[1] Albarède, F., Blichert-Toft, J., Vervoort, J. D., et al., 2000. Hf-Nd Isotope Evidence for a Transient Dynamic Regime in the Early Terrestrial Mantle. Nature, 404(6777): 488-490. https://doi.org/10.1038/35006621
[2] Ames, L., Zhou, G. Z., Xiong, B. C., 1996. Geochronology and Isotopic Character of Ultrahigh-Pressure Metamorphism with Implications for Collision of the Sino-Korean and Yangtze Cratons, Central China. Tectonics, 15(2): 472-489. https://doi.org/10.1029/95tc02552
[3] Aulbach, S., Griffin, W. L., O'Reilly, S. Y., et al., 2004. Genesis and Evolution of the Lithospheric Mantle beneath the Buffalo Head Terrane, Alberta (Canada). Lithos, 77(1/2/3/4): 413-451. https://doi.org/10.1016/j.lithos.2004.04.020
[4] Ayers, J. C., Dunkle, S., Gao, S., et al., 2002. Constraints on Timing of Peak and Retrograde Metamorphism in the Dabie Shan Ultrahigh-Pressure Metamorphic Belt, East-Central China, Using U-Th-Pb Dating of Zircon and Monazite. Chemical Geology, 186: 315-331. http://dx.doi.org/10.1016/S0009-2541(02)00008-6
[5] Bea, F., Montero, P., Molina, J. F., et al., 2017. Lu-Hf Ratios of Crustal Rocks and Their Bearing on Zircon Hf Isotope Model Ages: The Effects of Accessories. Chemical Geology, 484: 179-190. https://doi.org/10.1016/j.chemgeo.2017.11.034
[6] Bedini, R. M., Blichert-Toft, J., Boyet, M., et al., 2004. Isotopic Constraints on the Cooling of the Continental Lithosphere. Earth and Planetary Science Letters, 223(1/2): 99-111. https://doi.org/10.1016/j.epsl.2004.04.012
[7] Bizimis, M., Sen, G., Salters, V. J. M., 2004. Hf-Nd Isotope Decoupling in the Oceanic Lithosphere: Constraints from Spinel Peridotites from Oahu, Hawaii. Earth and Planetary Science Letters, 217(1/2): 43-58. https://doi.org/10.1016/s0012-821x(03)00598-3
[8] Blichert-Toft, J., Albarède, F., Kornprobst, J., 1999. Lu-Hf Isotope Systematics of Garnet Pyroxenites from Beni Bousera, Morocco: Implications for Basalt Origin. Science, 283(5406): 1303-1306. https://doi.org/10.1126/science.283.5406.1303
[9] Blichert-Toft, J., Agranier, A., Andres, M., et al., 2005. Geochemical Segmentation of the Mid-Atlantic Ridge North of Iceland and Ridge-Hot Spot Interaction in the North Atlantic. Geochemistry, Geophysics, Geosystems, 6(1). https://doi.org/10.1029/2004gc000788
[10] Blichert-Toft, J., Chauvel, C., Albarède, F., 1997. Separation of Hf and Lu for High-Precision Isotope Analysis of Rock Samples by Magnetic Sector-Multiple Collector ICP-MS. Contributions to Mineralogy and Petrology, 127(3): 248-260. https://doi.org/10.1007/s004100050278
[11] Blichert-Toft, J., Frei, R., 2001. Complex Sm-Nd and Lu-Hf Isotope Systematics in Metamorphic Garnets from the Isua Supracrustal Belt, West Greenland. Geochimica et Cosmochimica Acta, 65(18): 3177-3189. https://doi.org/10.1016/s0016-7037(01)00680-9
[12] Carlson, R. W., Irving, A. J., Schulze, D. J., et al., 2004. Timing of Precambrian Melt Depletion and Phanerozoic Refertilization Events in the Lithospheric Mantle of the Wyoming Craton and Adjacent Central Plains Orogen. Lithos, 77(1/2/3/4): 453-472. https://doi.org/10.1016/j.lithos.2004.03.030
[13] Chen, J. F., Jahn, B. M., 1998. Crustal Evolution of Southeastern China: Nd and Sr Isotopic Evidence. Tectonophysics, 284(1/2): 101-133. https://doi.org/10.1016/s0040-1951(97)00186-8
[14] Chen, Y. X., Zhou, K., Zheng, Y. F., et al., 2017. Zircon Geochemical Constraints on the Protolith Nature and Metasomatic Process of the Mg-Rich Whiteschist from the Western Alps. Chemical Geology, 467: 177-195. https://doi.org/10.13039/501100002855
[15] Cheng, H., 2019. Garnet Lu-Hf and Sm-Nd Geochronology: A Time Capsule of the Metamorphic Evolution of Orogenic Belts. In: Zhang, L. F., Zhang, Z., Schertl., H.-P., et al., eds, HP-UHP Metamorphism and Tectonic Evolution of Orogenic Belts. Geological Society, London, Special Publications, 474(1): 47-67
[16] Choi, S. H., Mukasa, S. B., Andronikov, A. V., et al., 2007. Extreme Sr-Nd-Pb-Hf Isotopic Compositions Exhibited by the Tinaquillo Peridotite Massif, Northern Venezuela: Implications for Geodynamic Setting. Contributions to Mineralogy and Petrology, 153(4): 443-463. https://doi.org/10.1007/s00410-006-0159-3
[17] Chu, Z. Y., Wu, F. Y., Walker, R. J., et al., 2009. Temporal Evolution of the Lithospheric Mantle beneath the Eastern North China Craton. Journal of Petrology, 50(10): 1857-1898. https://doi.org/10.1093/petrology/egp055
