[1] Andrault, D., Pesce, G., Bouhifd, M. A., et al., 2014. Melting of Subducted Basalt at the Core-Mantle Boundary. Science, 344(6186): 892–895. https://doi.org/10.1126/science.1250466
[2] Bindi, L., Nishi, M., Tsuchiya, J., et al., 2014. Crystal Chemistry of Dense Hydrous Magnesium Silicates: The Structure of Phase H, MgSiH2O4, Synthesized at 45 GPa and 1 000 ℃. American Mineralogist, 99(8/9): 1802–1805. https://doi.org/10.2138/am.2014.4994
[3] Birch, F., 1947. Finite Elastic Strain of Cubic Crystals. Physical Review, 71(11): 809–824. https://doi.org/10.1103/physrev.71.809
[4] Birch, F., 1952. Elasticity and Constitution of the Earth's Interior. Journal of Geophysical Research, 57(2): 227–286. https://doi.org/10.1029/jz057i002p00227
[5] Blöchl, P. E., 1994. Projector Augmented-Wave Method. Physical Review B, 50(24): 17953–17979. https://doi.org/10.1103/physrevb.50.17953
[6] Born, M., Huang, K., 1954. Dynamical Theory of Crystal Lattices. Oxford University Press, Oxford
[7] Dudarev, S. L., Botton, G. A., Savrasov, S. Y., et al., 1998. Electron-Energy- Loss Spectra and the Structural Stability of Nickel Oxide: An LSDA+U Study. Physical Review B, 57(3): 1505–1509. https://doi.org/10.1103/physrevb.57.1505
[8] Dziewonski, A. M., Anderson, D. L., 1981. Preliminary Reference Earth Model. Physics of the Earth and Planetary Interiors, 25(4): 297–356. https://doi.org/10.1016/0031-9201(81)90046-7
[9] Garnero, E. J., 2000. Heterogeneity of the Lowermost Mantle. Annual Review of Earth and Planetary Sciences, 28(1): 509–537. https://doi.org/10.1146/annurev.earth.28.1.509
[10] Garnero, E. J., Helmberger, D. V., 1996. Seismic Detection of a Thin Laterally Varying Boundary Layer at the Base of the Mantle beneath the Central-Pacific. Geophysical Research Letters, 23(9): 977–980. https://doi.org/10.1029/95gl03603
[11] Garnero, E. J., McNamara, A. K., Shim, S. H., 2016. Continent-Sized Anomalous Zones with Low Seismic Velocity at the Base of Earthʼs Mantle. Nature Geoscience, 9(7): 481–489. https://doi.org/10.1038/ngeo2733
[12] Gleason, A. E., Quiroga, C. E., Suzuki, A., et al., 2013. Symmetrization Driven Spin Transition in ε-FeOOH at High Pressure. Earth and Planetary Science Letters, 379: 49–55. https://doi.org/10.1016/j.epsl.2013.08.012
[13] Hu, Q. Y., Kim, D. Y., Yang, W. G., et al., 2016. FeO2 and FeOOH under Deep Lower-Mantle Conditions and Earth's Oxygen-Hydrogen Cycles. Nature, 534(7606): 241–244. https://doi.org/10.1038/nature18018
[14] Hu, Q. Y., Kim, D. Y., Liu, J., et al., 2017. Dehydrogenation of Goethite in Earth's Deep Lower Mantle. Proceedings of the National Academy of Sciences, 114(7): 1498–1501. https://doi.org/10.1073/pnas.1620644114
[15] Hill, R., 1952. The Elastic Behavior of a Crystalline Aggregate. Proceedings of the Physical Society of London Section A, 65(389): 349–355. https://doi.org/10.1088/0370-1298/65/5/307
[16] Iitaka, T., Hirose, K., Kawamura, K., et al., 2004. The Elasticity of the MgSiO3 Post-Perovskite Phase in the Earthʼs Lowermost Mantle. Nature, 430(6998): 442–445. https://doi.org/10.1038/nature02702
