[1] Almeida-Filho, R., Miranda, F. P., Yamakawa, T., 1999. Remote Detection of a Tonal Anomaly in an Area of Hydrocarbon Microseepage, Tucano Basin, North-Eastern Brazil. International Journal of Remote Sensing, 20(13): 2683-2688. https://doi.org/10.1080/014311699212029
[2] Chen, S. B., Zhao, Y., Zhao, L., et al., 2017. Hydrocarbon Micro-Seepage Detection by Altered Minerals Mapping from Airborne Hyper-Spectral Data in Xifeng Oilfield, China. Journal of Earth Science, 28(4): 656-665. https://doi.org/10.1007/s12583-015-0604-1
[3] Ding, X., Wang, Y. P., He, Z. C., 1993. The Application Research of Satellite Remote Sensing to Exploration of Hydrocarbon Alteration Information. Chinese Science Bulletin, 38(17): 1475-1479 (in Chinese) http://cn.bing.com/academic/profile?id=a20c9948e21808946184168046e81ef4&encoded=0&v=paper_preview&mkt=zh-cn
[4] Dou, W. C., Liu, L. F., Wu, K. J., et al., 2017. Origin and Significance of Secondary Porosity: A Case Study of Upper Triassic Tight Sandstones of Yanchang Formation in Ordos Basin, China. Journal of Petroleum Science and Engineering, 149: 485-496. https://doi.org/10.1016/j.petrol.2016.10.057
[5] Galvão, L. S., Formaggio, A. R., Couto, E. G., et al., 2008. Relationships between the Mineralogical and Chemical Composition of Tropical Soils and Topography from Hyperspectral Remote Sensing Data. ISPRS Journal of Photogrammetry and Remote Sensing, 63(2): 259-271. https://doi.org/10.1016/j.isprsjprs.2007.09.006
[6] Gemail, K., Abd-El Rahman, N. M., Ghiath, B. M., et al., 2016. Integration of ASTER and Airborne Geophysical Data for Mineral Exploration and Environmental Mapping: A Case Study, Gabal Dara, North Eastern Desert, Egypt. Environmental Earth Sciences, 75(7): 1-12. https://doi.org/10.1007/s12665-016-5368-0
[7] He, Z. L., Deng, X. L., Ai, S. M., 2014. Hydrocarbon Micro-Seepage Anomalies Detection Algorithm Based on FPCS for Hyperspectral Remote Sensing Data. Applied Mechanics and Materials, 596: 457-462. https://doi.org/10.4028/www.scientific.net/amm.596.457
[8] Hörig, B., Kühn, F., Oschütz, F., et al., 2001. HyMap Hyperspectral Remote Sensing to Detect Hydrocarbons. International Journal of Remote Sensing, 22(8): 1413-1422. https://doi.org/10.1080/01431160010013450
[9] Hou, F., Wang, D., Cai, Y., et al., 2011. The Abnormal Information Extraction of the Hydrocarbon Micro-Seepage Based on the Hyperspectral Image. Proceedings of 2011 19th International Conference on Geoinformatics, Shanghai. 1-4
[10] Huang, Z. Q., Yao, Z. X., Cheng, M. H., 2014. Lithologic Anomaly Identification of Hydrocarbon Microseepages in Kelasu Fold-and-Thrust Belt, West China Using ASTER Imagery. Geoscience and Remote Sensing Symposium IEEE, Québec. 863-866 https://doi.org/0.1109/igarss.2014.6946561
[11] Kruse, F. A., Boardman, J. W., Huntington, J. F., 2003. Comparison of Airborne Hyperspectral Data and Eo-1 Hyperion for Mineral Mapping. IEEE Transactions on Geoscience and Remote Sensing, 41(6): 1388-1400. https://doi.org/10.1109/tgrs.2003.812908
[12] Kühn, F., Oppermann, K., Hörig, B., 2004. Hydrocarbon Index-An Algorithm for Hyperspectral Detection of Hydrocarbons. International Journal of Remote Sensing, 25(12): 2467-2473. https://doi.org/10.1080/01431160310001642287
[13] Lammoglia, T., de Souza Filho, C. R., 2011. Spectroscopic Characterization of Oils Yielded from Brazilian Offshore Basins: Potential Applications of Remote Sensing. Remote Sensing of Environment, 115(10): 2525-2535. https://doi.org/10.1016/j.rse.2011.04.038
[14] Lammoglia, T., de Souza Filho, C. R., 2013. Unraveling Hydrocarbon Microseepages in Onshore Basins Using Spectral-Spatial Processing of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Data. Surveys in Geophysics, 34(3): 349-373. https://doi.org/10.1007/s10712-013-9225-3
[15] Liu, N., Chen, X., Li, Q. Q., 2014. Study on the Alteration Minerals Caused by Oil and Gas Microseepage by Extracting Endmembers from Hyperion. IEEE International Geoscience and Remote Sensing Symposium, Quebec City. https://doi.org/10.1109/igarss.2014.6946563
