[1] Bush, R. T., McInerney, F. A., 2013. Leaf Wax n-Alkane Distributions in and across Modern Plants:Implications for Paleoecology and Chemotaxonomy. Geochimica et Cosmochimica Acta, 117:161-179. https://doi.org/10.1016/j.gca.2013.04.016
[2] Carr, A. S., Boom, A., Grimes, H. L., et al., 2014. Leaf Wax n-Alkane Distributions in Arid Zone South African Flora:Environmental Controls, Chemotaxonomy and Palaeoecological Implications. Organic Geochemistry, 67:72-84. https://doi.org/10.1016/j.orggeochem.2013.12.004
[3] Chambers, F. M., Booth, R. K., de Vleeschouwer, F., et al., 2012. Development and Refinement of Proxy-Climate Indicators from Peats. Quaternary International, 268:21-33. https://doi.org/10.1016/j.quaint.2011.04.039
[4] Cormier, M. A., Werner, R. A., Leuenberger, M. C., et al., 2019. 2H-Enrichment of Cellulose and n-Alkanes in Heterotrophic Plants. Oecologia, 189(2):365-373. https://doi.org/10.1007/s00442-019-04338-8
[5] Cormier, M. A., Werner, R. A., Sauer, P. E., et al., 2018. 2H-Fractionations during the Biosynthesis of Carbohydrates and Lipids Imprint a Metabolic Signal on the δ2H Values of Plant Organic Compounds. New Phytologist, 218(2):479-491. https://doi.org/10.1111/nph.15016
[6] Diefendorf, A. F., Freimuth, E. J., 2017. Extracting the Most from Terrestrial Plant-Derived n-Alkyl Lipids and Their Carbon Isotopes from the Sedimentary Record:A Review. Organic Geochemistry, 103:1-21. https://doi.org/10.1016/j.orggeochem.2016.10.016
[7] Eglinton, G., Hamilton, R. J., 1967. Leaf Epicuticular Waxes. Science, 156(3780):1322-1335. https://doi.org/10.1126/science.156.3780.1322
[8] Farrimond, P., Flanagan, R. L., 1996. Lipid Stratigraphy of a Flandrian Peat Bed (Northumberland, UK):Comparison with the Pollen Record. The Holocene, 6(1):69-74. https://doi.org/10.1177/095968369600600108
[9] Freimuth, E. J., Diefendorf, A. F., Lowell, T. V., 2017. Hydrogen Isotopes of n-Alkanes and n-Alkanoic Acids as Tracers of Precipitation in a Temperate Forest and Implications for Paleorecords. Geochimica et Cosmochimica Acta, 206:166-183. https://doi.org/10.1016/j.gca.2017.02.027
[10] Huang, X. Y., Meyers, P. A., 2019. Assessing Paleohydrologic Controls on the Hydrogen Isotope Compositions of Leaf Wax n-Alkanes in Chinese Peat Deposits. Palaeogeography, Palaeoclimatology, Palaeoecology, 516:354-363. https://doi.org/10.1016/j.palaeo.2018.12.017
[11] Huang, X. Y., Zhao, B. Y., Wang, K., et al., 2018a. Seasonal Variations of Leaf Wax n-Alkane Molecular Composition and δD Values in Two Subtropical Deciduous Tree Species:Results from a Three-Year Monitoring Program in Central China. Organic Geochemistry, 118:15-26. https://doi.org/10.1016/j.orggeochem.2018.01.009
[12] Huang, X. Y., Pancost, R. D., Xue, J. T., et al., 2018b. Response of Carbon Cycle to Drier Conditions in the Mid-Holocene in Central China. Nature Communications, 9(1):1369. https://doi.org/10.1038/s41467-018-03804-w
[13] Huang, X., Zhang, Z., Wang, H., et al., 2017. Overview on Critical Zone Observatory at Dajiuhu Peatland, Shennongjia. Earth Science, 42:1026-1038 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201706012
[14] Huang, X., Xie, S., 2016. An Overview of the Molecular Paleoclimate in Peat Deposits. Quaternary Sciences, 36(3):666-675 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dsjyj201603016
[15] Huang, X. Y., Xue, J. T., Meyers, P. A., et al., 2014. Hydrologic Influence on the δ13C Variation in Long Chain n-Alkanes in the Dajiuhu Peatland, Central China. Organic Geochemistry, 69:114-119. https://doi.org/10.1016/j.orggeochem.2014.01.016
[16] Inglis, G. N., Naafs, B. D. A., Zheng, Y. H., et al., 2019. δ13C Values of Bacterial Hopanoids and Leaf Waxes as Tracers for Methanotrophy in Peatlands. Geochimica et Cosmochimica Acta, 260:244-256. https://doi.org/10.1016/j.gca.2019.06.030
