[1] Bankole, S. A., Buckman, J., Stow, D., et al., 2019. Automated Image Analysis of Mud and Mudrock Microstructure and Characteristics of Hemipelagic Sediments:IODP Expedition 339. Journal of Earth Science, 30(2):407-421. https://doi.org/10.1007/s12583-019-1210-4
[2] Bifano, T. G., Dow, T. A., Scattergood, R. O., 1991. Ductile-Regime Grinding:A New Technology for Machining Brittle Materials. Journal of Engineering for Industry, 113(2):184-189. https://doi.org/10.1115/1.2899676
[3] Cai, Z. R., Lu, L. J., Huang, Q. T., et al., 2019. Formation Conditions for Nanoparticles in a Fault Zone and Their Role in Fault Sliding. Tectonics, 38(1):159-175. https://doi.org/10.1029/2018tc005171
[4] Cai, Z. R., Xiang, J. Y., Huang, Q. T., et al., 2018. The Morphology of Nanoparticles in the Ductile Shear Zone of Red River Fault and Its Tectonic Significance. Earth Science, 43(5):1524-1531 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201805013
[5] Chester, F. M., Evans, J. P., Biegel, R. L., 1993. Internal Structure and Weakening Mechanisms of the San Andreas Fault. Journal of Geophysical Research:Solid Earth, 98(B1):771-786. https://doi.org/10.1029/92jb01866
[6] Collettini, C., Carpenter, B. M., Viti, C., et al., 2014. Fault Structure and Slip Localization in Carbonate-Bearing Normal Faults:An Example from the Northern Apennines of Italy. Journal of Structural Geology, 67:154-166. https://doi.org/10.1016/j.jsg.2014.07.017
[7] de Paola, N., Holdsworth, R. E., Viti, C., et al., 2015. Can Grain Size Sensitive Flow Lubricate Faults during the Initial Stages of Earthquake Propagation?. Earth and Planetary Science Letters, 431:48-58. https://doi.org/10.1016/j.epsl.2015.09.002
[8] di Toro, G., Han, R., Hirose, T., et al., 2011. Fault Lubrication during Earthquakes. Nature, 471(7339):494-498. https://doi.org/10.1038/nature09838
[9] Fondriest, M., Smith, S. A. F., Candela, T., et al., 2013. Mirror-Like Faults and Power Dissipation during Earthquakes. Geology, 41(11):1175-1178. https://doi.org/10.1130/g34641.1
[10] Gou, Q. Y., Qian, X., He, H. Y., et al., 2019. Geochronological and Geochemical Constraints on Lizhigou Middle Triassic Felsic Volcanic Rocks in Hainan and Its Tectonic Implications. Earth Science, 44(4):1357-1370 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201904021
[11] Green II, H. W., Shi, F., Bozhilov, K., et al., 2015. Phase Transformation and Nanometric Flow Cause Extreme Weakening during Fault Slip. Nature Geoscience, 8(6):484-489. https://doi.org/10.1038/ngeo2436
[12] Guangdong BGMR (Bureau of Geology and Mineral Resources of Guangdong Province), 1988. Regional Geology of Guangdong Province. Geological Publishing House, Beijing. 1-602 (in Chinese)
[13] Han, R., Hirose, T., Shimamoto, T., et al., 2011. Granular Nanoparticles Lubricate Faults during Seismic Slip. Geology, 39(6):599-602. https://doi.org/10.1130/g31842.1
[14] Han, R., Shimamoto, T., Hirose, T., et al., 2007. Ultralow Friction of Carbonate Faults Caused by Thermal Decomposition. Science, 316(5826):878-881. https://doi.org/10.1126/science.1139763
[15] Hu, W., Huang, R. Q., McSaveney, M., et al., 2018. Mineral Changes Quantify Frictional Heating during a Large Low-Friction Landslide. Geology, 46(3):223-226. https://doi.org/10.1130/g39662.1
[16] Hu, W., Huang, R. Q., McSaveney, M., et al., 2019. Superheated Steam, Hot CO2 and Dynamic Recrystallization from Frictional Heat Jointly Lubricated a Giant Landslide:Field and Experimental Evidence. Earth and Planetary Science Letters, 510:85-93. https://doi.org/10.1016/j.epsl.2019.01.005
[17] Keulen, N., Heilbronner, R., Stünitz, H., et al., 2007. Grain Size Distributions of Fault Rocks:A Comparison between Experimentally and Naturally Deformed Granitoids. Journal of Structural Geology, 29(8):1282-1300. https://doi.org/10.1016/j.jsg.2007.04.003
