[1] Aharonov, E., Whitehead, J. A., Kelemen, P. B., et al., 1995. Channeling Instability of Upwelling Melt in the Mantle. Journal of Geophysical Research:Solid Earth, 100(B10):20433-20450. https://doi.org/10.1029/95jb01307
[2] Bagdassarov, N., Golabek, G. J., Solferino, G., et al., 2009. Constraints on the Fe-S Melt Connectivity in Mantle Silicates from Electrical Impedance Measurements. Physics of the Earth and Planetary Interiors, 177(3/4):139-146. https://doi.org/10.1016/j.pepi.2009.08.003
[3] Bockrath, C., Ballhaus, C., Holzheid, A., 2004. Fractionation of the Platinum-Group Elements during Mantle Melting. Science, 305(5692):1951-1953. https://doi.org/10.1126/science.1100160
[4] Bruhn, D., Groebner, N., Kohlstedt, D. L., 2000. An Interconnected Network of Core-Forming Melts Produced by Shear Deformation. Nature, 403(6772):883-886. https://doi.org/10.1038/35002558
[5] Bulau, J. R., Waff, H. S., Tyburczy, J. A., 1979. Mechanical and Thermodynamic Constraints on Fluid Distribution in Partial Melts. Journal of Geophysical Research, 84(B11):6102-6108. https://doi.org/10.1029/jb084ib11p06102
[6] Chadam, J., Hoff, D., Merino, E., et al., 1986. Reactive Infiltration Instabilities. IMA Journal of Applied Mathematics, 36(3):207-221. https://doi.org/10.1093/imamat/36.3.207
[7] Daines, M. J., Kohlstedt, D. L., 1994. The Transition from Porous to Channelized Flow due to Melt/rock Reaction during Melt Migration. Geophysical Research Letters, 21(2):145-148. https://doi.org/10.1029/93gl03052
[8] Du, W., Li, L., Weidner, D. J., 2018. Time Scale of Partial Melting of KLB-1 Peridotite:Constrained from Experimental Observation and Thermodynamic Models. Journal of Earth Science, 29(2):245-254. https://doi.org/10.1007/s12583-018-0839-8
[9] Edwards, B. R., Russell, J. K., 1996. A Review and Analysis of Silicate Mineral Dissolution Experiments in Natural Silicate Melts. Chemical Geology, 130(3/4):233-245. https://doi.org/10.1016/0009-2541(96)00025-3
[10] Faul, U. H., 1997. Permeability of Partially Molten Upper Mantle Rocks from Experiments and Percolation Theory. Journal of Geophysical Research:Solid Earth, 102(B5):10299-10311. https://doi.org/10.1029/96jb03460
[11] Groebner, N., Kohlstedt, D. L., 2006. Deformation-Induced Metal Melt Networks in Silicates:Implications for Core-Mantle Interactions in Planetary Bodies. Earth and Planetary Science Letters, 245(3/4):571-580. https://doi.org/10.1016/j.epsl.2006.03.029
[12] Holtzman, B. K., Kohlstedt, D. L., 2007. Stress-Driven Melt Segregation and Strain Partitioning in Partially Molten Rocks:Effects of Stress and Strain. Journal of Petrology, 48(12):2379-2406. https://doi.org/10.1093/petrology/egm065
[13] Hsiang, H. I., Hsi, C. S., Lin, R. L., et al., 2015. Addition of a Minor Amount of Co2Y Effects on the Microstructure, Magnetic Properties and DC-Bias Superposition Characteristics of Low-Fire NiCuZn Ferrites. Materials Chemistry and Physics, 151:295-300. https://doi.org/10.1016/j.matchemphys.2014.11.069
[14] Jiang, H., Jiang, S. Y., Li, W. Q., et al., 2019. Timing and Source of the Hermyingyi W-Sn Deposit in Southern Myanmar, SE Asia:Evidence from Molybdenite Re-Os Age and Sulfur Isotopic Composition. Journal of Earth Science, 30(1):70-79. https://doi.org/10.1007/s12583-018-0860-y
