[1] Allen, F. M., Smith, B. K., Buseck, P. R., 1987. Direct Observation of Dissociated Dislocations in Garnet. Science, 238(4834):1695-1697. https://doi.org/10.1126/science.238.4834.1695
[2] Asimow, P. D., Langmuir, C. H., 2003. The Importance of Water to Oceanic Mantle Melting Regimes. Nature, 421(6925):815-820. https://doi.org/10.1038/nature01429
[3] Asmerom, Y., Walker, R. J., 1998. Pb and Os Isotopic Constraints on the Composition and Rheology of the Lower Crust. Geology, 26(4):359-362. https://doi.org/10.1130/0091-7613(1998)026 < 0359:paoico > 2.3.co; 2 doi: 10.1130/0091-7613(1998)026<0359:paoico>2.3.co;2
[4] Avé Lallemant, H. G., 1978. Experimental Deformation of Diopside and Websterite. Tectonophysics, 48(1/2):1-27. https://doi.org/10.1016/0040-1951(78)90083-5
[5] Bai, D. H., Unsworth, M. J., Meju, M. A., et al., 2010. Crustal Deformation of the Eastern Tibetan Plateau Revealed by Magnetotelluric Imaging. Nature Geoscience, 3(5):358-362. https://doi.org/10.1038/ngeo830
[6] Bascou, J., Barruol, G., Vauchez, A., et al., 2001. EBSD-Measured Lattice-Preferred Orientations and Seismic Properties of Eclogites. Tectonophysics, 342(1/2):61-80. https://doi.org/10.1016/s0040-1951(01)00156-1
[7] Bascou, J., Tommasi, A., Mainprice, D., 2002. Plastic Deformation and Development of Clinopyroxene Lattice Preferred Orientations in Eclogites. Journal of Structural Geology, 24(8):1357-1368. https://doi.org/10.1016/s0191-8141(01)00137-7
[8] Bell, D. R., Rossman, G. R., 1992. Water in Earth's Mantle:The Role of Nominally Anhydrous Minerals. Science, 255(5050):1391-1397. https://doi.org/10.1126/science.255.5050.1391
[9] Bercovici, D., Karato, S. I., 2003. Whole-Mantle Convection and the Transition-Zone Water Filter. Nature, 425(6953):39-44. https://doi.org/10.1038/nature01918
[10] Boland, J. N., Tullis, T. E., 1986. Deformation Behavior of Wet and Dry Clinopyroxenite in the Brittle to Ductile Transition Region. In: Hobbs, B. E., Heard, H. C., eds., Mineral and Rock Deformation: Laboratory Studies. Geophysical Monograph, 36: 35-49. https://doi.org/10.1029/gm036p0035
[11] Brok, B. D., Kruhl, J. H., 1996. Ductility of Garnet as an Indicator of Extremely High Temperature Deformation:Discussion. Journal of Structural Geology, 18(11):1369-1373. https://doi.org/10.1016/s0191-8141(96)00064-8
[12] Bürgmann, R., Dresen, G., 2008. Rheology of the Lower Crust and Upper Mantle:Evidence from Rock Mechanics, Geodesy, and Field Observations. Annual Review of Earth and Planetary Sciences, 36(1):531-567. https://doi.org/10.1146/annurev.earth.36.031207.124326
[13] Burov, E. B., Watts, A. B., 2006. The Long-Term Strength of Continental Lithosphere:"Jelly Sandwich" or "Crème Brȗ lée"?. GSA Today, 16(1):4. https://doi.org/10.1130/1052-5173(2006)016 < 4:tltsoc > 2.0.co; 2 doi: 10.1130/1052-5173(2006)016<4:tltsoc>2.0.co;2
[14] Byerlee, J., 1978. Friction of Rocks. Pure and Applied Geophysics, 116(4/5):615-626. https://doi.org/10.1007/bf00876528
[15] Bystricky, M., Lawlis, J., Mackwell, S., et al., 2016. High-Temperature Deformation of Enstatite Aggregates. Journal of Geophysical Research:Solid Earth, 121(9):6384-6400. https://doi.org/10.1002/2016jb013011
[16] Bystricky, M., Mackwell, S., 2001. Creep of Dry Clinopyroxene Aggregates. Journal of Geophysical Research:Solid Earth, 106(B7):13443-13454. https://doi.org/10.1029/2001jb000333
[17] Chardon, D., Jayananda, M., 2008. Three-Dimensional Field Perspective on Deformation, Flow, and Growth of the Lower Continental Crust (Dharwar Craton, India). Tectonics, 27(1):TC1014. https://doi.org/10.1029/2007tc002120
[18] Chen, L., Capitanio, F. A., Liu, L. J., et al., 2017. Crustal Rheology Controls on the Tibetan Plateau Formation during India-Asia Convergence. Nature Communications, 8(1):15992. https://doi.org/10.1038/ncomms15992
[19] Chen, S., Hiraga, T., Kohlstedt, D. L., 2006. Water Weakening of Clinopyroxene in the Dislocation Creep Regime. Journal of Geophysical Research, 111(B8):B08203. https://doi.org/10.1029/2005jb003885
[20] Chen, X. D., Lin, C. Y., Shi, L. B., 2007a. Rheological Properties of the Lower Crust Xenoliths in Northern North China:Information Provided by the the Lower Crustal in Hannuoba, Hebei. Science China Earth Sciences, 37(5):593-604 (in Chinese)