[16] Petrovic, A., Khan, S. D., Thurmond, A. K., 2012. Integrated Hyperspectral Remote Sensing, Geochemical and Isotopic Studies for Understanding Hydrocarbon-Induced Rock Alterations. Marine and Petroleum Geology, 35(1): 292-308. https://doi.org/10.1016/j.marpetgeo.2012.01.004
[17] Post, J. L., Crawford, S. M., 2014. Uses of Near-Infared Spectra for the Identification of Clay Minerals. Applied Clay Science, 95: 383-387. https://doi.org/10.1016/j.clay.2014.02.010
[18] Pour, A. B., Hashim, M., Park, Y., et al., 2017. Mapping Alteration Mineral Zones and Lithological Units in Antarctic Regions Using Spectral Bands of ASTER Remote Sensing Data. Geocarto International, 33(12): 1281-1306. https://doi.org/10.1080/10106049.2017.1347207
[19] Schaepman, M. E., Ustin, S. L., Plaza, A. J., et al., 2009. Earth System Science Related Imaging Spectroscopy—An Assessment. Remote Sensing of Environment, 113: S123-S137. https://doi.org/10.1016/j.rse.2009.03.001
[20] Shi, P. L., Fu, B. H., Ninomiya, Y., et al., 2012. Multispectral Remote Sensing Mapping for Hydrocarbon Seepage-Induced Lithologic Anomalies in the Kuqa Foreland Basin, South Tian Shan. Journal of Asian Earth Sciences, 46: 70-77. https://doi.org/10.1016/j.jseaes.2011.10.019
[21] Tian, Q., 2012. Study on Oil-Gas Reservoir Detecting Methods Using Hyperspectral Remote Sensing. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXIX-B7: 157-162. https://doi.org/10.5194/isprsarchives-xxxix-b7-157-2012
[22] van der Meer, F. D., van der Werff, H. M. A., van Ruitenbeek, F. J. A., et al., 2012. Multi- and Hyperspectral Geologic Remote Sensing: A Review. International Journal of Applied Earth Observation and Geoinformation, 14(1): 112-128. https://doi.org/10.1016/j.jag.2011.08.002
[23] van der Meer, F. D., 2004. Analysis of Spectral Absorption Features in Hyperspectral Imagery. International Journal of Applied Earth Observation and Geoinformation, 5(1): 55-68. https://doi.org/10.1016/j.jag.2003.09.001
[24] van der Meer, F. D., van Dijk, P., van der Werff, H. M. A., et al., 2002. Remote Sensing and Petroleum Seepage: A Review and Case Study. Terra Nova, 14(1): 1-17. https://doi.org/10.1046/j.1365-3121.2002.00390.x
[25] van der Meijde, M., Knox, N. M., Cundill, S. L., et al., 2013. Detection of Hydrocarbons in Clay Soils: A Laboratory Experiment Using Spectroscopy in the Mid- and Thermal Infrared. International Journal of Applied Earth Observation and Geoinformation, 23: 384-388. https://doi.org/10.1016/j.jag.2012.11.001
[26] Wu, X. Y., Xu, X. M., Wu, C. F., et al., 2014. Responses of Microbial Communities to Light-Hydrocarbon Microseepage and Novel Indicators for Microbial Prospecting of Oil/Gas in the Beihanzhuang Oilfield, Northern Jiangsu, China. Geomicrobiology Journal, 31(8): 697-707. https://doi.org/10.1080/01490451.2013.843619
[27] Xu, D. Q., Ni, G. Q., Jiang, L. L., et al., 2008. Exploring for Natural Gas Using Reflectance Spectra of Surface Soils. Advances in Space Research, 41(11): 1800-1817. https://doi.org/10.1016/j.asr.2007.05.073
[28] Xu, N., Hu, Y. X., Lei, B., et al., 2011. Mineral Information Extraction for Hyperspectral Image Based on Modified Spectral Feature Fitting Algorithm. Spectroscopy and Spectral Analysis, 31: 1639-1643 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gpxygpfx201106045
[29] Yang, H., Zhang, J., van der Meer, F., et al., 1998. Geochemistry and Field Spectrometry for Detecting Hydrocarbon Microseepage. Terra Nova, 10(5): 231-235. https://doi.org/10.1046/j.1365-3121.1998.00196.x
[30] Zhang, C. Y., Qin, Q. M., Chen, L., et al., 2015. Rapid Determination of Coalbed Methane Exploration Target Region Utilizing Hyperspectral Remote Sensing. International Journal of Coal Geology, 150-151: 19-34. https://doi.org/10.1016/j.coal.2015.07.010
[31] Zhao, H., Zhang, L., Zhang, X., et al., 2015. Hyperspectral Feature Extraction Based on the Reference Spectral Background Removal Method. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(6): 1-15. https://doi.org/10.1109/jstars.2015.2401052