[18] Condie, K. C., Belousova, E., Griffin, W. L., et al., 2009. Granitoid Events in Space and Time: Constraints from Igneous and Detrital Zircon Age Spectra. Gondwana Research, 15(3/4): 228-242. https://doi.org/10.1016/j.gr.2008.06.001
[19] Debaille, V., Blichert-Toft, J., Agranier, A., et al., 2006. Geochemical Component Relationships in MORB from the Mid-Atlantic Ridge, 22-35°N. Earth and Planetary Science Letters, 241(3/4): 844-862. https://doi.org/10.1016/j.epsl.2005.11.004
[20] Dessai, A. G., Markwick, A., Vaselli, O., et al., 2004. Granulite and Pyroxenite Xenoliths from the Deccan Trap: Insight into the Nature and Composition of the Lower Lithosphere beneath Cratonic India. Lithos, 78(3): 263-290. https://doi.org/10.1016/j.lithos.2004.04.038
[21] Duchêne, S., Blichert-Toft, J., Luais, B., et al., 1997. The Lu-Hf Dating of Garnets and the Ages of the Alpine High-Pressure Metamorphism. Nature, 387(6633): 586-589. https://doi.org/10.1038/42446
[22] Foley, S. F., Barth, M. G., Jenner, G. A., 2000. Rutile/Melt Partition Coefficients for Trace Elements and an Assessment of the Influence of Rutile on the Trace Element Characteristics of Subduction Zone Magmas. Geochimica et Cosmochimica Acta, 64(5): 933-938. https://doi.org/10.1016/s0016-7037(99)00355-5
[23] Gao, S., Ling, W. L., Qiu, Y. M., et al., 1999. Contrasting Geochemical and Sm-Nd Isotopic Compositions of Archean Metasediments from the Kongling High-Grade Terrain of the Yangtze Craton: Evidence for Cratonic Evolution and Redistribution of REE during Crustal Anatexis. Geochimica et Cosmochimica Acta, 63(13/14): 2071-2088. https://doi.org/10.1016/s0016-7037(99)00153-2
[24] Gao, S., Rudnick, R. L., Yuan, H. L., et al., 2004. Recycling Lower Continental Crust in the North China Craton. Nature, 432(7019): 892-897. https://doi.org/10.1038/nature03162
[25] Green, T. H., Pearson, N. J., 1986. Ti-Rich Accessory Phase Saturation in Hydrous Mafic-Felsic Compositions at High P, T. Chemical Geology, 54(3/4): 185-201. https://doi.org/10.1016/0009-2541(86)90136-1
[26] Griffin, W. L., Brueckner, H. K., 1985. REE, Rb-Sr and Sm-Nd Studies of Norwegian Eclogites. Chemical Geology, 52(2): 249-271. https://doi.org/10.1016/0168-9622(85)90021-1
[27] Guo, J. H., Sun, M., Chen, F. K., et al., 2005. Sm-Nd and SHRIMP U-Pb Zircon Geochronology of High-Pressure Granulites in the Sanggan Area, North China Craton: Timing of Paleoproterozoic Continental Collision. Journal of Asian Earth Sciences, 24(5): 629-642. https://doi.org/10.1016/j.jseaes.2004.01.017
[28] Guo, J. L., Gao, S., Wu, Y. B., et al., 2014. Titanite Evidence for Triassic Thickened Lower Crust along Southeastern Margin of North China Craton. Lithos, 206/207: 277-288. https://doi.org/10.1016/j.lithos.2014.08.002
[29] Guo, S. S., Li, S. G., 2009. SHRIMP Zircon U-Pb Ages for the Paleoproterozoic Metamorphic-Magmatic Events in the Southeast Margin of the North China Craton. Science in China Series D: Earth Sciences, 52(8): 1039-1045. https://doi.org/10.1007/s11430-009-0099-7
[30] Hamelin, C., Bezos, A., Dosso, L., et al., 2013. Atypically Depleted Upper Mantle Component Revealed by Hf Isotopes at Lucky Strike Segment. Chemical Geology, 341: 128-139. https://doi.org/10.1016/j.chemgeo.2013.01.013
[31] Hirajima, T., Nakamura, D., 2003. The Dabie Shan-Sulu Orogen. In: Carswell, D. A., Compagnoni, R., eds., Ultrahigh Pressure Metamorphism. EMU Notes Mineral., 5. Eötvös Univ. Press, Budapest. 105-144
[32] Hoffmann, J. E., Münker, C., Polat, A., et al., 2011. The Origin of Decoupled Hf-Nd Isotope Compositions in Eoarchean Rocks from Southern West Greenland. Geochimica et Cosmochimica Acta, 75(21): 6610-6628. https://doi.org/10.1016/j.gca.2011.08.018
[33] Hou, G. T., Liu, Y. L., Li, J. H., 2006. Evidence for ~1.8 Ga Extension of the Eastern Block of the North China Craton from SHRIMP U-Pb Dating of Mafic Dyke Swarms in Shandong Province. Journal of Asian Earth Sciences, 27(4): 392-401. https://doi.org/10.1016/j.jseaes.2005.05.001
[34] Huang, X. L., Niu, Y. L., Xu, Y. G., et al., 2010. Geochemistry of TTG and TTG-Like Gneisses from Lushan-Taihua Complex in the Southern North China Craton: Implications for Late Archean Crustal Accretion. Precambrian Research, 182(1/2): 43-56. https://doi.org/10.1016/j.precamres.2010.06.020