[21] Chen, X. D., Lin, C. Y., Shi, L. B., 2007b. Deformation Microstructural Characteristics and Geological Implications of Granulite in the Middle and Lower Crust of the Cenozoic Basalts in Hannuoba. Acta Petrologica Sinica, 23(11):2775-2784 (in Chinese with English Abstract)
[22] Chowdhury, P., Gerya, T., Chakraborty, S., 2017. Emergence of Silicic Continents as the Lower Crust Peels off on a Hot Plate-Tectonic Earth. Nature Geoscience, 10(9):698-703. https://doi.org/10.1038/ngeo3010
[23] Christensen, N. I., Mooney, W. D., 1995. Seismic Velocity Structure and Composition of the Continental Crust:A Global View. Journal of Geophysical Research:Solid Earth, 100(B6):9761-9788. https://doi.org/10.1029/95jb00259
[24] Copley, A., Avouac, J. P., Wernicke, B. P., 2011. Evidence for Mechanical Coupling and Strong Indian Lower Crust beneath Southern Tibet. Nature, 472(7341):79-81. https://doi.org/10.1038/nature09926
[25] Cordier, P., Raterron, P., Wang, Y., 1996. TEM Investigation of Dislocation Microstructure of Experimentally Deformed Silicate Garnet. Physics of the Earth and Planetary Interiors, 97(1/2/3/4):121-131. https://doi.org/10.1016/0031-9201(96)03154-8
[26] Deng, Y. F., Tesauro, M., 2016. Lithospheric Strength Variations in Mainland China:Tectonic Implications. Tectonics, 35(10):2313-2333. https://doi.org/10.1002/2016tc004272
[27] Dilek, Y., Robinson, P. T., 2009. Mantle Dynamics and Crust-Mantle Interactions in Collisional Orogens. Lithos, 113(1/2):viii-x. https://doi.org/10.1016/j.lithos.2009.09.007
[28] Dimanov, A., Dresen, G., 2005. Rheology of Synthetic Anorthite-Diopside Aggregates:Implications for Ductile Shear Zones. Journal of Geophysical Research, 110(B7):B07203. https://doi.org/10.1029/2004jb003431
[29] Dimanov, A., Dresen, G., Xiao, X., et al., 1999. Grain Boundary Diffusion Creep of Synthetic Anorthite Aggregates:The Effect of Water. Journal of Geophysical Research:Solid Earth, 104(B5):10483-10497. https://doi.org/10.1029/1998jb900113
[30] Dimanov, A., Lavie, M. P., Dresen, G., et al., 2003. Creep of Polycrystalline Anorthite and Diopside. Journal of Geophysical Research:Solid Earth, 108(B1):39-55. https://doi.org/10.1029/2002jb001815
[31] Dumond, G., Goncalves, P., Williams, M. L., et al., 2010. Subhorizontal Fabric in Exhumed Continental Lower Crust and Implications for Lower Crustal Flow:Athabasca Granulite Terrane, Western Canadian Shield. Tectonics, 29(2):TC2006. https://doi.org/10.1029/2009tc002514
[32] Endrun, B., Lebedev, S., Meier, T., et al., 2011. Complex Layered Deformation within the Aegean Crust and Mantle Revealed by Seismic Anisotropy. Nature Geoscience, 4(3):203-207. https://doi.org/10.1038/ngeo1065
[33] Faul, U. H., Cline, C. J. II, David, E. C., et al., 2016. Titanium-Hydroxyl Defect-Controlled Rheology of the Earth's Upper Mantle. Earth and Planetary Science Letters, 452:227-237. https://doi.org/10.1016/j.epsl.2016.07.016
[34] Fei, H. Z., Wiedenbeck, M., Yamazaki, D., et al., 2013. Small Effect of Water on Upper-Mantle Rheology Based on Silicon Self-Diffusion Coefficients. Nature, 498(7453):213-215. https://doi.org/10.1038/nature12193
[35] Flesch, L., Holt, W., Silver, P., et al., 2005. Constraining the Extent of Crust-Mantle Coupling in Central Asia Using GPS, Geologic, and Shear Wave Splitting Data. Earth and Planetary Science Letters, 238(1/2):248-268. https://doi.org/10.1016/j.epsl.2005.06.023
[36] Frost, B. R., Bucher, K., 1994. Is Water Responsible for Geophysical Anomalies in the Deep Continental Crust? A Petrological Perspective. Tectonophysics, 231(4):293-309. https://doi.org/10.1016/0040-1951(94)90040-x
[37] Gerya, T. V., 2014. Precambrian Geodynamics:Concepts and Models. Gondwana Research, 25(2):442-463. https://doi.org/10.1016/j.gr.2012.11.008
[38] Getsinger, A. J., Hirth, G., Stünitz, H., et al., 2013. Influence of Water on Rheology and Strain Localization in the Lower Continental Crust. Geochemistry, Geophysics, Geosystems, 14(7):2247-2264. https://doi.org/10.1002/ggge.20148
[39] Gleason, G. C., Tullis, J., 1995. A Flow Law for Dislocation Creep of Quartz Aggregates Determined with the Molten Salt Cell. Tectonophysics, 247(1/2/3/4):1-23. https://doi.org/10.1016/0040-1951(95)00011-b