[18] Kisters, A. F. M., Kolb, J., Meyer, F. M., et al., 2000. Hydrologic Segmentation of High-Temperature Shear Zones:Structural, Geochemical and Isotopic Evidence from Auriferous Mylonites of the Renco Mine, Zimbabwe. Journal of Structural Geology, 22(6):811-829. https://doi.org/10.1016/s0191-8141(00)00006-7
[19] Koch, C. C., 1997. Synthesis of Nanostructured Materials by Mechanical Milling:Problems and Opportunities. Nanostructured Materials, 9(1/2/3/4/5/6/7/8):13-22. https://doi.org/10.1016/s0965-9773(97)00014-7
[20] Koch, C. C., 2007. Structural Nanocrystalline Materials:An Overview. Journal of Materials Science, 42(5):1403-1414. https://doi.org/10.1007/s10853-006-0609-3
[21] Koch, C. C., Scattergood, R. O., Darling, K. A., et al., 2008. Stabilization of Nanocrystalline Grain Sizes by Solute Additions. Journal of Materials Science, 43(23/24):7264-7272. https://doi.org/10.1007/s10853-008-2870-0
[22] Li, X. H., Zhou, H. W., Chung, S. L., et al., 2002. Geochemical and Sm-Nd Isotopic Characteristics of Metabasites from Central Hainan Island, South China and Their Tectonic Significance. The Island Arc, 11(3):193-205. https://doi.org/10.1046/j.1440-1738.2002.00365.x
[23] Liu, H. L., Yan, P., Liu, Y. C., et al., 2006. Existence of Qiongnan Suture Zone on the North Margin of South China Sea. Chinese Science Bulletin, 51(S2):107-120. https://doi.org/10.1007/s11434-006-9107-x
[24] Liu, H. L., Zhu, R. W., Shen, B. Y., et al., 2017. First Discovering of Nanoscale Tectonics in Western of Qiongnan Paleo-Tethyan Suture Zone in North Margin of South China Sea and Its Geotectonic Significance. Journal of Nanoscience and Nanotechnology, 17(9):6411-6422. https://doi.org/10.1166/jnn.2017.14450
[25] Lu, K., 2016. Stabilizing Nanostructures in Metals Using Grain and Twin Boundary Architectures. Nature Reviews Materials, 1(5):16019. https://doi.org/10.1038/natrevmats.2016.19
[26] Metcalfe, I., Shergold, I. H., Li, Z. X., 1994. IGCP 321 Gondwana Dispersion and Asian Accretion:Fieldwork on Hainan Island. Episodes, 16(4):443-447 https://www.researchgate.net/publication/288176670_IGCP_321_Gondwana_dispersion_and_Asian_accretion_Fieldwork_on_Hainan_Island
[27] Metcalfe, I., 2017. Tectonic Evolution of Sundaland. Bulletin of the Geological Society of Malaysia, 63:27-60. https://doi.org/10.7186/bgsm63201702
[28] Schärer, U., Zhang, L.-S., Tapponnier, P., 1994. Duration of Strike-Slip Movements in Large Shear Zones:The Red River Belt, China. Earth and Planetary Science Letters, 126(4):379-397. https://doi.org/10.1016/0012-821x(94)90119-8
[29] Shen, B. Y., Liu, B., Liu, H. L., et al., 2016. Xiaomei Ductile Shear Zone on Hainan Island in a Nanoscale Perspective. Earth Science, 41(9):1489-1498 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201609005
[30] Shen, T. D., Koch, C. C., McCormick, T. L., et al., 1995. The Structure and Property Characteristics of Amorphous Nanocrystalline Silicon Produced by Ball-Milling. Journal of Materials Research, 10:139-148. doi: 10.1557/JMR.1995.0139
[31] Siman-Tov, S., Aharonov, E., Boneh, Y., et al., 2015. Fault Mirrors along Carbonate Faults:Formation and Destruction during Shear Experiments. Earth and Planetary Science Letters, 430:367-376. https://doi.org/10.1016/j.epsl.2015.08.031
[32] Siman-Tov, S., Aharonov, E., Sagy, A., et al., 2013. Nanograins Form Carbonate Fault Mirrors. Geology, 41(6):703-706. https://doi.org/10.1130/g34087.1
[33] Smith, S. A. F., di Toro, G., Kim, S., et al., 2013. Coseismic Recrystallization during Shallow Earthquake Slip. Geology, 41(1):63-66. https://doi.org/10.1130/g33588.1
[34] Smith, S. A. F., Nielsen, S., di Toro, G., 2015. Strain Localization and the Onset of Dynamic Weakening in Calcite Fault Gouge. Earth and Planetary Science Letters, 413:25-36. https://doi.org/10.1016/j.epsl.2014.12.043