[17] Jang, B. G., Kim, D. Y., Shim, J. H., 2017. Metal-Insulator Transition and the Role of Electron Correlation in FeO2. Physical Review B, 95(7): 075144. https://doi.org/10.1103/physrevb.95.075144
[18] Karki, B. B., Stixrude, L., Wentzcovitch, R. M., 2001. High-Pressure Elastic Properties of Major Materials of Earthʼs Mantle from First Principles. Reviews of Geophysics, 39(4): 507–534. https://doi.org/10.1029/2000rg000088
[19] Kresse, G., Furthmüller, J., 1996. Efficient Iterative Schemes for ab initio Total- Energy Calculations Using a Plane-Wave Basis Set. Physical Review B, 54(16): 11169–11186. https://doi.org/10.1103/physrevb.54.11169
[20] Kresse, G., Joubert, D., 1999. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Physical Review B, 59(3): 1758–1775. https://doi.org/10.1103/physrevb.59.1758
[21] Lay, T., Williams, Q., Garnero, E. J., 1998. The Core-Mantle Boundary Layer and Deep Earth Dynamics. Nature, 392(6675): 461–468. https://doi.org/10.1038/33083
[22] Li, X. Y., Mao, Z., Sun, N., et al., 2016. Elasticity of Single-Crystal Superhydrous Phase B at Simultaneous High Pressure-Temperature Conditions. Geophysical Research Letters, 43(16): 8458–8465. https://doi.org/10.1002/2016gl070027
[23] Li, M. M., McNamara, A. K., Garnero, E. J., et al., 2017. Compositionally-Distinct Ultra-Low Velocity Zones on Earth's Core-Mantle Boundary. Nature Communications, 8(1): 177. https://doi.org/10.1038/s41467-017-00219-x
[24] Liu, J., Hu, Q. Y., Kim, D. Y., et al., 2017. Hydrogen-Bearing Iron Peroxide and the Origin of Ultralow-Velocity Zones. Nature, 551(7681): 494–497. https://doi.org/10.1038/nature24461
[25] Mainprice, D., 1990. A FORTRAN Program to Calculate Seismic Anisotropy from the Lattice Preferred Orientation of Minerals. Computers & Geosciences, 16(3): 385–393. https://doi.org/10.1016/0098-3004(90)90072-2
[26] Mainprice, D., Barruol, G., Ismail, W. B., 2000. The Seismic Anisotropy of the Earth's Mantle: From Single Crystal to Polycrystal. In: Karato, S. I., Forte, A., Liebermann, R., et al., eds., Earth's Deep Interior: Mineral Physics and Tomography from the Atomic to the Global Scale. American Geophysical Union, Washington DC. 237–264
[27] Mao, W. L., Mao, H. K., Sturhahn, W., et al., 2006. Iron-Rich Post- Perovskite and the Origin of Ultralow-Velocity Zones. Science, 312(5773): 564–565. https://doi.org/10.1126/science.1123442
[28] Mao, H. K., Hu, Q. Y., Yang, L. X., et al., 2017. When Water Meets Iron at Earthʼs Core-Mantle Boundary. National Science Review, 4(6): 870–878. https://doi.org/10.1093/nsr/nwx109
[29] Mashino, I., Murakami, M., Ohtani, E., et al., 2016. Sound Velocities of δ-AlOOH up to Core-Mantle Boundary Pressures with Implications for the Seismic Anomalies in the Deep Mantle. Journal of Geophysical Research: Solid Earth, 121(2): 595–609. https://doi.org/10.1002/2015jb012477
[30] Masters, G., Laske, G., Bolton, H., et al., 2000. The Relative Behavior of Shear Velocity, Bulk Sound Speed, and Compressional Velocity in the Mantle: Implications for Chemical and Thermal Structure. In: Karato, S. I., Forte, A., Liebermann, R., et al., eds., Earthʼs Deep Interior: Mineral Physics and Tomography from the Atomic to the Global Scale. American Geophysical Union, Washington DC. 63–87