[17] Kahmen, A., Schefuß, E., Sachse, D., 2013a. Leaf Water Deuterium Enrichment Shapes Leaf Wax n-Alkane δD Values of Angiosperm Plants Ⅰ:Experimental Evidence and Mechanistic Insights. Geochimica et Cosmochimica Acta, 111:39-49. https://doi.org/10.1016/j.gca.2012.09.003
[18] Kahmen, A., Hoffmann, B., Schefuß, E., et al., 2013b. Leaf Water Deuterium Enrichment Shapes Leaf Wax n-Alkane δD Values of Angiosperm Plants Ⅱ:Observational Evidence and Global Implications. Geochimica et Cosmochimica Acta, 111:50-63. https://doi.org/10.1016/j.gca.2012.09.004
[19] Li, J., Li, J., Dang, H., et al., 2007. Vegetation and Conservation of Strategy of Dajiuhu Wetland Park in Shennongjiaregion. Journal of Wuhan Botanical Research, 25(6):605-611 (in Chinese with English Abstract) http://www.cabdirect.org/abstracts/20083053494.html
[20] Liu, J. Z., An, Z. S., 2019. Variations in Hydrogen Isotopic Fractionation in Higher Plants and Sediments across Different Latitudes:Implications for Paleohydrological Reconstruction. Science of the Total Environment, 650:470-478. https://doi.org/10.1016/j.scitotenv.2018.09.047
[21] Luo, T., Lun, Z., Gu, Y., et al., 2015. Plant Community Survey and Ecological Protection of Dajiuhu Wetlands in Shennongjia Area. Wetland Science, 13:153-160 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=shidkx201502003
[22] Naafs, B. D. A., Inglis, G. N., Blewett, J., et al., 2019. The Potential of Biomarker Proxies to Trace Climate, Vegetation, and Biogeochemical Processes in Peat:A Review. Global and Planetary Change, 179:57-79. https://doi.org/10.1016/j.gloplacha.2019.05.006
[23] Newberry, S. L., Kahmen, A., Dennis, P., et al., 2015. n-Alkane Biosynthetic Hydrogen Isotope Fractionation is not Constant Throughout the Growing Season in the Riparian Tree Salix Viminalis. Geochimica et Cosmochimica Acta, 165:75-85. https://doi.org/10.1016/j.gca.2015.05.001
[24] Nott, C. J., Xie, S. C., Avsejs, L. A., et al., 2000. n-Alkane Distributions in Ombrotrophic Mires as Indicators of Vegetation Change Related to Climatic Variation. Organic Geochemistry, 31(2/3):231-235. https://doi.org/10.1016/s0146-6380(99)00153-9
[25] Nichols, J. E., Peteet, D. M., Moy, C. M., et al., 2014. Impacts of Climate and Vegetation Change on Carbon Accumulation in a South-Central Alaskan Peatland Assessed with Novel Organic Geochemical Techniques. The Holocene, 24(9):1146-1155. https://doi.org/10.1177/0959683614540729
[26] Nichols, J., Booth, R. K., Jackson, S. T., et al., 2010. Differential Hydrogen Isotopic Ratios of Sphagnum and Vascular Plant Biomarkers in Ombrotrophic Peatlands as a Quantitative Proxy for Precipitation-Evaporation Balance. Geochimica et Cosmochimica Acta, 74(4):1407-1416. https://doi.org/10.1016/j.gca.2009.11.012
[27] Nichols, J. E., Walcott, M., Bradley, R., et al., 2009. Quantitative Assessment of Precipitation Seasonality and Summer Surface Wetness Using Ombrotrophic Sediments from an Arctic Norwegian Peatland. Quaternary Research, 72(3):443-451. https://doi.org/10.1016/j.yqres.2009.07.007
[28] Nichols, J. E., Booth, R. K., Jackson, S. T., et al., 2006. Paleohydrologic Reconstruction Based on n-Alkane Distributions in Ombrotrophic Peat. Organic Geochemistry, 37(11):1505-1513. https://doi.org/10.1016/j.orggeochem.2006.06.020
[29] Pancost, R. D., Baas, M., van Geel, B., et al., 2002. Biomarkers as Proxies for Plant Inputs to Peats:An Example from a Sub-Boreal Ombrotrophic Bog. Organic Geochemistry, 33(7):675-690. https://doi.org/10.1016/s0146-6380(02)00048-7