[35] Huang, X. L., Wilde, S. A., Yang, Q. J., et al., 2012. Geochronology and Petrogenesis of Gray Gneisses from the Taihua Complex at Xiongʼer in the Southern Segment of the Trans-North China Orogen: Implications for Tectonic Transformation in the Early Paleoproterozoic. Lithos, 134/135: 236-252. https://doi.org/10.1016/j.lithos.2012.01.004
[36] Huang, X. L., Wilde, S. A., Zhong, J. W., 2013. Episodic Crustal Growth in the Southern Segment of the Trans-North China Orogen across the Archean-Proterozoic Boundary. Precambrian Research, 233: 337-357. https://doi.org/10.1016/j.precamres.2013.05.016
[37] Huang, X. L., Xu, Y. G., Liu, D. Y., 2004. Geochronology, Petrology and Geochemistry of the Granulite Xenoliths from Nushan, East China. Geochimica et Cosmochimica Acta, 68(1): 127-149. https://doi.org/10.1016/s0016-7037(03)00416-2
[38] Ionov, D. A., Blichert-Toft, J., Weis, D., 2005. Hf Isotope Compositions and HREE Variations in Off-Craton Garnet and Spinel Peridotite Xenoliths from Central Asia. Geochimica et Cosmochimica Acta, 69(9): 2399-2418. https://doi.org/10.1016/j.gca.2004.11.008
[39] Ionov, D. A., Shirey, S. B., Weis, D., et al., 2006. Os-Hf-Sr-Nd Isotope and PGE Systematics of Spinel Peridotite Xenoliths from Tok, SE Siberian Craton: Effects of Pervasive Metasomatism in Shallow Refractory Mantle. Earth and Planetary Science Letters, 241(1/2): 47-64. https://doi.org/10.1016/j.epsl.2005.10.038
[40] Ishikawa, A., Kuritani, T., Makishima, A., et al., 2007. Ancient Recycled Crust beneath the Ontong Java Plateau: Isotopic Evidence from the Garnet Clinopyroxenite Xenoliths, Malaita, Solomon Islands. Earth and Planetary Science Letters, 259(1/2): 134-148. https://doi.org/10.1016/j.epsl.2007.04.034
[41] Jahn, B. M., 1998. Geochemical and Isotopic Characteristics of UHP Eclogites and Ultramafic Rocks of the Dabie Orogen: Implications for Continental Subduction and Collisional Tectonics. In: Hacker, B. R., Liou, J. G., eds., When Continents Collide: Geodynamics and Geochemistry of Ultrahigh-Pressure Rocks. Kluwer Academic Publishers, Dordrecht. 203-239
[42] Jahn, B. M., Fan, Q. C., Yang, J. J., et al., 2003a. Petrogenesis of the Maowu Pyroxenite-Eclogite Body from the UHP Metamorphic Terrane of Dabieshan: Chemical and Isotopic Constraints. Lithos, 70(3/4): 243-267. https://doi.org/10.1016/s0024-4937(03)00101-4
[43] Jahn, B. M., Rumble, D., Liou, J. G., 2003b. Geochemistry and Isotope Tracer Study of UHP Metamorphic Rocks. EMU Notes in Mineralogy, 5: 365-414
[44] Jahn, B. M., Wu, F. Y., Lo, C. H., et al., 1999. Crust-Mantle Interaction Induced by Deep Subduction of the Continental Crust: Geochemical and Sr-Nd Isotopic Evidence from Post-Collisional Mafic-Ultramafic Intrusions of the Northern Dabie Complex, Central China. Chemical Geology, 157(1/2): 119-146. https://doi.org/10.1016/s0009-2541(98)00197-1
[45] Jiang, N., Guo, J. H., 2010. Hannuoba Intermediate-Mafic Granulite Xenoliths Revisited: Assessment of a Mesozoic Underplating Model. Earth and Planetary Science Letters, 293(3/4): 277-288. https://doi.org/10.1016/j.epsl.2010.02.042
[46] Jiang, N., Guo, J. H., Chang, G. H., 2013. Nature and Evolution of the Lower Crust in the Eastern North China Craton: A Review. Earth-Science Reviews, 122: 1-9. https://doi.org/10.1016/j.earscirev.2013.03.006
[47] John, T., Scherer, E. E., Haase, K., et al., 2004. Trace Element Fractionation during Fluid-Induced Eclogitization in a Subducting Slab: Trace Element and Lu-Hf-Sm-Nd Isotope Systematics. Earth and Planetary Science Letters, 227(3/4): 441-456. https://doi.org/10.1016/j.epsl.2004.09.009
[48] Johnson, C. M., Beard, B. L., 1993. Evidence from Hafnium Isotopes for Ancient Sub-Oceanic Mantle beneath the Rio Grande Rift. Nature, 362(6419): 441-444. https://doi.org/10.1038/362441a0
[49] Johnson, C. M., Shirey, S. B., Barovich, K. M., 1996. New Approaches to Crustal Evolution Studies and the Origin of Granitic Rocks: What can the Lu-Hf and Re-Os Isotope Systems Tell Us?. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 87(1/2): 339-352. https://doi.org/10.1017/s0263593300006738
[50] Kemp, A. I. S., Hawkesworth, C. J., 2004. Granitic Perspectives on the Generation and Secular Evolution of the Continental Crust. Treatise on Geochemistry, 3: 349-411