[31] McNamara, A. K., Garnero, E. J., Rost, S., 2010. Tracking Deep Mantle Reservoirs with Ultra-Low Velocity Zones. Earth and Planetary Science Letters, 299(1/2): 1–9. https://doi.org/10.1016/j.epsl.2010.07.042
[32] Murnaghan, F. D., 1944. The Compressibility of Media under Extreme Pressures. Proceedings of the National Academy of Sciences of the United States of America, 30(9): 244–247. https://doi.org/10.1073/pnas.30.9.244
[33] Nakagawa, T., 2017. On the Numerical Modeling of the Deep Mantle Water Cycle in Global-Scale Mantle Dynamics: The Effects of the Water Solubility Limit of Lower Mantle Minerals. Journal of Earth Science, 28(4): 563–577. https://doi.org/10.1007/s12583-017-0755-3
[34] Nishi, M., Irifune, T., Tsuchiya, J., et al., 2014. Stability of Hydrous Silicate at High Pressures and Water Transport to the Deep Lower Mantle. Nature Geoscience, 7(3): 224–227. https://doi.org/10.1038/ngeo2074
[35] Nishi, M., Kuwayama, Y., Tsuchiya, J., et al., 2017. The Pyrite-Type High-Pressure Form of FeOOH. Nature, 547(7662): 205–208. https://doi.org/10.1038/nature22823
[36] Oganov, A. R., Ono, S., 2004. Theoretical and Experimental Evidence for a Post-Perovskite Phase of MgSiO3 in Earthʼs D″ Layer. Nature, 430(6998): 445–448. https://doi.org/10.1038/nature02701
[37] Ohira, I., Ohtani, E., Sakai, T., et al., 2014. Stability of a Hydrous δ-Phase, AlOOH-MgSiO2(OH)2, and a Mechanism for Water Transport into the Base of Lower Mantle. Earth and Planetary Science Letters, 401: 12–17. https://doi.org/10.1016/j.epsl.2014.05.059
[38] Ohtani, E., 2015. Hydrous Minerals and the Storage of Water in the Deep Mantle. Chemical Geology, 418: 6–15. https://doi.org/10.13039/501100003443
[39] Ohtani, E., Toma, M., Kubo, T., et al., 2003. In situ X-Ray Observation of Decomposition of Superhydrous Phase B at High Pressure and Temperature. Geophysical Research Letters, 30(2): 1029. https://doi.org/10.1029/2002gl015549
[40] Ohtani, E., Amaike, Y., Kamada, S., et al., 2014. Stability of Hydrous Phase H MgSiO4H2 under Lower Mantle Conditions. Geophysical Research Letters, 41(23): 8283–8287. https://doi.org/10.1002/2014gl061690
[41] Pamato, M. G., Myhill, R., Boffa Ballaran, T., et al., 2015. Lower-Mantle Water Reservoir Implied by the Extreme Stability of a Hydrous Aluminosilicate. Nature Geoscience, 8(1): 75–79. https://doi.org/10.1038/ngeo2306
[42] Panero, W. R., Caracas, R., 2017. Stability of Phase H in the MgSiO4H2-AlOOH-SiO2 System. Earth and Planetary Science Letters, 463: 171–177. https://doi.org/10.1016/j.epsl.2017.01.033
[43] Perdew, J. P., Burke, K., Ernzerhof, M., 1996. Generalized Gradient Approximation Made Simple. Physical Review Letters, 77(18): 3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865
[44] Stacey, F. D., Loper, D. E., 1983. The Thermal Boundary-Layer Interpretation of D″ and Its Role as a Plume Source. Physics of the Earth and Planetary Interiors, 33(1): 45–55. https://doi.org/10.1016/0031-9201(83)90006-7