[40] Godard, G., van Roermund, H. L. M., 1995. Deformation-Induced Clinopyroxene Fabrics from Eclogites. Journal of Structural Geology, 17(10):1425-1443. https://doi.org/10.1016/0191-8141(95)00038-f
[41] Heidelbach, F., Post, A., Tullis, J., 2000. Crystallographic Preferred Orientation in Albite Samples Deformed Experimentally by Dislocation and Solution Precipitation Creep. Journal of Structural Geology, 22(11/12):1649-1661. https://doi.org/10.1016/s0191-8141(00)00072-9
[42] Hier-Majumder, S., Mei, S. H., Kohlstedt, D. L., 2005. Water Weakening of Clinopyroxenite in Diffusion Creep. Journal of Geophysical Research, 110(B7):542-557. https://doi.org/10.1029/2004jb003414
[43] Hirth, G., Kohlstedt, D. L., 1996. Water in the Oceanic Upper Mantle:Implications for Rheology, Melt Extraction and the Evolution of the Lithosphere. Earth and Planetary Science Letters, 144(1/2):93-108. https://doi.org/10.1016/0012-821x(96)00154-9
[44] Hirth, G., Kohlstedt, D. L., 2003. Rheology of the Upper Mantle and the Mantle Wedge: A View from the Experimentalists. In: Eiler, J., ed., Inside the Subduction Factory. Geophysical Monograph Series, American Geophysical Union, Washington, D. C., USA. 83-105. https://doi.org/10.1029/138gm06
[45] Hirth, G., Teyssier, C., Dunlap, J. W., 2001. An Evaluation of Quartzite Flow Laws Based on Comparisons between Experimentally and Naturally Deformed Rocks. International Journal of Earth Sciences, 90(1):77-87. https://doi.org/10.1007/s005310000152
[46] Holt, W. E., 2000. Correlated Crust and Mantle Strain Fields in Tibet. Geology, 28(1):67. https://doi.org/10.1130/0091-7613(2000)28 < 67:ccamsf > 2.0.co; 2 doi: 10.1130/0091-7613(2000)28<67:ccamsf>2.0.co;2
[47] Homburg, J. M., Hirth, G., Kelemen, P. B., 2010. Investigation of the Strength Contrast at the Moho:A Case Study from the Oman Ophiolite. Geology, 38(8):679-682. https://doi.org/10.1130/g30880.1
[48] Ingrin, J., Skogby, H., 2000. Hydrogen in Nominally Anhydrous Upper-Mantle Minerals:Concentration Levels and Implications. European Journal of Mineralogy, 12(3):543-570. https://doi.org/10.1127/ejm/12/3/0543
[49] Jackson, J., 2002a. Faulting, Flow, and the Strength of the Continental Lithosphere. International Geology Review, 44(1):39-61. https://doi.org/10.2747/0020-6814.44.1.39
[50] Jackson, J., 2002b. Strength of the Continental Lithosphere:Time to Abandon the Jelly Sandwich?. GSA Today, 12(9):4. https://doi.org/10.1130/1052-5173(2002)012 < 0004:sotclt > 2.0.co; 2 doi: 10.1130/1052-5173(2002)012<0004:sotclt>2.0.co;2
[51] Ji, S. C., Jiang, Z., Wirth, R., 1999. Crystallographic Preferred Orientation (CPO) of Experimentally Sheared Plagioclase Aggregates: Implications for Crustal Heterogeneity. AGU Fall Meeting, San Francisco. 80: F916
[52] Ji, S. C., Mainprice, D., 1988. Natural Deformation Fabrics of Plagioclase:Implications for Slip Systems and Seismic Anisotropy. Tectonophysics, 147(1/2):145-163. https://doi.org/10.1016/0040-1951(88)90153-9
[53] Ji, S. C., Mainprice, D., Boudier, F., 1988. Sense of Shear in High-Temperature Movement Zones from the Fabric Asymmetry of Plagioclase Feldspars. Journal of Structural Geology, 10(1):73-81. https://doi.org/10.1016/0191-8141(88)90129-0
[54] Ji, S. C., Martignole, J., 1994. Ductility of Garnet as an Indicator of Extremely High Temperature Deformation. Journal of Structural Geology, 16(7):985-996. https://doi.org/10.1016/0191-8141(94)90080-9
[55] Ji, S. C., Saruwatari, K., Mainprice, D., et al., 2003. Microstructures, Petrofabrics and Seismic Properties of Ultra High-Pressure Eclogites from Sulu Region, China:Implications for Rheology of Subducted Continental Crust and Origin of Mantle Reflections. Tectonophysics, 370(1/2/3/4):49-76. https://doi.org/10.1016/s0040-1951(03)00177-x
[56] Ji, S. C., Wirth, R., Rybacki, E., et al., 2000. High-Temperature Plastic Deformation of Quartz-Plagioclase Multilayers by Layer-Normal Compression. Journal of Geophysical Research:Solid Earth, 105(B7):16651-16664. https://doi.org/10.1029/2000jb900130
[57] Jin, Z. M., Zhang, J. F., Green, H. W. II, et al., 2001. Eclogite Rheology:Implications for Subducted Lithosphere. Geology, 29(8):667-670. https://doi.org/10.1130/0091-7613(2001)029 < 0667:erifsl > 2.0.co; 2 doi: 10.1130/0091-7613(2001)029<0667:erifsl>2.0.co;2