[51] Kessel, R., Schmidt, M. W., Ulmer, P., et al., 2005. Trace Element Signature of Subduction-Zone Fluids, Melts and Supercritical Liquids at 120-180  km Depth. Nature, 437(7059): 724-727. https://doi.org/10.1038/nature03971
[52] Kröner, A., Wilde, S. A., Li, J. H., et al., 2005. Age and Evolution of a Late Archean to Paleoproterozoic Upper to Lower Crustal Section in the Wutaishan/Hengshan/Fuping Terrain of Northern China. Journal of Asian Earth Sciences, 24(5): 577-595. https://doi.org/10.1016/j.jseaes.2004.01.001
[53] Kusky, T. M., Li, J. H., 2003. Paleoproterozoic Tectonic Evolution of the North China Craton. Journal of Asian Earth Sciences, 22(4): 383-397. https://doi.org/10.1016/s1367-9120(03)00071-3
[54] Li, X.-P., Wang, X., Chen, S., et al., 2018. Petrology and Zircon U-Pb Dating of Meta-Calcsilicate from the Jiaobei Terrane in the Jiao-Liao-Ji Belt of the North China Craton. Precambrian Research, 313: 221-241. https://doi.org/10.1016/j.precamres.2018.04.018
[55] Liou, J. G., Zhang, R. Y., Ernst, W. G., et al., 1998. High-Pressure Minerals from deeply Subducted Metamorphic Rocks. In: Hemley, R., Mao, D., eds., Ultrahigh Pressure Mineralogy. Reviews in Mineralogy and Geochemistry, 37(1): 33-96
[56] Liu, D. Y., Nutman, A. P., Compston, W., et al., 1992. Remnants of ≥3 800 Ma Crust in the Chinese Part of the Sino-Korean Craton. Geology, 20(4): 339-342. https://doi.org/10.1130/0091-7613(1992)020<0339:romcit>2.3.co;2 doi: 10.1130/0091-7613(1992)020<0339:romcit>2.3.co;2
[57] Liu, S. W., Santosh, M., Wang, W., et al., 2011. Zircon U-Pb Chronology of the Jianping Complex: Implications for the Precambrian Crustal Evolution History of the Northern Margin of North China Craton. Gondwana Research, 20(1): 48-63. https://doi.org/10.1016/j.gr.2011.01.003
[58] Liu, Y. C., Wang, A. D., Li, S. G., et al., 2013. Composition and Geochronology of the Deep-Seated Xenoliths from the Southeastern Margin of the North China Craton. Gondwana Research, 23(3): 1021-1039. https://doi.org/10.1016/j.gr.2012.06.009
[59] Liu, Y. C., Wang, A. D., Rolfo, F., et al., 2009. Geochronological and Petrological Constraints on Palaeoproterozoic Granulite Facies Metamorphism in Southeastern Margin of the North China Craton. Journal of Metamorphic Geology, 27(2): 125-138. https://doi.org/10.1111/j.1525-1314.2008.00810.x
[60] Liu, Y. H., Yang, H. J., Takazawa, E., et al., 2015. Decoupling of the Lu-Hf, Sm-Nd, and Rb-Sr Isotope Systems in Eclogites and a Garnetite from the Sulu Ultra-High Pressure Metamorphic Terrane: Causes and Implications. Lithos, 234/235: 1-14. https://doi.org/10.13039/501100001868
[61] Liu, Y. S., Gao, S., Jin, S. Y., et al., 2001. Geochemistry of Lower Crustal Xenoliths from Neogene Hannuoba Basalt, North China Craton: Implications for Petrogenesis and Lower Crustal Composition. Geochimica et Cosmochimica Acta, 65(15): 2589-2604. https://doi.org/10.1016/s0016-7037(01)00609-3
[62] Liu, Y. S., Gao, S., Yuan, H. L., et al., 2004. U-Pb Zircon Ages and Nd, Sr, and Pb Isotopes of Lower Crustal Xenoliths from North China Craton: Insights on Evolution of Lower Continental Crust. Chemical Geology, 211(1/2): 87-109. https://doi.org/10.1016/j.chemgeo.2004.06.023
[63] Ma, C. Q., Ehlers, C., Xu, C. H., et al., 2000. The Roots of the Dabieshan Ultrahigh-Pressure Metamorphic Terrane: Constraints from Geochemistry and Nd-Sr Isotope Systematics. Precambrian Research, 102(3/4): 279-301. https://doi.org/10.1016/s0301-9268(00)00069-3
[64] Martin, C., Duchêne, S., Luais, B., et al., 2010. Behavior of Trace Elements in Relation to Lu-Hf and Sm-Nd Geochronometers during Metamorphic Dehydration-Hydration in the HP Domain of Vårdalsneset, Western Gneiss Region, Norway. Contributions to Mineralogy and Petrology, 159(4): 437-458. https://doi.org/10.1007/s00410-009-0434-1
[65] Meng, F. X., 2011. Mesozoic-Cenozoic Evolution of the North China Craton: Evidence from Hf Isotopes and Detrital Zircons: [Dissertation]. China University of Geosciences, Wuhan (in Chinese with English Abstract)
[66] Meng, F. X., Gao S., Song, Z. J., et al., 2018. Mesozoic High-Mg Andesites from the Daohugou Area, Inner Mongolia: Upper-Crustal Fractional Crystallization of Parental Melt Derived from Metasomatized Lithospheric Mantle Wedge. Lithos, 302/303: 535-548. https://doi.org/10.1016/j.lithos.2018.01.032