[15] Jones, D. W. R., Katz, R. F., 2018. Reaction-Infiltration Instability in a Compacting Porous Medium. Journal of Fluid Mechanics, 852:5-36. https://doi.org/10.1017/jfm.2018.524
[16] Jugo, P. J., 2009. Sulfur Content at Sulfide Saturation in Oxidized Magmas. Geology, 37(5):415-418. https://doi.org/10.1130/g25527a.1
[17] Kelemen, P. B., Whitehead, J. A., Aharonov, E., et al., 1995. Experiments on Flow Focusing in Soluble Porous Media, with Applications to Melt Extraction from the Mantle. Journal of Geophysical Research:Solid Earth, 100(B1):475-496. https://doi.org/10.1029/94jb02544
[18] Kress, V., Greene, L. E., Ortiz, M. D., et al., 2008. Thermochemistry of Sulfide Liquids IV:Density Measurements and the Thermodynamics of O-S-Fe-Ni- Cu Liquids at Low to Moderate Pressures. Contributions to Mineralogy and Petrology, 156(6):785-797. https://doi.org/10.1007/s00410-008-0315-z
[19] Laumonier, M., Farla, R., Frost, D. J., et al., 2017. Experimental Determination of Melt Interconnectivity and Electrical Conductivity in the Upper Mantle. Earth and Planetary Science Letters, 463:286-297. https://doi.org/10.1016/j.epsl.2017.01.037
[20] Le Vaillant, M., Barnes, S. J., Mungall, J. E., et al., 2017. Role of Degassing of the Noril'sk Nickel Deposits in the Permian-Triassic Mass Extinction Event. Proceedings of the National Academy of Sciences, 114(10):2485-2490. https://doi.org/10.1073/pnas.1611086114
[21] Lorand, J. P., Alard, O., Luguet, A., 2010. Platinum-Group Element Micronuggets and Refertilization Process in Lherz Orogenic Peridotite (Northeastern Pyrenees, France). Earth and Planetary Science Letters, 289(1/2):298-310. https://doi.org/10.1016/j.epsl.2009.11.017
[22] Lorand, J. P., Luguet, A., Alard, O., 2013. Platinum-Group Element Systematics and Petrogenetic Processing of the Continental Upper Mantle:A Review. Lithos, 164-167:2-21. https://doi.org/10.1016/j.lithos.2012.08.017
[23] McKenzie, D., 1989. Some Remarks on the Movement of Small Melt Fractions in the Mantle. Earth and Planetary Science Letters, 95(1/2):53-72. https://doi.org/10.1016/0012-821x(89)90167-2
[24] Miller, K. J., Zhu, W. L., Montési, L. G. J., et al., 2016. Experimental Evidence for Melt Partitioning between Olivine and Orthopyroxene in Partially Molten Harzburgite. Journal of Geophysical Research:Solid Earth, 121(8):5776-5793. https://doi.org/10.1002/2016jb013122
[25] Miller, K. J., Zhu, W. L., Montési, L. G. J., et al., 2014. Experimental Quantification of Permeability of Partially Molten Mantle Rock. Earth and Planetary Science Letters, 388:273-282. https://doi.org/10.1016/j.epsl.2013.12.003
[26] Morgan, Z., Liang, Y., 2003. An Experimental and Numerical Study of the Kinetics of Harzburgite Reactive Dissolution with Applications to Dunite Dike Formation. Earth and Planetary Science Letters, 214(1/2):59-74. https://doi.org/10.1016/s0012-821x(03)00375-3
[27] Mungall, J. E., Brenan, J. M., 2014. Partitioning of Platinum-Group Elements and Au between Sulfide Liquid and Basalt and the Origins of Mantle-Crust Fractionation of the Chalcophile Elements. Geochimica et Cosmochimica Acta, 125:265-289. https://doi.org/10.1016/j.gca.2013.10.002