[58] Johnson, T. E., Brown, M., Gardiner, N. J., et al., 2017. Earth's First Stable Continents did not Form by Subduction. Nature, 543(7644):239-242. https://doi.org/10.1038/nature21383
[59] Kanagawa, K., Shimano, H., Hiroi, Y., 2008. Mylonitic Deformation of Gabbro in the Lower Crust:A Case Study from the Pankenushi Gabbro in the Hidaka Metamorphic Belt of Central Hokkaido, Japan. Journal of Structural Geology, 30(9):1150-1166. https://doi.org/10.1016/j.jsg.2008.05.007
[60] Karato, S. I., 1990. The Role of Hydrogen in the Electrical Conductivity of the Upper Mantle. Nature, 347(6290):272-273. https://doi.org/10.1038/347272a0
[61] Karato, S. I., 2010. Rheology of the Deep Upper Mantle and Its Implications for the Preservation of the Continental Roots:A Review. Tectonophysics, 481(1/2/3/4):82-98. https://doi.org/10.1016/j.tecto.2009.04.011
[62] Karato, S. I., Wang, Z. C., Liu, B. F., et al., 1995. Plastic Deformation of Garnets:Systematics and Implications for the Rheology of the Mantle Transition Zone. Earth and Planetary Science Letters, 130(1/2/3/4):13-30. https://doi.org/10.1016/0012-821x(94)00255-w
[63] Katayama, I., Karato, S. I., 2008. Effects of Water and Iron Content on the Rheological Contrast between Garnet and Olivine. Physics of the Earth and Planetary Interiors, 166(1/2):57-66. https://doi.org/10.1016/j.pepi.2007.10.004
[64] Kennedy, B. M., van Soest, M. C., 2007. Flow of Mantle Fluids through the Ductile Lower Crust:Helium Isotope Trends. Science, 318(5855):1433-1436. https://doi.org/10.1126/science.1147537
[65] Kim, D., Kim, T., Lee, J., et al., 2018. Microfabrics of Omphacite and Garnet in Eclogite from the Lanterman Range, Northern Victoria Land, Antarctica. Geosciences Journal, 22(6):939-953. https://doi.org/10.1007/s12303-018-0055-7
[66] Kleinschrodt, R., Duyster, J. P., 2002. HT-Deformation of Garnet:An EBSD Study on Granulites from Sri Lanka, India and the Ivrea Zone. Journal of Structural Geology, 24(11):1829-1844. https://doi.org/10.1016/s0191-8141(01)00167-5
[67] Kleinschrodt, R., McGrew, A., 2000. Garnet Plasticity in the Lower Continental Crust:Implications for Deformation Mechanisms Based on Microstructures and SEM-Electron Channeling Pattern Analysis. Journal of Structural Geology, 22(6):795-809. https://doi.org/10.1016/s0191-8141(00)00010-9
[68] Kohlstedt, D. L., Evans, B., Mackwell, S. J., 1995. Strength of the Lithosphere:Constraints Imposed by Laboratory Experiments. Journal of Geophysical Research:Solid Earth, 100(B9):17587-17602. https://doi.org/10.1029/95jb01460
[69] Kruse, R., Stünitz, H., 1999. Deformation Mechanisms and Phase Distribution in Mafic High-Temperature Mylonites from the Jotun Nappe, Southern Norway. Tectonophysics, 303(1/2/3/4):223-249. https://doi.org/10.1016/s0040-1951(98)00255-8
[70] Kruse, R., Stünitz, H., Kunze, K., 2001. Dynamic Recrystallization Processes in Plagioclase Porphyroclasts. Journal of Structural Geology, 23(11):1781-1802. https://doi.org/10.1016/s0191-8141(01)00030-x
[71] Kushiro, I., 1972. Effect of Water on the Composition of Magmas Formed at High Pressures. Journal of Petrology, 13(2):311-334. https://doi.org/10.1093/petrology/13.2.311
[72] Le Breton, E., Handy, M. R., Molli, G., et al., 2017. Post-20 Ma Motion of the Adriatic Plate:New Constraints from Surrounding Orogens and Implications for Crust-Mantle Decoupling. Tectonics, 36(12):3135-3154. https://doi.org/10.1002/2016tc004443
[73] Lund, M. D., Piazolo, S., Harley, S. L., 2006. Ultrahigh Temperature Deformation Microstructures in Felsic Granulites of the Napier Complex, Antarctica. Tectonophysics, 427(1/2/3/4):133-151. https://doi.org/10.1016/j.tecto.2006.05.022
[74] Mackwell, S. J., Zimmerman, M. E., Kohlstedt, D. L., 1998. High-Temperature Deformation of Dry Diabase with Application to Tectonics on Venus. Journal of Geophysical Research:Solid Earth, 103(B1):975-984. https://doi.org/10.1029/97jb02671
[75] Maggi, A., Jackson, J. A., McKenzie, D., et al., 2000a. Earthquake Focal Depths, Effective Elastic Thickness, and the Strength of the Continental Lithosphere. Geology, 28(6):495-498. https://doi.org/10.1130/0091-7613(2000)028 < 0495:efdeet > 2.3.co; 2 doi: 10.1130/0091-7613(2000)028<0495:efdeet>2.3.co;2
