[1] Andreozzi, G. B., Cellucci, F., Gozzi, D., 1996. High-Temperature Electrical Conductivity of FeTiO3 and Ilmenite. Journal of Materials Chemistry, 6(6):987. https://doi.org/10.1039/jm9960600987
[2] Angiboust, S., Agard, P., Raimbourg, H., et al., 2011. Subduction Interface Processes Recorded by Eclogite-Facies Shear Zones (Monviso, W. Alps). Lithos, 127(1/2):222-238. https://doi.org/10.1016/j.lithos.2011.09.004
[3] Austrheim, H., 2013. Fluid and Deformation Induced Metamorphic Processes around Moho beneath Continent Collision Zones:Examples from the Exposed Root Zone of the Caledonian Mountain Belt, W-Norway. Tectonophysics, 609:620-635. https://doi.org/10.1016/j.tecto.2013.08.030
[4] Bagdassarov, N., Batalev, V., Egorova, V., 2011. State of Lithosphere beneath Tien Shan from Petrology and Electrical Conductivity of Xenoliths. Journal of Geophysical Research, 116(B1) https://doi.org/10.1029/2009jb007125
[5] Bagdassarov, N. S., Slutskii, A. B., 2003. Phase Transformations in Calcite from Electrical Impedance Measurements. Phase Transitions, 76(12):1015-1028. https://doi.org/10.1080/0141159031000098233
[6] Baldwin, S. L., Monteleone, B. D., Webb, L. E., et al., 2004. Pliocene Eclogite Exhumation at Plate Tectonic Rates in Eastern Papua New Guinea. Nature, 431(7006):263-267. https://doi.org/10.1038/nature02846
[7] Berryman, J. G., 1995. Mixture Theories for Rock Properties. In: Ahrens, T. J., ed., Rock Physics & Phase Relations. American Geophysical Union, Washington, DC. 205-228
[8] Carswell, D. A., 1990. Eclogite Facies Rocks. Springer, Netherlands
[9] Čermák, V., Laštovičková, M., 1987. Temperature Profiles in the Earth of Importance to Deep Electrical Conductivity Models. Pure and Applied Geophysics Pageoph, 125(2/3):255-284. https://doi.org/10.1007/bf00874497
[10] Chen, S. B., Guo, X. Z., Yoshino, T., et al., 2017. Dehydration of Phengite Inferred by Electrical Conductivity Measurements:Implication for the High Conductivity Anomalies Relevant to the Subduction Zones. Geology, 46(1):11-14. https://doi.org/10.1130/g39716.1
[11] Dai, L. D., Li, H. P., Hu, H. Y., et al., 2012. The Effect of Chemical Composition and Oxygen Fugacity on the Electrical Conductivity of Dry and Hydrous Garnet at High Temperatures and Pressures. Contributions to Mineralogy and Petrology, 163(4):689-700. https://doi.org/10.1007/s00410-011-0693-5
[12] Dai, L. D., Karato, S. I., 2014. High and Highly Anisotropic Electrical Conductivity of the Asthenosphere Due to Hydrogen Diffusion in Olivine. Earth and Planetary Science Letters, 408:79-86. https://doi.org/10.1016/j.epsl.2014.10.003
[13] Dai, L. D., Hu, H. Y., Li, H. P., et al., 2016. Influence of Temperature, Pressure, and Oxygen Fugacity on the Electrical Conductivity of Dry Eclogite, and Geophysical Implications. Geochemistry, Geophysics, Geosystems, 17(6):2394-2407. https://doi.org/10.1002/2016gc006282
[14] Davis, P. B., Whitney, D. L., 2006. Petrogenesis of Lawsonite and Epidote Eclogite and Blueschist, Sivrihisar Massif, Turkey. Journal of Metamorphic Geology, 24(9):823-849. https://doi.org/10.1111/j.1525-1314.2006.00671.x
[15] Ernst, W. G., 2016. Franciscan Mélanges:Coherent Blocks in a Low-Density, Ductile Matrix. International Geology Review, 58(5):626-642. https://doi.org/10.1080/00206814.2015.1108879
[16] Garber, J. M., Maurya, S., et al., 2018. Multidisciplinary Constraints on the Abundance of Diamond and Eclogite in the Cratonic Lithosphere. Geochemistry, Geophysics, Geosystems, 19(7):2062-2086. https://doi.org/10.1029/2018gc007534
[17] Godard, G., 2001. Eclogites and Their Geodynamic Interpretation:A History. Journal of Geodynamics, 32(1/2):165-203. https://doi.org/10.1016/s0264-3707(01)00020-5
[18] Greener, E. H., Barone, F. J., Hirthe, W. M., 1965. Electrical Conductivity of Single and Polycrystalline Near-Stoichiometric Rutile in the Range 600 to 1 400℃. Journal of the American Ceramic Society, 48(12):623-627. https://doi.org/10.1111/j.1151-2916.1965.tb14692.x