[35] Spagnuolo, E., Plümper, O., Violay, M., et al., 2015. Fast-Moving Dislocations Trigger Flash Weakening in Carbonate-Bearing Faults during Earthquakes. Scientific Reports, 5(1):16112. https://doi.org/10.1038/srep16112
[36] Sun, Y., Jiang, S. Y., Wei, Z., et al., 2013. Nano-Coating Texture on the Shear Slip Surface in Rocky Materials. Advanced Materials Research, 669:108-114. https://doi.org/10.4028/www.scientific.net/amr.669.108
[37] Sun, Y., Lu, X. C., Shu, L. S., et al., 2005. Observation of Ultra-Microtexture of Fault Rocks in Shearing-Sliding Zones*. Progress in Natural Science, 15(5):430-434. https://doi.org/10.1080/10020070512331342350
[38] Sun, Y., Lu, X. C., Zhang, X. H., et al., 2009. Nano-Texture of Penetrative Foliation in Metamorphic Rocks. Science China Earth Sciences, 39(8):1140-1147 (in Chinese) doi: 10.1007%2Fs11430-008-0138-9
[39] Sun, Y., Shu, L. S., Lu, X. C., et al., 2008a. A Comparative Study of Natural and Experimental Nano-Sized Grinding Grain Textures in Rocks. Science Bulletin, 53(8):1217-1221. https://doi.org/10.1007/s11434-008-0112-0
[40] Sun, Y., Shu, L. S., Lu, X. C., et al., 2008b. Recent Progress in Studies on the Nano-Sized Particle Layer in Rock Shear Planes. Progress in Natural Science, 18(4):367-373. https://doi.org/10.1016/j.pnsc.2007.12.001
[41] Tisato, N., di Toro, G., de Rossi, N., et al., 2012. Experimental Investigation of Flash Weakening in Limestone. Journal of Structural Geology, 38:183-199. https://doi.org/10.1016/j.jsg.2011.11.017
[42] Verberne, B. A., Plümper, O., Matthijs de Winter, D. A., et al., 2014. Superplastic Nanofibrous Slip Zones Control Seismogenic Fault Friction. Science, 346(6215):1342-1344. https://doi.org/10.1126/science.1259003
[43] Wang, Y., Liu, H. L., Zhang, X. F., et al., 2018. The Role of Nanograins in Ductile Shear Zones:An Example from Hainan Island, Northern Margin of South China Sea. Nanoscience and Nanotechnology Letters, 10(4):512-519. https://doi.org/10.1166/nnl.2018.2690
[44] Wibberley, C. A. J., Shimamoto, T., 2005. Earthquake Slip Weakening and Asperities Explained by Thermal Pressurization. Nature, 436(7051):689-692. https://doi.org/10.1038/nature03901
[45] Xie, C. F., 2002. A Microstructure Marker of Syntectonic Granitoids. Acta Petrologica et Mineralogica, 21(2):179-185 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz200202013
[46] Xu, D., Xia, B., Bakun-Czubarow, N., et al., 2008. Geochemistry and Sr-Nd Isotope Systematics of Metabasites in the Tunchang Area, Hainan Island, South China:Implications for Petrogenesis and Tectonic Setting. Mineralogy and Petrology, 92(3/4):361-391. https://doi.org/10.1007/s00710-007-0198-0
[47] Xu, X. B., Lin, S. F., Tang, S., et al., 2018. Transformation from Neoproterozoic Sinistral to Early Paleozoic Dextral Shearing for the Jingdezhen Ductile Shear Zone in the Jiangnan Orogen, South China. Journal of Earth Science, 29(2):376-390. https://doi.org/10.1007/s12583-017-0965-8
[48] Yuan, R. M., Zhang, B. L., Xu, X. W., et al., 2014. Features and Genesis of Micro-Nanometer-Sized Grains on Shear Slip Surface of the 2008 Wenchuan Earthquake. Science China Earth Sciences, 57(8):1961-1971. https://doi.org/10.1007/s11430-014-4859-7
[49] Yund, R. A., Blanpied, M. L., Tullis, T. E., et al., 1990. Amorphous Material in High Strain Experimental Fault Gouges. Journal of Geophysical Research, 95(B10):15589-15602. https://doi.org/10.1029/jb095ib10p15589
[50] Zhang, F. F., Wang, Y. J., Chen, X. Y., et al., 2011. Triassic High-Strain Shear Zones in Hainan Island (South China) and Their Implications on the Amalgamation of the Indochina and South China Blocks:Kinematic and 40Ar/39Ar Geochronological Constraints. Gondwana Research, 19(4):910-925. https://doi.org/10.1016/j.gr.2010.11.002