985. Magmas and Magmatic Rocks. Logman, London. 87-88
[41] Miller, C. F., Furbish, D. J., Walker, B. A., et al., 2011. Growth of Plutons by Incremental Emplacement of Sheets in Crystal-Rich Host: Evidence from Miocene Intrusions of the Colorado River Region, Nevada, USA. Tectonophysics, 500(1): 65-77. https://doi.org/10.1016/j.tecto.2009.07.011
[42] Mills, R. D., Glazner, A. F., 2013. Experimental Study on the Effects of Temperature Cycling on Coarsening of Plagioclase and Olivine in an Alkali Basalt. Contributions to Mineralogy and Petrology, 166(1): 97-111. https://doi.org/10.1007/s00410-013-0867-4
[43] Moreira, H., Seixas, L., Storey, C., et al., 2018. Evolution of Siderian Juvenile Crust to Rhyacian High Ba-Sr Magmatism in the Mineiro Belt, Southern São Francisco Craton. Geoscience Frontiers, 9(4): 977-995. https://doi.org/10.1016/j.gsf.2018.01.009
[44] Moyen, J. -F., Laurent, O., 2018. Archaean Tectonic Systems: A View from Igneous Rocks. Lithos, 302/303: 99-125. https://doi.org/10.1016/j.lithos.2017.11.038
[45] Nakamura, N., 1974. Determination of REE, Ba, Fe, Mg, Na and K in Carbonaceous and Ordinary Chondrites. Geochimica et Cosmochimica Acta, 38(5): 757-775. https://doi.org/10.1016/0016-7037(74)90149-5
[46] Noce, C. M., Pedrosa-Soares, A. C., Silva, L. C., et al., 2007. Evolution of Polycyclic Basement Complexes in the Araçuaí orogen, Based on U-Pb SHRIMP Data: Implication of Brazil-Africa Links in Paleoproterozoic Time. Precambrian Research, 159(1/2): 60-78. https://doi.org/10.1016/j.precamres.2007.06.001
[47] Nockolds, S. R., 1947. The Relation between Chemical Composition and Paragenesis in the Biotite Micas of Igneous Rocks. American Journal of Science, 245: 401-420. https://doi.org/10.2475/ajs.245.7.401
[48] Patiño Douce, A. E., Beard, J. S., 1995. Dehydration Melting of Biotite Gneiss and Quartz Amphibolite from 3 to 15 kbar. Journal of Petrology, 36(3): 707-738. https://doi.org/10.1093/petrology/36.3.707
[49] Patiño Douce, A. E., McCarthy, T. C., 1998. Melting of Continental Rocks During Continental Collision and Subduction. In: Hacker, B., Liou, J. G., eds., When Continents Collides: Geodynamics and Geochemistry of Ultra- High Pressure Rocks. Kluwer Academic Publisher, Dordrecht. 27-55
[50] Pearce J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Elements Discrimination Diagrams for the Tectonic Interpretation of Granite Rocks. Journal of Petrology, 25(4): 956-983. https://doi.org/10.1093/petrology/25.4.956
[51] Pearce, J., 1996. Sources and Settings of Granitic Rocks. Episodes, 19(4): 120-125 doi: 10.18814/epiiugs/1996/v19i4/005
[52] Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. https://doi.org/10.1007/bf00384745
[53] Petronilho, L. A., 2009. O Método Sm-Nd no CPGeo-IGc-USP: Procedimentos Analíticos Atualmente em Rotina. Simpósio 45 anos de Geocronologia no Brasil, Instituto de Geociências, USP. Boletim de Resumos Expandidos, São Paulo. 116-118 (in Portuguese)
[54] Pimentel, M. M., Charnley, N., 1991. Intracrustal REE Fractionation and Implications for SMND Model Age Calculations in Late-Stage Granitic Rocks: An Example from Central Brazil. Chemical Geology: Isotope Geoscience Section, 86(2): 123-138. https://doi.org/10.1016/0168-9622(91)90058-5
[55] Ribeiro, A., Teixeira, W., Dussin, I. A., et al., 2013. U-Pb LA-ICP-MS Detrital Zircon Ages of the São João del Rei and Carandaí Basins: New Evidence of Intermittent Proterozoic Rifting in the São Francisco Paleocontinent. Gondwana Research, 24(2): 713-726. https://doi.org/10.1016/j.gr.2012.12.016
[56] Roberts, M. P., Clemens, J. D., 1993. Origin of High-Potassium, Talc-Alkaline, I-Type Granitoids. Geology, 21(9): 825-828. https://doi.org/10.1130/0091-7613(1993)021<0825:oohpta>2.3.co;2 doi: 10.1130/0091-7613(1993)021<0825:oohpta>2.3.co;2
[57] Sato, K., Tassinari, C. C. G., Kawashita, K., et al., 1995. O Método Geocronológico Sm-Nd no IG/USP e Suas Aplicações. Anais da Academia Brasileira de Ciências, 67: 313-336
[58] Sato, K., Basei, M. A. S., Siga Junior, O., et al., 2010. In situ U-Th-Pb Isotopic Analyses by Excimer Laser Ablation/ICP-MS on Brazilian Megacrystal Xenotime: First Results on U-Pb Isoptes at CPGeo-IGC-USP. VII SSAGI-South American Simposium on Isotope Geology, Brasília. 349-352
[59] Sato, K., Tassinari, C. C. G., Basei, M. A. S., et al., 2014. Sensitive High Resolution Ion Microprobe (SHRIMP IIe/MC) of the Institute of Geosciences of the University of São Paulo, Brazil: Analytical Method and First Results. Geologia USP, Série Científica, 14(3): 3-18 doi: 10.5327/Z1519-874X201400030001