[19] Guo, H. H., Keppler, H., 2019. Electrical Conductivity of NaCl-Bearing Aqueous Fluids to 900℃ and 5 GPa. Journal of Geophysical Research:Solid Earth, 124(2):1397-1411. https://doi.org/10.1029/2018jb016658
[20] Guo, X. Z., Yoshino, T., Shimojuku, A., 2015. Electrical Conductivity of Albite-(Quartz)-Water and Albite-Water-NaCl Systems and Its Implication to the High Conductivity Anomalies in the Continental Crust. Earth and Planetary Science Letters, 412:1-9. https://doi.org/10.1016/j.epsl.2014.12.021
[21] Guo, X., Zhang, L., Su, X., et al., 2018. Melting Inside the Tibetan Crust? Constraint from Electrical Conductivity of Peraluminous Granitic Melt. Geophysical Research Letters, 45(9):3906-3913. https://doi.org/10.1029/2018gl077804
[22] Guo, Y. X., Wang, D. J., Shi, Y. L., et al., 2014. The Electrical Conductivity of Eclogite in Tibet and Its Geophysical Implications. Science China Earth Sciences, 57(9):2071-2078. https://doi.org/10.1007/s11430-014-4876-6
[23] Hacker, B. R., Abers, G. A., Peacock, S. M., 2003. Subduction Factory 1. Theoretical Mineralogy, Densities, Seismic Wave Speeds, and H2O Contents. Journal of Geophysical Research:Solid Earth, 108(B1):2029. https://doi.org/10.1029/2001jb001127
[24] Hashin, Z., Shtrikman, S., 1962. A Variational Approach to the Theory of the Effective Magnetic Permeability of Multiphase Materials. Journal of Applied Physics, 33(10):3125-3131. https://doi.org/10.1063/1.1728579
[25] Hu, H. Y., Dai, L. D., Li, H. P., et al., 2017. Influence of Dehydration on the Electrical Conductivity of Epidote and Implications for High-Conductivity Anomalies in Subduction Zones. Journal of Geophysical Research:Solid Earth, 122(4):2751-2762. https://doi.org/10.1002/2016jb013767
[26] Hu, H. Y., Dai, L. D., Li, H. P., et al., 2018. Effect of Dehydrogenation on the Electrical Conductivity of Fe-Bearing Amphibole:Implications for High Conductivity Anomalies in Subduction Zones and Continental Crust. Earth and Planetary Science Letters, 498:27-37. https://doi.org/10.1016/j.epsl.2018.06.003
[27] Karato, S. I., Wang, D., 2013. Electrical Conductivity of Minerals and Rocks. Physics and Chemistry of the Deep Earth. 145-182 doi: 10.1002/9781118529492.ch5/pdf
[28] Laštovičková, M., Parchomenko, E. I., 1976. The Electric Properties of Eclogites from the Bohemian Massif under High Temperatures and Pressures. Pure and Applied Geophysics Pageoph, 114(3):451-460. https://doi.org/10.1007/bf00876944
[29] Liou, J. G., Zhang, R. Y., Ernst, W. G., et al., 1998. High-Pressure Minerals from Deeply Subducted Metamorphic Rocks. Reviews in Mineralogy and Geochemistry, 37(1):33-96
[30] Liou, J. G., Zhang, R. Y., Jahn, B. M., 2000. Petrological and Geochemical Characteristics of Ultrahigh-Pressure Metamorphic Rocks from the Dabie-Sulu Terrane, East-Central China. International Geology Review, 42(4):328-352. https://doi.org/10.1080/00206810009465086
[31] Liu, H. Y., Zhu, Q., Yang, X. Z., 2019. Electrical Conductivity of OH-Bearing Omphacite and Garnet in Eclogite:The Quantitative Dependence on Water Content. Contributions to Mineralogy and Petrology, 174(7):57. https://doi.org/10.1007/s00410-019-1593-3
[32] Manthilake, G., Bolfan-Casanova, N., Novella, D., et al., 2016. Dehydration of Chlorite Explains Anomalously High Electrical Conductivity in the Mantle Wedges. Science Advances, 2(5):e1501631. https://doi.org/10.1126/sciadv.1501631
[33] Peacock, S. M., 1993. The Importance of Blueschist→Eclogite Dehydration Reactions in Subducting Oceanic Crust. Geological Society of America Bulletin, 105(5):684-694. https://doi.org/10.1130/0016-7606(1993)105<0684:tiobed>2.3.co; 2 doi: 10.1130/0016-7606(1993)105<0684:tiobed>2.3.co;2
[34] Pommier, A., Leinenweber, K., Kohlstedt, D. L., et al., 2015. Experimental Constraints on the Electrical Anisotropy of the Lithosphere-Asthenosphere System. Nature, 522(7555):202-206. https://doi.org/10.1038/nature14502