[76] Maggi, A., Jackson, J. A., Priestley, K., et al., 2000b. A Re-Assessment of Focal Depth Distributions in Southern Iran, the Tien Shan and Northern India:Do Earthquakes Really Occur in the Continental Mantle?. Geophysical Journal International, 143(3):629-661. https://doi.org/10.1046/j.1365-246x.2000.00254.x
[77] Magni, V., Faccenna, C., van Hunen, J., et al., 2013. Delamination vs. Break-off:The Fate of Continental Collision. Geophysical Research Letters, 40(2):285-289. https://doi.org/10.1002/grl.50090
[78] Mainprice, D., Bascou, J., Cordier, P., et al., 2004. Crystal Preferred Orientations of Garnet:Comparison between Numerical Simulations and Electron Back-Scattered Diffraction (EBSD) Measurements in Naturally Deformed Eclogites. Journal of Structural Geology, 26(11):2089-2102. https://doi.org/10.1016/j.jsg.2004.04.008
[79] Martelat, J. E., Schulmann, K., Lardeaux, J. M., et al., 1999. Granulite Microfabrics and Deformation Mechanisms in Southern Madagascar. Journal of Structural Geology, 21(6):671-687. https://doi.org/10.1016/s0191-8141(99)00052-8
[80] Mauler, A., Bystricky, M., Kunze, K., et al., 2000. Microstructures and Lattice Preferred Orientations in Experimentally Deformed Clinopyroxene Aggregates. Journal of Structural Geology, 22(11/12):1633-1648. https://doi.org/10.1016/s0191-8141(00)00073-0
[81] Mehl, L., Hirth, G., 2008. Plagioclase Preferred Orientation in Layered Mylonites:Evaluation of Flow Laws for the Lower Crust. Journal of Geophysical Research:Solid Earth, 113(B5):B05202. https://doi.org/10.1029/2007jb005075
[82] Mei, S. H., Kohlstedt, D. L., 2000a. Influence of Water on Plastic Deformation of Olivine Aggregates:1. Diffusion Creep Regime. Journal of Geophysical Research:Solid Earth, 105(B9):21457-21469. https://doi.org/10.1029/2000jb900179
[83] Mei, S. H., Kohlstedt, D. L., 2000b. Influence of Water on Plastic Deformation of Olivine Aggregates:2. Dislocation Creep Regime. Journal of Geophysical Research:Solid Earth, 105(B9):21471-21481. https://doi.org/10.1029/2000jb900180
[84] Meissner, R., Mooney, W., 1998. Weakness of the Lower Continental Crust:A Condition for Delamination, Uplift, and Escape. Tectonophysics, 296(1/2):47-60. https://doi.org/10.1016/s0040-1951(98)00136-x
[85] Meissner, R., Rabbel, W., Kern, H., 2006. Seismic Lamination and Anisotropy of the Lower Continental Crust. Tectonophysics, 416(1/2/3/4):81-99. https://doi.org/10.1016/j.tecto.2005.11.013
[86] Moghadam, R. H., Trepmann, C. A., Stöckhert, B., et al., 2010. Rheology of Synthetic Omphacite Aggregates at High Pressure and High Temperature. Journal of Petrology, 51(4):921-945. https://doi.org/10.1093/petrology/egq006
[87] Montardi, Y., Mainprice, D., 1987. A Transmission Electron Microscopic Study of Natural Plastic Deformation of Calcic Plagioclases (An 68-70). Bulletin de Minéralogie, 110(1):1-14. https://doi.org/10.3406/bulmi.1987.8022
[88] Moschetti, M. P., Ritzwoller, M. H., Lin, F., et al., 2010. Seismic Evidence for Widespread Western-US Deep-Crustal Deformation Caused by Extension. Nature, 464(7290):885-889. https://doi.org/10.1038/nature08951
[89] Muramoto, M., Michibayashi, K., Ando, J. I., et al., 2011. Rheological Contrast between Garnet and Clinopyroxene in the Mantle Wedge:An Example from Higashi-Akaishi Peridotite Mass, SW Japan. Physics of the Earth and Planetary Interiors, 184(1/2):14-33. https://doi.org/10.1016/j.pepi.2010.10.008
[90] Olsen, T. S., Kohlstedt, D. L., 1984. Analysis of Dislocations in some Naturally Deformed Plagioclase Feldspars. Physics and Chemistry of Minerals, 11(4):153-160. https://doi.org/10.1007/bf00387845
[91] Orzol, J., Stöckhert, B., Trepmann, C. A., et al., 2006. Experimental Deformation of Synthetic Wet Jadeite Aggregates. Journal of Geophysical Research:Solid Earth, 111(B6):B06205. https://doi.org/10.1029/2005jb003706
[92] Park, M., Jung, H., 2019. Relationships between Eclogite-Facies Mineral Assemblages, Deformation Microstructures, and Seismic Properties in the Yuka Terrane, North Qaidam Ultrahigh-Pressure Metamorphic Belt, NW China. Journal of Geophysical Research:Solid Earth, 124(12):13168-13191. https://doi.org/10.1029/2019jb018198