[67] Meng, Y. K., Santosh, M., Li, R. H., et al., 2018. Petrogenesis and Tectonic Implications of Early Cretaceous Volcanic Rocks from Lingshan Island in the Sulu Orogenic Belt. Lithos, 312/313: 244-257. https://doi.org/10.13039/501100002858
[68] Montanini, A., Harlov, D., 2006. Petrology and Mineralogy of Granulite-Facies Mafic Xenoliths (Sardinia, Italy): Evidence for KCl Metasomatism in the Lower Crust. Lithos, 92(3/4): 588-608. https://doi.org/10.1016/j.lithos.2006.03.053
[69] Patchett, P. J., 1983. Hafnium Isotope Results from Mid-Ocean Ridges and Kerguelen. Lithos, 16(1): 47-51. https://doi.org/10.1016/0024-4937(83)90033-6
[70] Patchett, P. J., Tatsumoto, M., 1980. Hafnium Isotope Variations in Oceanic Basalts. Geophysical Research Letters, 7(12): 1077-1080. https://doi.org/10.1029/gl007i012p01077
[71] Pietranik, A. B., Hawkesworth, C. J., Storey, C. D., et al., 2008. Episodic, Mafic Crust Formation from 4.5 to 2.8 Ga: New Evidence from Detrital Zircons, Slave Craton, Canada. Geology, 36(11): 875-878. https://doi.org/10.1130/g24861a.1
[72] Plank, T., Langmuir, C. H., 1998. The Chemical Composition of Subducting Sediment and its Consequences for the Crust and Mantle. Chemical Geology, 145(3/4): 325-394. https://doi.org/10.1016/s0009-2541(97)00150-2
[73] Polat, A., Hofmann, A. W., Münker, C., et al., 2003. Contrasting Geochemical Patterns in the 3.7-3.8 Ga Pillow Basalt Cores and Rims, Isua Greenstone Belt, Southwest Greenland: Implications for Postmagmatic Alteration Processes. Geochimica et Cosmochimica Acta, 67(3): 441-457. https://doi.org/10.1016/s0016-7037(02)01094-3
[74] Rosman, K. J. R., Taylor, P. D. P., 1998. Isotopic Compositions of the Elements 1997 (Technical Report). Pure and Applied Chemistry, 70(1): 217-235. https://doi.org/10.1351/pac199870010217
[75] Rubatto, D., Hermann, J., 2003. Zircon Formation during Fluid Circulation in Eclogites (Monviso, Western Alps): Implications for Zr and Hf Budget in Subduction Zones. Geochimica et Cosmochimica Acta, 67(12): 2173-2187. https://doi.org/10.1016/s0016-7037(02)01321-2
[76] Rudnick, R. L., 1990. Continental Crust: Growth from below. Nature, 347: 711-712 doi: 10.1038/347711a0
[77] Rumble, D., Liou, J. G., Jahn, B. M., 2005. Continental Crust Subduction and Ultrahigh Pressure Metamorphism. In: Rudnick, R. L., eds., Treatise on Geochemistry. The Crust: Elseiver-Pergamon, Oxford. 293-320
[78] Salters, V. J. M., Hart, S. R., 1991. The Mantle Sources of Ocean Ridges, Islands and Arcs: The Hf-Isotope Connection. Earth and Planetary Science Letters, 104(2/3/4): 364-380. https://doi.org/10.1016/0012-821x(91)90216-5
[79] Salters, V. J. M., Mallick, S., Hart, S. R., et al., 2011. Domains of Depleted Mantle: New Evidence from Hafnium and Neodymium Isotopes. Geochemistry, Geophysics, Geosystems, 12(8): Q08001. https://doi.org/10.1029/2011gc003617
[80] Salters, V. J. M., White, W. M., 1998. Hf Isotope Constraints on Mantle Evolution. Chemical Geology, 145(3/4): 447-460. https://doi.org/10.1016/s0009-2541(97)00154-x
[81] Salters, V. J. M., Zindler, A., 1995. Extreme 176Hf/177Hf in the Sub-Oceanic Mantle. Earth and Planetary Science Letters, 129(1/2/3/4): 13-30. https://doi.org/10.1016/0012-821x(94)00234-p
[82] Scherer, E. E., Cameron, K. L., Blichert-Toft, J., 2000. Lu-Hf Garnet Geochronology: Closure Temperature Relative to the Sm-Nd System and the Effects of Trace Mineral Inclusions. Geochimica et Cosmochimica Acta, 64(19): 3413-3432. https://doi.org/10.1016/s0016-7037(00)00440-3
[83] Scherer, E. E., Cameron, K. L., Johnson, C. M., et al., 1995. Hafnium Isotope Evidence for the Cenozoic Formation of Mafic Garnet Granulite in the Deep Crust beneath Kilboume Hole, New Mexico. EOS, 76: 707
[84] Schmidberger, S. S., Simonetti, A., Francis, D., et al., 2002. Probing Archean Lithosphere Using the Lu-Hf Isotope Systematics of Peridotite Xenoliths from Somerset Island Kimberlites, Canada. Earth and Planetary Science Letters, 197(3/4): 245-259. https://doi.org/10.1016/s0012-821x(02)00491-0
[85] Schmitz, M. D., Vervoort, J. D., Bowring, S. A., et al., 2004. Decoupling of the Lu-Hf and Sm-Nd Isotope Systems during the Evolution of Granulitic Lower Crust beneath Southern Africa. Geology, 32(5): 405-408. https://doi.org/10.1130/g20241.1
[86] Simon, N. S. C., Carlson, R. W., Pearson, D. G., et al., 2007. The Origin and Evolution of the Kaapvaal Cratonic Lithospheric Mantle. Journal of Petrology, 48(3): 589-625. https://doi.org/10.1093/petrology/egl074