[28] Nash, W. M., Smythe, D. J., Wood, B. J., 2019. Compositional and Temperature Effects on Sulfur Speciation and Solubility in Silicate Melts. Earth and Planetary Science Letters, 507:187-198. https://doi.org/10.1016/j.epsl.2018.12.006
[29] Osselin, F., Kondratiuk, P., Budek, A., et al., 2016. Microfluidic Observation of the Onset of Reactive-Infitration Instability in an Analog Fracture. Geophysical Research Letters, 43(13):6907-6915. https://doi.org/10.1002/2016gl069261
[30] Pec, M., Holtzman, B. K., Zimmerman, M., et al., 2015. Reaction Infiltration Instabilities in Experiments on Partially Molten Mantle Rocks. Geology, 43(7):575-578. https://doi.org/10.1130/g36611.1
[31] Pec, M., Holtzman, B. K., Zimmerman, M. E., et al., 2017. Reaction Infiltration Instabilities in Mantle Rocks:An Experimental Investigation. Journal of Petrology, 58(5):979-1003. https://doi.org/10.1093/petrology/egx043
[32] Soustelle, V., Walte, N. P., Manthilake, M. A. G. M., et al., 2014. Melt Migration and Melt-Rock Reactions in the Deforming Earth's Upper Mantle:Experiments at High Pressure and Temperature. Geology, 42(1):83-86. https://doi.org/10.1130/g34889.1
[33] Spiegelman, M., Kelemen, P. B., Aharonov, E., 2001. Causes and Consequences of Flow Organization during Melt Transport:The Reaction Infiltration Instability in Compactible Media. Journal of Geophysical Research:Solid Earth, 106(B2):2061-2077. https://doi.org/10.1029/2000jb900240
[34] Stokes, G. G., 1851. On the Effect of the Internal Friction of Fluids on the Motion of Pendulums. Vol. 9. Pitt Press, Cambridge
[35] Szymczak, P., Ladd, A. J. C., 2014. Reactive-Infiltration Instabilities in Rocks. Part 2. Dissolution of a Porous Matrix. Journal of Fluid Mechanics, 738:591-630. https://doi.org/10.1017/jfm.2013.586
[36] Szymczak, P., Ladd, A. J. C., 2013. Interacting Length Scales in the Reactive-Infiltration Instability. Geophysical Research Letters, 40(12):3036-3041. https://doi.org/10.1002/grl.50564
[37] Terasaki, H., Frost, D. J., Rubie, D. C., et al., 2005. The Effect of Oxygen and Sulphur on the Dihedral Angle between Fe-O-S Melt and Silicate Minerals at High Pressure:Implications for Martian Core Formation. Earth and Planetary Science Letters, 232(3/4):379-392. https://doi.org/10.1016/j.epsl.2005.01.030
[38] von Bargen, N., Waff, H. S., 1986. Permeabilities, Interfacial Areas and Curvatures of Partially Molten Systems:Results of Numerical Computations of Equilibrium Microstructures. Journal of Geophysical Research, 91(B9):9261. https://doi.org/10.1029/jb091ib09p09261
[39] Wang, Z. J., Jin, Z. M., Mungall, J. E., et al., 2020. Transport of Coexisting Ni-Cu Sulfide Liquid and Silicate Melt in Partially Molten Peridotite. Earth and Planetary Science Letters, 536:116162. https://doi.org/10.1016/j.epsl.2020.116162
[40] Wark, D. A., Watson, E. B., 1998. Grain-Scale Permeabilities of Texturally Equilibrated, Monomineralic Rocks. Earth and Planetary Science Letters, 164(3/4):591-605. https://doi.org/10.1016/s0012-821x(98)00252-0
[41] Yoshino, T., Walter, M. J., Katsura, T., 2003. Core Formation in Planetesimals Triggered by Permeable Flow. Nature, 422(6928):154-157. https://doi.org/10.1038/nature01459