[93] Percival, J. A., Fountain, D. M., Salisbury, M. H., 1992. Exposed Cross Sections as Windows on the Lower Crust. In: Fountain, D., Arculus, R., Kay, R. W., eds., Continental Lower Crust. Elsevier, Amsterdam. 317-362
[94] Petley-Ragan, A., Ben-Zion, Y., Austrheim, H., et al., 2019. Dynamic Earthquake Rupture in the Lower Crust. Science Advances, 5(7):eaaw0913. https://doi.org/10.1126/sciadv.aaw0913
[95] Puelles, P., Ábalos, B., Gil Ibarguchi, J. I., 2009. Transposed High-Pressure Granulite Fabrics (Cabo Ortegal, NW Spain):Implications on the Scales of Deformation Localization. Journal of Structural Geology, 31(8):776-790. https://doi.org/10.1016/j.jsg.2009.05.001
[96] Raleigh, C. B., Kirby, S. H., Carter, N. L., et al., 1971. Slip and the Clinoenstatite Transformation as Competing Rate Processes in Enstatite. Journal of Geophysical Research, 76(17):4011-4022. https://doi.org/10.1029/jb076i017p04011
[97] Ranalli, G., 2000. Rheology of the Crust and Its Role in Tectonic Reactivation. Journal of Geodynamics, 30(1/2):3-15. https://doi.org/10.1016/s0264-3707(99)00024-1
[98] Ranalli, G., Murphy, D. C., 1987. Rheological Stratification of the Lithosphere. Tectonophysics, 132(4):281-295. https://doi.org/10.1016/0040-1951(87)90348-9
[99] Raterron, P., Doukhan, N., Jaoul, O., et al., 1994. High Temperature Deformation of Diopside IV:Predominance of {110} Glide above 1 000℃. Physics of the Earth and Planetary Interiors, 82(3/4):209-222. https://doi.org/10.1016/0031-9201(94)90073-6
[100] Reyners, M., Eberhart-Phillips, D., Stuart, G., 2007. The Role of Fluids in Lower-Crustal Earthquakes near Continental Rifts. Nature, 446(7139):1075-1078. https://doi.org/10.1038/nature05743
[101] Ross, J. V., Nielsen, K. C., 1978. High-Temperature Flow of Wet Polycrystalline Enstatite. Tectonophysics, 44(1/2/3/4):233-261. https://doi.org/10.1016/0040-1951(78)90072-0
[102] Royden, L., 1996. Coupling and Decoupling of Crust and Mantle in Convergent Orogens:Implications for Strain Partitioning in the Crust. Journal of Geophysical Research:Solid Earth, 101(B8):17679-17705. https://doi.org/10.1029/96jb00951
[103] Rudnick, R. L., Fountain, D. M., 1995. Nature and Composition of the Continental Crust:A Lower Crustal Perspective. Reviews of Geophysics, 33(3):267-309. https://doi.org/10.1029/95rg01302
[104] Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust. In: Rudnick, R. L., ed., Treatise in Geochemistry: The Crust. Elsevier, Amsterdam. 1-64. https://doi.org/10.1016/b978-0-08-095975-7.00301-6
[105] Rybacki, E., Dresen, G., 2000. Dislocation and Diffusion Creep of Synthetic Anorthite Aggregates. Journal of Geophysical Research:Solid Earth, 105(B11):26017-26036. https://doi.org/10.1029/2000jb900223
[106] Rybacki, E., Gottschalk, M., Wirth, R., et al., 2006. Influence of Water Fugacity and Activation Volume on the Flow Properties of Fine-Grained Anorthite Aggregates. Journal of Geophysical Research:Solid Earth, 111(B3):B03203. https://doi.org/10.1029/2005jb003663
[107] Satsukawa, T., Ildefonse, B., Mainprice, D., et al., 2013. A Database of Plagioclase Crystal Preferred Orientations (CPO) and Microstructures-Implications for CPO Origin, Strength, Symmetry and Seismic Anisotropy in Gabbroic Rocks. Solid Earth, 4(2):511-542. https://doi.org/10.5194/se-4-511-2013
[108] Shapiro, N. M., Ritzwoller, M. H., Molnar, P., et al., 2004. Thinning and Flow of Tibetan Crust Constrained by Seismic Anisotropy. Science, 305(5681):233-236. https://doi.org/10.1126/science.1098276
[109] Shelton, G., Tullis, J., 1981. Experimental Flow Laws for Crustal Rocks. EOS. Trans. Am. Geophys. Union, 62:396
[110] Shi, F., Wang, Y. B., Yu, T., et al., 2018. Lower-Crustal Earthquakes in Southern Tibet are Linked to Eclogitization of Dry Metastable Granulite. Nature Communications, 9(1):3483. https://doi.org/10.1038/s41467-018-05964-1
[111] Shi, F., Wang, Y. F., Xu, H. J., et al., 2010. Effects of Lattice Preferred Orientation and Retrogression on Seismic Properties of Eclogite. Journal of Earth Science, 21(5):569-580. https://doi.org/10.1007/s12583-010-0123-z