[60] Sawyer, E. W., Cesare, B., Brown, M., 2011. When the Continental Crust Melts. Elements, 7(4): 229-234. https://doi.org/10.2113/gselements.7.4.229
[61] Seixas, L. A. R., David, J., Stevenson, R., 2012. Geochemistry, Nd Isotopes and U-Pb Geochronology of a 2 350 Ma TTG Suite, Minas Gerais, Brazil: Implications for the Crustal Evolution of the Southern São Francisco Craton. Precambrian Research, 196/197: 61-80. https://doi.org/10.1016/j.precamres.2011.11.002
[62] Seixas, L. A. R., Bardintzeff, J. M., Stevenson, R., et al., 2013. Petrology of the High-Mg Tonalites and Dioritic Enclaves of the ca. 2 130 Ma Alto Maranhão Suite: Evidence for a Major Juvenile Crustal Addition Event during the Rhyacian Orogenesis, Mineiro Belt, Southeast Brazil. Precambrian Research, 238: 18-41. https://doi.org/10.1016/j.precamres.2013.09.015
[63] Silva, M. M., Holtz, F., Namur, O., 2017. Crystallization Experiments in Rhyolitic Systems: The Effect of Temperature Cycling and Starting Material on Crystal Size Distribution. American Mineralogist, 102(11): 2284-2294. https://doi.org/10.2138/am-2017-5981
[64] Silva, M. M., Ávila, C. A., Barbosa, N. S., et al., 2020. Caracterização do Ortognaisse Brejo Alegre e sua Inserção no Contexto Evolutivo do Cinturão Mineiro, Cráton do São Francisco. Anuário do Instituto de Geociências- UFRJ, 43(2): 252-269 (in Portuguese with English Abstract)
[65] Stacey, J. S., Kramers, J. D., 1975. Approximation of Terrestrial Lead Isotope Evolutionby a Two Stage Model. Earth and Planetary Science Letters, 26(2): 207-221. https://doi.org/10.1016/0012-821x(75)90088-6
[66] Teixeira, W., Ávila, C. A., Nunes, L. C., 2008. Nd-Sr Isotopic Geochemistry and Geochronology of the Fé Granitic Gneiss and Lajedo Granodirite: Implications for Paleoproterozoic Evolution of the Mineiro Belt, Southern São Francisco Craton, Brazil. Revista do Instituto de Geociências, 8: 53-74 http://www.oalib.com/paper/2144426
[67] Teixeira, W., Ávila, C. A., Dussin, I. A., et al., 2015. A Juvenile Accretion Episode (2.35-2.32 Ga) in the Mineiro Belt and Its Role to the Minas Accretionary Orogeny: Zircon U-Pb-Hf and Geochemical Evidences. Precambrian Research, 256(4): 148-169. https://doi.org/10.1016/j.precamres.2014.11.009
[68] Thompson, A. B., Connolly, J. A. D., 1995. Melting of the Continental Crust: Some Thermal and Petrological Constraints on Anatexis in Continental Collision Zones and Other Tectonic Settings. Journal of Geophysical Research, 100(B8): 15565-15579. https://doi.org/10.1029/95jb00191
[69] Tuttle, O. F., Bowen, N. L., 1958. Origin of Granite in the Light of Experimental Studies in the System NaAlSi3O8-KA1Si3O8-SiO2-H2O. Geological Society of America Memoir, 74: 1-154. https://doi.org/10.1130/mem74
[70] Vasconcelos, F. F., Ávila, C. A., Neumann, R., et al., 2017. Ortognaisse Morro do Resende: Mineralogia, Petrografia, Geoquímica e Geocronologia. Geologia USP. Série Científica, 17: 143-164 http://www.researchgate.net/publication/316260515_Ortognaisse_Morro_do_Resende_mineralogia_petrografia_geoquimica_e_geocronologia
[71] Vernon, R. H., Paterson, S. R., 2008. How Late are K-Feldspar Megacrysts in Granites? Lithos, 104(1-4): 327-336. https://doi.org/10.1016/j.lithos.2008.01.001
[72] Villaseca, C., Barbero, L., Herreros, V., 1998. A Re-Examination of the Typology of Peraluminous Granite Types in Intracontinental Orogenic Belts. Transactions of the Royal Society of Edinburgh, Earth Sciences, 89(2): 113-119. https://doi.org/10.1017/s0263593300007045
[73] Watson, E. B., Harrison, T. M., 1983. Zircon Saturation Revisited: Temperature and Composition Effects in a Variety of Crustal Magma Types. Earth Planetary Science Letters, 64(3): 295-304. https://doi.org/10.1016/0012-821x(83)90211-x
[74] Weaver, B. L., Tarney, J., 1984. Empirical Approach to Estimating the Composition of the Continental Crust. Nature, 310(5978): 575-577. https://doi.org/10.1038/310575a0
[75] Weinberg, R. F., Hasalová, P., 2015. Water-Fluxed Melting of the Continental Crust: A Review. Lithos, 212-215: 158-188. https://doi.org/10.1016/j.lithos.2014.08.021
[76] Whitney, J. A., 1988. The Origin of Granite: The Role and Source of Water in the Evolution of Granitic Magmas. Geological Society of America Bulletin, 100(12): 1886-1897. https://doi.org/10.1130/0016-7606(1988)100<1886:toogtr>2.3.co;2 doi: 10.1130/0016-7606(1988)100<1886:toogtr>2.3.co;2