[87] Stracke, A., Snow, J. E., Hellebrand, E., et al., 2011. Abyssal Peridotite Hf Isotopes Identify Extreme Mantle Depletion. Earth and Planetary Science Letters, 308(3/4): 359-368. https://doi.org/10.1016/j.epsl.2011.06.012
[88] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
[89] Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publication, Oxford
[90] Tollstrup, D. L., Gill, J. B., 2005. Hafnium Systematics of the Mariana Arc: Evidence for Sediment Melt and Residual Phases. Geology, 33(9): 737-740. https://doi.org/10.1130/g21639.1
[91] Turner, S., Handler, M., Bindeman, I., et al., 2009. New Insights into the Origin of O-Hf-Os Isotope Signatures in Arc Lavas from Tonga-Kermadec. Chemical Geology, 266(3/4): 187-193. https://doi.org/10.1016/j.chemgeo.2009.05.027
[92] Vervoort, J. D., Blichert-Toft, J., 1999. Evolution of the Depleted Mantle: Hf Isotope Evidence from Juvenile Rocks through Time. Geochimica et Cosmochimica Acta, 63(3/4): 533-556. https://doi.org/10.1016/s0016-7037(98)00274-9
[93] Vervoort, J. D., Patchett, P. J., 1996. Behavior of Hafnium and Neodymium Isotopes in the Crust: Constraints from Precambrian Crustally Derived Granites. Geochimica et Cosmochimica Acta, 60(19): 3717-3733. https://doi.org/10.1016/0016-7037(96)00201-3
[94] Vervoort, J. D., Patchett, P. J., Albarède, F., et al., 2000. Hf-Nd Isotopic Evolution of the Lower Crust. Earth and Planetary Science Letters, 181(1/2): 115-129. https://doi.org/10.1016/s0012-821x(00)00170-9
[95] Vervoort, J. D., Patchett, P. J., Blichert-Toft, J., et al., 1999. Relationships between Lu-Hf and Sm-Nd Isotopic Systems in the Global Sedimentary System. Earth and Planetary Science Letters, 168(1/2): 79-99. https://doi.org/10.1016/s0012-821x(99)00047-3
[96] Vervoort, J. D., Patchett, P. J., Gehrels, G. E., et al., 1996. Constraints on Early Earth Differentiation from Hafnium and Neodymium Isotopes. Nature, 379(6566): 624-627. https://doi.org/10.1038/379624a0
[97] Vervoort, J. D., Plank, T., Prytulak, J., 2011. The Hf-Nd Isotopic Composition of Marine Sediments. Geochimica et Cosmochimica Acta, 75(20): 5903-5926. https://doi.org/10.1016/j.gca.2011.07.046
[98] Wade, J. A., Plank, T., Stern, R. J., et al., 2005. The May 2003 Eruption of Anatahan Volcano, Mariana Islands: Geochemical Evolution of a Silicic Island-Arc Volcano. Journal of Volcanology and Geothermal Research, 146(1/2/3): 139-170. https://doi.org/10.1016/j.jvolgeores.2004.11.035
[99] Wang, F., Liu, F. L., Liu, P. H., et al., 2017. In situ Zircon U-Pb Dating and Whole-Rock Geochemistry of Metasedimentary Rocks from South Liaohe Group, Jiao-Liao-Ji Orogenic Belt: Constraints on the Depositional and Metamorphic Ages, and Implications for Tectonic Setting. Precambrian Research, 303: 764-780. https://doi.org/10.1016/j.precamres.2017.10.002
[100] Wang, Q. H., Xu, W. L., Wang, D. Y., et al., 2005. Geochemical Characteristics of Eclogite Xenoliths in Mesozoic Intrusive Complex from Xu-Huai Area and Its Tectonic Significance. Earth ScienceJournal of China University of Geosciences, 30: 413-420 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx200504003
[101] Wang, S. J., Schertl, H. P., Pang, Y. M., 2019. Geochemistry, Geochronology and Sr-Nd-Hf Isotopes of Two Types of Early Cretaceous Granite Porphyry Dykes in the Sulu Orogenic Belt, Eastern China. Canadian Journal of Earth Sciences, 97(3). https://doi.org/10.1139/cjes-2019-0003
[102] Winchester, J. A., Floyd, P. A., 1976. Geochemical Magma Type Discrimination: Application to Altered and Metamorphosed Basic Igneous Rocks. Earth and Planetary Science Letters, 28(3): 459-469. https://doi.org/10.1016/0012-821x(76)90207-7
[103] Wittig, N., Baker, J. A., Downes, H., 2007. U-Th-Pb and Lu-Hf Isotopic Constraints on the Evolution of Sub-Continental Lithospheric Mantle, French Massif Central. Geochimica et Cosmochimica Acta, 71(5): 1290-1311. https://doi.org/10.1016/j.gca.2006.11.025
[104] Woodhead, J. D., Hergt, J. M., Davidson, J. P., et al., 2001. Hafnium Isotope Evidence for 'Conservative' Element Mobility during Subduction Zone Processes. Earth and Planetary Science Letters, 192(3): 331-346. https://doi.org/10.1016/s0012-821x(01)00453-8