[30] Sachse, D., Billault, I., Bowen, G. J., et al., 2012. Molecular Paleohydrology:Interpreting the Hydrogen-Isotopic Composition of Lipid Biomarkers from Photosynthesizing Organisms. Annual Review of Earth and Planetary Sciences, 40(1):221-249. https://doi.org/10.1146/annurev-earth-042711-105535
[31] Schmidt, H. L., Werner, R. A., Eisenreich, W., 2003. Systematics of 2H Patterns in Natural Compounds and Its Importance for the Elucidation of Biosynthetic Pathways. Phytochemistry Reviews, 2(1/2):61-85. https://doi.org/10.1023/b:phyt.0000004185.92648.ae
[32] Seki, O., Meyers, P. A., Yamamoto, S., et al., 2011. Plant-Wax Hydrogen Isotopic Evidence for Postglacial Variations in Delivery of Precipitation in the Monsoon Domain of China. Geology, 39(9):875-878. https://doi.org/10.1130/g32117.1
[33] Sessions, A. L., 2016. Factors Controlling the Deuterium Contents of Sedimentary Hydrocarbons. Organic Geochemistry, 96:43-64. https://doi.org/10.1016/j.orggeochem.2016.02.012
[34] Smith, F., Wing, S., Freeman, K., 2007. Magnitude of the Carbon Isotope Excursion at the Paleocene-Eocene Thermal Maximum:The Role of Plant Community Change. Earth and Planetary Science Letters, 262(1/2):50-65. https://doi.org/10.1016/j.epsl.2007.07.021
[35] Wang, R. C., Wang, H. M., Xiang, X., et al., 2018. Temporal and Spatial Variations of Microbial Carbon Utilization in Water Bodies from the Dajiuhu Peatland, Central China. Journal of Earth Science, 29(4):969-976. https://doi.org/10.1007/s12583-017-0818-5
[36] Wang, X. X., Huang, X. Y., Sachse, D., et al., 2016. Molecular Paleoclimate Reconstructions over the last 9 Ka from a Peat Sequence in South China. Plos One, 11(8):e0160934. https://doi.org/10.1371/journal.pone.0160934
[37] Xu, Y., Wang, H. M., Xiang, X., et al., 2019. Vertical Variation of Nitrogen Fixers and Ammonia Oxidizers along a Sediment Profile in the Dajiuhu Peatland, Central China. Journal of Earth Science, 30(2):397-406. https://doi.org/10.1007/s12583-018-0982-2
[38] Yamamoto, S., Kawamura, K., Seki, O., et al., 2010a. Environmental Influences over the Last 16 ka on Compound-Specific δ13C Variations of Leaf Wax n-Alkanes in the Hani Peat Deposit from Northeast China. Chemical Geology, 277(3/4):261-268. https://doi.org/10.1016/j.chemgeo.2010.08.009
[39] Yamamoto, S., Kawamura, K., Seki, O., et al., 2010b. Paleoenvironmental Significance of Compound-Specific δ13C Variations in n-Alkanes in the Hongyuan Peat Sequence from Southwest China over the Last 13 ka. Organic Geochemistry, 41(5):491-497. https://doi.org/10.1016/j.orggeochem.2010.01.006
[40] Zhao, B. Y., Zhang, Y. M., Huang, X. Y., et al., 2018. Comparison of n-Alkane Molecular, Carbon and Hydrogen Isotope Compositions of Different Types of Plants in the Dajiuhu Peatland, Central China. Organic Geochemistry, 124:1-11. https://doi.org/10.1016/j.orggeochem.2018.07.008
[41] Zhao, K., Sun, G., Yang, Y., et al., 1999. Mires in China. Science Press, Beijing. 559-562 (in Chinese with English Abstract)
[42] Zheng, Y. H., Xie, S. C., Liu, X. M., et al., 2009. n-Alkanol Ratios as Proxies of Paleovegetation and Paleoclimate in a Peat-Lacustrine Core in Southern China since the Last Deglaciation. Frontiers of Earth Science in China, 3(4):445-451. https://doi.org/10.1007/s11707-009-0052-2
[43] Zheng, Y. H., Singarayer, J. S., Cheng, P., et al., 2014. Holocene Variations in Peatland Methane Cycling Associated with the Asian Summer Monsoon System. Nature Communications, 5:5631. https://doi.org/10.1038/ncomms5631
[44] Zhou, W. J., Xie, S. C., Meyers, P. A., et al., 2005. Reconstruction of Late Glacial and Holocene Climate Evolution in Southern China from Geolipids and Pollen in the Dingnan Peat Sequence. Organic Geochemistry, 36(9):1272-1284. https://doi.org/10.1016/j.orggeochem.2005.04.005