[112] Skogby, H., Bell, D. R., Rossman, G. R., 1990. Hydroxide in Pyroxene:Variations in the Natural Environment. American Mineralogist, 75(7):764-774. https://doi.org/10.1007/bf01164223
[113] Soret, M., Agard, P., Ildefonse, B., et al., 2019. Deformation Mechanisms in Mafic Amphibolites and Granulites:Record from the Semail Metamorphic Sole during Subduction Infancy. Solid Earth, 10(5):1733-1755. https://doi.org/10.5194/se-10-1733-2019
[114] Stockhert, B., Renner, J., 1998. Rheology of Crustal Rocks at Ultrahigh Pressure. In: Hacker, B., Liou, J.-G., eds., When Continents Collide: Geodynamics and Geochemstry of Ultrahigh-Pressure Rocks. Springer, New York. 57-95
[115] Stünitz, H., Gerald, J. D. F., Tullis, J., 2003. Dislocation Generation, Slip Systems, and Dynamic Recrystallization in Experimentally Deformed Plagioclase Single Crystals. Tectonophysics, 372(3):215-233. https://doi.org/10.1016/s0040-1951(03)00241-5
[116] Stünitz, H., Tullis, J., 2001. Weakening and Strain Localization Produced by Syn-Deformational Reaction of Plagioclase. International Journal of Earth Sciences, 90(1):136-148. https://doi.org/10.1007/s005310000148
[117] Tullis, J., Shelton, G. L., Yund, R. A., 1979. Pressure Dependence of Rock Strength:Implications for Hydrolytic Weakening. Bulletin de Minéralogie, 102(2):110-114. https://doi.org/10.3406/bulmi.1979.7263
[118] Tullis, J., Yund, R. A., 1980. Hydrolytic Weakening of Experimentally Deformed Westerly Granite and Hale Albite Rock. Journal of Structural Geology, 2(4):439-451. https://doi.org/10.1016/0191-8141(80)90005-x
[119] Tullis, J., Yund, R. A., 1991. Diffusion Creep in Feldspar Aggregates:Experimental Evidence. Journal of Structural Geology, 13(9):987-1000. https://doi.org/10.1016/0191-8141(91)90051-j
[120] Tullis, J., Yund, R., Farver, J., 1996. Deformation-Enhanced Fluid Distribution in Feldspar Aggregates and Implications for Ductile Shear Zones. Geology, 24(1):63-66. https://doi.org/10.1130/0091-7613(1996)024 < 0063:defdif > 2.3.co; 2 doi: 10.1130/0091-7613(1996)024<0063:defdif>2.3.co;2
[121] Voegelé, V., Ando, J. I., Cordier, P., et al., 1998. Plastic Deformation of Silicate Garnets:I. High-Pressure Experiments. Physics of the Earth and Planetary Interiors, 108(4):305-318. https://doi.org/10.1016/s0031-9201(98)00110-1
[122] Wang, Q., 2010. A Review of Water Contents and Ductile Deformation Mechanisms of Olivine:Implications for the Lithosphere-Asthenosphere Boundary of Continents. Lithos, 120(1/2):30-41. https://doi.org/10.1016/j.lithos.2010.05.010
[123] Wang, Y. F., Zhang, J. F., Jin, Z. M., et al., 2012. Mafic Granulite Rheology:Implications for a Weak Continental Lower Crust. Earth and Planetary Science Letters, 353/354:99-107. https://doi.org/10.1016/j.epsl.2012.08.004
[124] Wang, Z. C., Ji, S. C., 1999. Deformation of Silicate Garnets:Brittle-Ductile Transition and Its Geological Implications. The Canadian Mineralogist, 37(2):525-541. https://doi.org/10.1016/s0169-1317(98)00055-6
[125] Wang, Z. C., Ji, S. C., 2000. Diffusion Creep of Fine-Grained Garnetite:Implications for the Flow Strength of Subducting Slabs. Geophysical Research Letters, 27(15):2333-2336. https://doi.org/10.1029/1999gl008474
[126] Wang, Z. S., Kusky, T. M., Capitanio, F., 2018. On the Role of Lower Crust and Midlithosphere Discontinuity for Cratonic Lithosphere Delamination and Recycling. Geophysical Research Letters, 45(15):7425-7433. https://doi.org/10.1029/2017gl076948
[127] Wilks, K. R., Carter, N. L., 1990. Rheology of some Continental Lower Crustal Rocks. Tectonophysics, 182(1/2):57-77. https://doi.org/10.1016/0040-1951(90)90342-6
[128] Xia, Q. K., Yang, X. Z., Deloule, E., et al., 2006. Water in the Lower Crustal Granulite Xenoliths from Nushan, Eastern China. Journal of Geophysical Research:Solid Earth, 111(B11):B11202. https://doi.org/10.1029/2006jb004296
[129] Xiao, M., Yao, Y. J., Cai, Y., et al., 2019. Evidence of Early Cretaceous Lower Arc Crust Delamination and Its Role in the Opening of the South China Sea. Gondwana Research, 76:123-145. https://doi.org/10.1016/j.gr.2019.05.011
[130] Xie, Y. X., Wenk, H. R., Matthies, S., 2003. Plagioclase Preferred Orientation by TOF Neutron Diffraction and SEM-EBSD. Tectonophysics, 370(1/2/3/4):269-286. https://doi.org/10.1016/s0040-1951(03)00191-4