[45] Thompson, E. C., Campbell, A. J., Tsuchiya, J., 2017. Elasticity of ε-FeOOH: Seismic Implications for Earthʼs Lower Mantle. Journal of Geophysical Research: Solid Earth, 122(7): 5038–5047. https://doi.org/10.1002/2017JB014168
[46] Trønnes, R. G., 2010. Structure, Mineralogy and Dynamics of the Lowermost Mantle. Mineralogy and Petrology, 99(3/4): 243–261. https://doi.org/10.1007/s00710-009-0068-z
[47] Tsuchiya, J., 2013. First Principles Prediction of a New High-Pressure Phase of Dense Hydrous Magnesium Silicates in the Lower Mantle. Geophysical Research Letters, 40(17): 4570–4573. https://doi.org/10.1002/grl.50875
[48] Tsuchiya, J., Mookherjee, M., 2015. Crystal Structure, Equation of State and Elasticity of Phase H (MgSiO4H2) at Earth's Lower Mantle Pressures. Scientific Reports, 5(1): 15534. https://doi.org/10.1038/srep15534
[49] Tsuchiya, J., Tsuchiya, T., 2009. Elastic Properties of δ-AlOOH under Pressure: First Principles Investigation. Physics of the Earth and Planetary Interiors, 174(1/2/3/4): 122–127. https://doi.org/10.1016/j.pepi.2009.01.008
[50] Walter, M. J., Thomson, A. R., Wang, W., et al., 2015. The Stability of Hydrous Silicates in Earthʼs Lower Mantle: Experimental Constraints from the Systems MgO-SiO2-H2O and MgO-Al2O3-SiO2-H2O. Chemical Geology, 418: 16–29. https://doi.org/10.1016/j.chemgeo.2015.05.001
[51] Wicks, J. K., Jackson, J. M., Sturhahn, W., 2010. Very Low Sound Velocities in Iron-Rich (Mg, Fe)O: Implications for the Core-Mantle Boundary Region. Geophysical Research Letters, 37(15): L15304. https://doi.org/10.1029/2010gl043689
[52] Wicks, J. K., Jackson, J. M., Sturhahn, W., et al., 2017. Sound Velocity and Density of Magnesiowüstites: Implications for Ultralow-Velocity Zone Topography. Geophysical Research Letters, 44(5): 2148–2158. https://doi.org/10.1002/2016gl071225
[53] Williams, Q., Garnero, E. J., 1996. Seismic Evidence for Partial Melt at the Base of Earthʼs Mantle. Science, 273(5281): 1528–1530. https://doi.org/10.1126/science.273.5281.1528
[54] Williams, Q., Revenaugh, J., Garnero, E., 1998. A Correlation between Ultra-Low Basal Velocities in the Mantle and Hot Spots. Science, 281(5376): 546–549. https://doi.org/10.1126/science.281.5376.546
[55] Wu, X., Wu, Y., Lin, J. F., 2016. Two-Stage Spin Transition of Iron in FeAl-Bearing Phase D at Lower Mantle. Journal of Geophysical Research: Solid Earth, 121(9): 6411–6420. https://doi.org/10.1002/2016JB013209
[56] Wu, X., Lin, J. F., Kaercher, P., et al., 2017. Seismic Anisotropy of the D″ Layer Induced by (001) Deformation of Post-Perovskite. Nature Communications, 8: 14669. https://doi.org/10.1038/ncomms14669
[57] Yang, D. P., Wang, W. Z., Wu, Z., 2017. Elasticity of Superhydrous Phase B at the Mantle Temperatures and Pressures: Implications for 800 km Discontinuity and Water Flow into the Lower Mantle. Journal of Geophysical Research: Solid Earth, 122(7): 5026–5037. https://doi.org/10.1002/2017JB014319
[58] Zhang, X. L., Niu, Z. W., Tang, M., et al., 2017. First-Principles Thermoelasticity and Stability of Pyrite-Type FeO2 under High Pressure and Temperature. Journal of Alloys and Compounds, 719: 42–46. https://doi.org/10.1016/j.jallcom.2017.05.143