[105] Workman, R. K., Hart, S. R., 2005. Major and Trace Element Composition of the Depleted MORB Mantle (DMM). Earth and Planetary Science Letters, 231(1/2): 53-72. https://doi.org/10.1016/j.epsl.2004.12.005
[106] Wu, F. Y., Zhang, Y. B., Yang, J. H., et al., 2008. Zircon U-Pb and Hf Isotopic Constraints on the Early Archean Crustal Evolution in Anshan of the North China Craton. Precambrian Research, 167(3/4): 339-362. https://doi.org/10.1016/j.precamres.2008.10.002
[107] Xia, Q. X., Zheng, Y. F., Zhou, L. G., 2008. Dehydration and Melting during Continental Collision: Constraints from Element and Isotope Geochemistry of Low-T/UHP Granitic Gneiss in the Dabie Orogen. Chemical Geology, 247(1/2): 36-65. https://doi.org/10.1016/j.chemgeo.2007.09.013
[108] Xiao, Y., Zhang, H. F., Fan, W. M., et al., 2010. Evolution of Lithospheric Mantle beneath the Tan-Lu Fault Zone, Eastern North China Craton: Evidence from Petrology and Geochemistry of Peridotite Xenoliths. Lithos, 117(1/2/3/4): 229-246. https://doi.org/10.1016/j.lithos.2010.02.017
[109] Xu, W. L., Gao, S., Wang, Q. H., et al., 2006a. Mesozoic Crustal Thickening of the Eastern North China Craton: Evidence from Eclogite Xenoliths and Petrologic Implications. Geology, 34(9): 721-724. https://doi.org/10.1130/g22551.1
[110] Xu, W. L., Wang, Q. H., Wang, D. Y., et al., 2006b. Mesozoic Adakitic Rocks from the Xuzhou-Suzhou Area, Eastern China: Evidence for Partial Melting of Delaminated Lower Continental Crust. Journal of Asian Earth Sciences, 27(4): 454-464. https://doi.org/10.1016/j.jseaes.2005.03.010
[111] Xu, W. L., Gao, S., Yang, D. B., et al., 2009. Geochemistry of Eclogite Xenoliths in Mesozoic Adakitic Rocks from Xuzhou-Suzhou Area in Central China and Their Tectonic Implications. Lithos, 107(3/4): 269-280. https://doi.org/10.1016/j.lithos.2008.11.004
[112] Xu, W. L., Wang, D. Y., Liu, X. C., et al., 2002. Discovery of Eclogite Inclusions and its Geological Significance in Early Jurassic Intrusive Complex in Xuzhounorthern Anhui, Eastern China. Chinese Science Bulletin, 47(14): 1212-1216. https://doi.org/10.1007/bf02907612
[113] Xu, W. L., Wang, Q. H., Liu, X. C., et al., 2004. Chronology and Sources of Mesozoic Intrusive Complexes in the Xuzhou-Huainan Region, Central China: Constraints from SHRIMP Zircon U-Pb Dating. Acta Geologica Sinica—English Edition, 78(1): 96-106
[114] Yang, D. B., Xu, W. L., Pei, F. P., et al., 2008. Chronology and Pb Isotope Compositions of Early Cretaceous Adakitic Rocks in Xuzhou-Huaibei Area, Central China Constraints on Magma Sources and Tectonic Evolution in the Eastern North China Craton. Acta Petrologica Sinica, 24(8): 1745-1758 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200808008
[115] Yu, S. Y., Xu, Y. G., Huang, X. L., et al., 2009. Hf-Nd Isotopic Decoupling in Continental Mantle Lithosphere beneath Northeast China: Effects of Pervasive Mantle Metasomatism. Journal of Asian Earth Sciences, 35(6): 554-570. https://doi.org/10.1016/j.jseaes.2009.04.005
[116] Yuan, H. L., Gao, S., Luo, Y., et al., 2007. Study of Lu-Hf Geochronology: A Case Study of Eclogite from Dabie UHP Belt. Acta Petrologica Sinica, 23(2): 232-239 (in Chinese with English Abstract)
[117] Zhai, M. G., 2009. Two Kinds of Granulites (HT-HP and HT-UHT) in North China Craton: Their Genetic Relation and Geotectonic Implications. Acta Petrologica Sinica, 25(8): 1553-1571 (in Chinese with English Abstract)
[118] Zhai, M. G., Bian, A. G., Zhao, T. P., 2000. The Amalgamation of the Supercontinent of North China Craton at the End of Neo-Archaean and Its Breakup during Late Palaeoproterozoic and Meso-Proterozoic. Science in China Series D: Earth Sciences, 43(S1): 219-232. https://doi.org/10.1007/bf02911947
[119] Zhai, M. G., Guo, J. H., Liu, W. J., 2005. Neoarchean to Paleoproterozoic Continental Evolution and Tectonic History of the North China Craton: A Review. Journal of Asian Earth Sciences, 24(5): 547-561. https://doi.org/10.1016/j.jseaes.2004.01.018
[120] Zhai, M. G., Li, T. S., Peng, P., et al., 2010. Precambrian Key Tectonic Events and Evolution of the North China Craton. Geological Society, London, Special Publications, 338(1): 235-262. https://doi.org/10.1144/sp338.12
[121] Zhai, M. G., Santosh, M., 2011. The Early Precambrian Odyssey of the North China Craton: A Synoptic Overview. Gondwana Research, 20(1): 6-25. https://doi.org/10.1016/j.gr.2011.02.005