[131] Xie, Z. J., Liu, X. W., Jin, Z. M., 2019. Effect of Water on the Dislocation Mobility in Garnet:Evidence from the Shuanghe UHP Eclogites, Dabie Orogen, China. Physics of the Earth and Planetary Interiors, 293:106273. https://doi.org/10.1016/j.pepi.2019.106273
[132] Xu, L. L., Mei, S. H., Dixon, N., et al., 2013. Effect of Water on Rheological Properties of Garnet at High Temperatures and Pressures. Earth and Planetary Science Letters, 379:158-165. https://doi.org/10.1016/j.epsl.2013.08.002
[133] Yang, G. C., Yang, X. Z., Xia, Q. K., 2012. Water Evolution in the Lower Crust:Evidences from Plagioclase in Granulite in Different Eras. Acta Petrologica et Mineralogica, 31(4):565-577 (in Chinese with English Abstract)
[134] Yang, X. Z., Deloule, E., Xia, Q. K., et al., 2008. Water Contrast between Precambrian and Phanerozoic Continental Lower Crust in Eastern China. Journal of Geophysical Research, 113:194-205. https://doi.org/10.1029/2007jb005541
[135] Yardley, B. W. D., Valley, J. W., 1997. The Petrologic Case for a Dry Lower Crust. Journal of Geophysical Research:Solid Earth, 102(B6):12173-12185. https://doi.org/10.1029/97jb00508
[136] Zertani, S., John, T., Tilmann, F., et al., 2019. Modification of the Seismic Properties of Subducting Continental Crust by Eclogitization and Deformation Processes. Journal of Geophysical Research:Solid Earth, 124(9):9731-9754. https://doi.org/10.1029/2019jb017741
[137] Zhai, M. G., Fan, Q. C., Zhang, H. F., et al., 2007. Lower Crustal Processes Leading to Mesozoic Lithospheric Thinning beneath Eastern North China:Underplating, Replacement and Delamination. Lithos, 96(1/2):36-54. https://doi.org/10.1016/j.lithos.2006.09.016
[138] Zhang, G. N., Mei, S. H., Song, M. S., et al., 2017. Diffusion Creep of Enstatite at High Pressures under Hydrous Conditions. Journal of Geophysical Research:Solid Earth, 122(10):7718-7728. https://doi.org/10.1002/2017jb014400
[139] Zhang, J. F., Green, H. W. Ⅱ, 2007. Experimental Investigation of Eclogite Rheology and Its Fabrics at High Temperature and Pressure. Journal of Metamorphic Geology, 25(2):97-115. https://doi.org/10.1111/j.1525-1314.2006.00684.x
[140] Zhang, J. F., Green, H. W. Ⅱ, Bozhilov, K. N., 2006. Rheology of Omphacite at High Temperature and Pressure and Significance of Its Lattice Preferred Orientations. Earth and Planetary Science Letters, 246(3/4):432-443. https://doi.org/10.1016/j.epsl.2006.04.006
[141] Zhang, J. F., Wang, C., Wang, Y. F., 2012. Experimental Constraints on the Destruction Mechanism of the North China Craton. Lithos, 149:91-99. https://doi.org/10.1016/j.lithos.2012.03.015
[142] Zhang, L., Ye, Y., Qin, S., et al., 2018. Water in the Thickened Lower Crust of the Eastern Himalayan Orogen. Journal of Earth Science, 29(5):1040-1048. https://doi.org/10.1007/s12583-018-0880-7
[143] Zhang, L., Zhang, J. F., Jin, Z. M., 2016. Metamorphic P-T-Water Conditions of the Yushugou Granulites from the Southeastern Tianshan Orogen:Implications for Paleozoic Accretionary Orogeny. Gondwana Research, 29(1):264-277. https://doi.org/10.1016/j.gr.2014.12.009
[144] Zhang, P. Z., Shen, Z. K., Wang, M., et al., 2004. Continuous Deformation of the Tibetan Plateau from Global Positioning System Data. Geology, 32(9):809-812. https://doi.org/10.1130/g20554.1
[145] Zhao, C. C., Yoshino, T., 2016. Electrical Conductivity of Mantle Clinopyroxene as a Function of Water Content and Its Implication on Electrical Structure of Uppermost Mantle. Earth and Planetary Science Letters, 447:1-9. https://doi.org/10.1016/j.epsl.2016.04.028
[146] Zhou, Y. S., He, C. R., 2015. Microstructures and Deformation Mechanisms of Experimentally Deformed Gabbro. Earthquake Science, 28(2):119-127. https://doi.org/10.1007/s11589-015-0115-2
[147] Zhou, Y. S., Rybacki, E., Wirth, R., et al., 2012. Creep of Partially Molten Fine-Grained Gabbro under Dry Conditions. Journal of Geophysical Research:Solid Earth, 117(B5):B05204. https://doi.org/10.1029/2011jb008646
[148] Zoback, M. D., Zoback, M. L., Mount, V. S., et al., 1987. New Evidence on the State of Stress of the San Andreas Fault System. Science, 238(4830):1105-1111. https://doi.org/10.1126/science.238.4830.1105