[35] Sakuma, H., Ichiki, M., 2016. Electrical Conductivity of NaCl-H2O Fluid in the Crust. Journal of Geophysical Research:Solid Earth, 121(2):577-594. https://doi.org/10.1002/2015jb012219
[36] Shimojuku, A., Yoshino, T., Yamazaki, D., et al., 2012. Electrical Conductivity of Fluid-Bearing Quartzite under Lower Crustal Conditions. Physics of the Earth and Planetary Interiors, 198/199:1-8. https://doi.org/10.1016/j.pepi.2012.03.007
[37] Shimojuku, A., Yoshino, T., Yamazaki, D., 2014. Electrical Conductivity of Brine-Bearing Quartzite at 1 GPa:Implications for Fluid Content and Salinity of the Crust. Earth, Planets and Space, 66(1):2. https://doi.org/10.1186/1880-5981-66-2
[38] Spandler, C., Hermann, J., Faure, K., et al., 2008. The Importance of Talc and Chlorite "Hybrid" Rocks for Volatile Recycling through Subduction Zones; Evidence from the High-Pressure Subduction Mélange of New Caledonia. Contributions to Mineralogy and Petrology, 155(2):181-198. https://doi.org/10.1007/s00410-007-0236-2
[39] Tilmann, F., 2003. Seismic Imaging of the Downwelling Indian Lithosphere beneath Central Tibet. Science, 300(5624):1424-1427. https://doi.org/10.1126/science.1082777
[40] Wang, D. J., Guo, Y. X., Yu, Y. J., et al., 2012. Electrical Conductivity of Amphibole-Bearing Rocks:Influence of Dehydration. Contributions to Mineralogy and Petrology, 164(1):17-25. https://doi.org/10.1007/s00410-012-0722-z
[41] Wang, Q., Bagdassarov, N., Xia, Q. K., et al., 2014. Water Contents and Electrical Conductivity of Peridotite Xenoliths from the North China Craton:Implications for Water Distribution in the Upper Mantle. Lithos, 189:105-126. https://doi.org/10.1016/j.lithos.2013.08.005
[42] Wei, C. J., Yang, Y., Su, X. L., et al., 2009. Metamorphic Evolution of Low-Teclogite from the North Qilian Orogen, NW China:Evidence from Petrology and Calculated Phase Equilibria in the System Nckfmasho. Journal of Metamorphic Geology, 27(1):55-70. https://doi.org/10.1111/j.1525-1314.2008.00803.x
[43] Wei, W., 2001. Detection of Widespread Fluids in the Tibetan Crust by Magnetotelluric Studies. Science, 292(5517):716-719. https://doi.org/10.1126/science.1010580
[44] Wei, W. B., Jin, S., Ye, G. F., et al., 2007. Features of Faults in the Central and Northern Tibetan Plateau Based on Results of Indepth (Ⅲ)-MT. Frontiers of Earth Science in China, 1(1):121-128. https://doi.org/10.1007/s11707-007-0016-3
[45] Yang, J. S., Xu, Z. Q., Zhang, J. X., et al., 2002. Early Palaeozoic North Qaidam UHP Metamorphic Belt on the North-Eastern Tibetan Plateau and a Paired Subduction Model. Terra Nova, 14(5):397-404. https://doi.org/10.1046/j.1365-3121.2002.00438.x
[46] Yang, X. Z., Keppler, H., McCammon, C., et al., 2011. Effect of Water on the Electrical Conductivity of Lower Crustal Clinopyroxene. Journal of Geophysical Research, 116(B4):B04208. https://doi.org/10.1029/2010jb008010
[47] Yoshino, T., Noritake, F., 2011. Unstable Graphite Films on Grain Boundaries in Crustal Rocks. Earth and Planetary Science Letters, 306(3/4):186-192. https://doi.org/10.1016/j.epsl.2011.04.003
[48] Yoshino, T., Gruber, B., Reinier, C., 2018. Effects of Pressure and Water on Electrical Conductivity of Carbonate Melt with Implications for Conductivity Anomaly in Continental Mantle Lithosphere. Physics of the Earth and Planetary Interiors, 281:8-16. https://doi.org/10.1016/j.pepi.2018.05.003
[49] Zhang, H., Zhao, D. P., Zhao, J. M., et al., 2015. Tomographic Imaging of the Underthrusting Indian Slab and Mantle Upwelling beneath Central Tibet. Gondwana Research, 28(1):121-132. https://doi.org/10.1016/j.gr.2014.02.012
[50] Zhou, W. G., Fan, D. W., Liu, Y. G., et al., 2011. Measurements of Wave Velocity and Electrical Conductivity of an Amphibolite from Southwestern Margin of the Tarim Basin at Pressures to 1.0 GPa and Temperatures to 700℃:Comparison with Field Observations. Geophysical Journal International, 187(3):1393-1404. https://doi.org/10.1111/j.1365-246x.2011.05220.x