[122] Zhai, M. G., Santosh, M., Zhang, L. C., 2011. Precambrian Geology and Tectonic Evolution of the North China Craton. Gondwana Research, 20(1): 1-5. https://doi.org/10.1016/j.gr.2011.04.004
[123] Zhai, M., Liu, W. J., 2003. Palaeoproterozoic Tectonic History of the North China Craton: A Review. Precambrian Research, 122(1/2/3/4): 183-199. https://doi.org/10.1016/s0301-9268(02)00211-5
[124] Zhang, H. F., 2012. Destruction of Ancient Lower Crust through Magma Underplating beneath Jiaodong Peninsula, North China Craton: U-Pb and Hf Isotopic Evidence from Granulite Xenoliths. Gondwana Research, 21(1): 281-292. https://doi.org/10.1016/j.gr.2011.05.013
[125] Zhang, Y., Meng, F. X., Niu, Y. L., 2016. Hf Isotope Systematics of Seamounts near the East Pacific Rise (EPR) and Geodynamic Implications. Lithos, 262: 107-119. https://doi.org/10.1016/j.lithos.2016.06.026
[126] Zhao, G. C., Cawood, P. A., Wilde, S. A., et al., 2000. Metamorphism of Basement Rocks in the Central Zone of the North China Craton: Implications for Paleoproterozoic Tectonic Evolution. Precambrian Research, 103(1/2): 55-88. https://doi.org/10.1016/s0301-9268(00)00076-0
[127] Zhao, G. C., Sun, M., Wilde, S. A., et al., 2005. Late Archean to Paleoproterozoic Evolution of the North China Craton: Key Issues Revisited. Precambrian Research, 136(2): 177-202. https://doi.org/10.1016/j.precamres.2004.10.002
[128] Zhao, G. C., Wilde, S. A., Cawood, P. A., et al., 2001. Archean Blocks and Their Boundaries in the North China Craton: Lithological, Geochemical, Structural and P-T Path Constraints and Tectonic Evolution. Precambrian Research, 107(1/2): 45-73. https://doi.org/10.1016/S0301-9268(00)00154-6
[129] Zheng, J. P., Griffin, W. L., O'Reilly, S. Y., et al., 2004a. U-Pb and Hf-Isotope Analysis of Zircons in Mafic Xenoliths from Fuxian Kimberlites: Evolution of the Lower Crust beneath the North China Craton. Contributions to Mineralogy and Petrology, 148(1): 79-103. https://doi.org/10.1007/s00410-004-0587-x
[130] Zheng, J. P., Lu, F. X., Yu, C. M., et al., 2004b. An in situ Zircon Hf Isotopic, U-Pb Age and Trace Element Study of Banded Granulite Xenolith from Hannuoba Basalt: Tracking the Early Evolution of the Lower Crust in the North China Craton. Chinese Science Bulletin, 49(3): 277-285. https://doi.org/10.1007/bf03182813
[131] Zheng, J. P., Griffin, W. L., Qi, L., et al., 2009. Age and Composition of Granulite and Pyroxenite Xenoliths in Hannuoba Basalts Reflect Paleogene Underplating beneath the North China Craton. Chemical Geology, 264(1/2/3/4): 266-280. https://doi.org/10.1016/j.chemgeo.2009.03.011
[132] Zheng, J. P., Sun, M., Lu, F. X., et al., 2001. Garnet-Bearing Granulite Facies Rock Xenoliths from Late Mesozoic Volcaniclastic Breccia, Xinyang, Henan Province. Acta Geologica Sinica—English Edition, 75(4): 445-451. https://doi.org/10.1111/j.1755-6724.2001.tb00062.x
[133] Zheng, J. P., Sun, M., Lu, F. X., et al., 2003. Mesozoic Lower Crustal Xenoliths and their Significance in Lithospheric Evolution beneath the Sino-Korean Craton. Tectonophysics, 361(1/2): 37-60. https://doi.org/10.1016/s0040-1951(02)00537-1
[134] Zheng, J. P., Sun, M., Lu, F. X., et al., 2005. Xinyang Mafic Granulitic Xenoliths and Its Significance for the Early Mesozoic Lower Crustal Nature on the South Margin of the North China Craton. Acta Petrologica Sinica, 21(1): 91-98 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200501009
[135] Zheng, Y. F., 2003. Neoproterozoic Magmatic Activity and Global Change. Chinese Science Bulletin, 48(16): 1639-1656. https://doi.org/10.1360/03wd0342
[136] Zheng, Y. F., Fu, B., Xiao, Y. L., et al., 1999. Hydrogen and Oxygen Isotope Evidence for Fluid-Rock Interactions in the Stages of Pre- and Post-UHP Metamorphism in the Dabie Mountains. Lithos, 46(4): 677-693. https://doi.org/10.1016/s0024-4937(98)00090-5
[137] Zheng, Y. F., Zhao, Z. F., Wu, Y. B., et al., 2006. Zircon U-Pb Age, Hf and O Isotope Constraints on Protolith Origin of Ultrahigh-Pressure Eclogite and Gneiss in the Dabie Orogen. Chemical Geology, 231(1/2): 135-158. https://doi.org/10.1016/j.chemgeo.2006.01.005
[138] Zindler, A., Hart, S., 1986. Chemical Geodynamics. Annual Review of Earth and Planetary Sciences, 14(1): 493-571. https://doi.org/10.1146/annurev.ea.14.050186.002425