[1] Alibo, D. S., Nozaki, Y., 1999. Rare Earth Elements in Seawater: Particle Association, Shale-Normalization, and Ce Oxidation. Geochim. Cosmochim. Acta, 63(3–4): 363–372 http://www.sciencedirect.com/science/article/pii/S0016703798002798
[2] Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses that do not Report 204Pb. Chem. Geol. , 192(1–2): 59–79 http://www.sciencedirect.com/science/article/pii/S000925410200195X
[3] Bau, M., Möller, P., 1993. Rare Earth Element Systematics of the Chemically Precipitated Component in Early Precambrian Iron Formations and the Evolution of the Terrestrial Atmosphere-Hydrosphere-Lithosphere System. Geochim. Cosmochim. Acta, 57(10): 2239–2249 doi: 10.1016/0016-7037(93)90566-F
[4] Bau, M., 1993. Effects of Syn- and Post-Depositional Processes on the Rare-Earth Element Distribution in Precambrian Iron-Formations. Eur. J. Mineral. , 5: 257–267 doi: 10.1127/ejm/5/2/0257
[5] Bau, M., Dulski, P., Möller, P., 1995. Yttrium and Holmium in South Pacific Seawater: Vertical Distribution and Possible Fractionation Mechanisms. Chem. Erde, 55: 1–15 http://www.researchgate.net/publication/279903300_Yttrium_and_holmium_in_South_Pacific_seawater_vertical_distribution_and_possible_fractionation_mechanisms
[6] Bau, M., Dulski, P., 1996. Distribution of Yttrium and Rare-Earth Elements in the Penge and Kuruman Iron-Formations, Transvaal Supergroup, South Africa. Precambrian Res. , 79(1–2): 37–55 http://www.onacademic.com/detail/journal_1000035336308510_4376.html
[7] Bekker, A., Slack, J. F., Planavsky, N., et al., 2010. Iron Formation: The Sedimentary Product of a Complex Interplay among Mantle, Tectonic, Oceanic, and Biospheric Processes. Economic Geology, 105(3): 467–508 doi: 10.2113/gsecongeo.105.3.467
[8] Bureau of Geology and Mineral Resources of Hubei Province, 1987. 1: 50 000 Geological Map of Eastern Xingshan and Shuiyuesi Area. The Geological Party of West Hubei, Yichang (in Chinese)
[9] Bureau of Geology and Mineral Resources of Hubei Province, 1994. 1: 50 000 Geological Map of Maopinghe Area. The Geological Party of West Hubei, Yichang (in Chinese)
[10] Corfu, F., Hanchar, J. M., Hoskin, P. W. O., et al., 2003. Atlas of Zircon Textures. Reviews in Mineralogy and Geochemistry, 53(1): 469–500 doi: 10.2113/0530469
[11] Derry, L. A., Jacobsen, S. B., 1990. The Chemical Evolution of Precambrian Seawater: Evidence from REEs in Banded Iron Formations. Geochim. Cosmochim. Acta, 54(11): 2965–2977 doi: 10.1016/0016-7037(90)90114-Z
[12] Ferry, J. M., Watson, E. B., 2007. New Thermodynamic Models and Revised Calibrations for the Ti-in-Zircon and Zr-in-Rutile Thermometers. Contrib. Mineral. Petrol. , 154(4): 429–437 doi: 10.1007/s00410-007-0201-0
[13] Frei, R., Dahl, P. S., Duke, E. F., et al., 2008. Trace Element and Isotopic Characterization of Neoarchean and Paleoproterozoic Iron Formations in the Black Hills (South Dakota, USA): Assessment of Chemical Change during 2.9-1.9 Ga Deposition Bracketing the 2.4–2.2 Ga First Rise of Atmospheric Oxygen. Precambrian Res. , 162(3–4): 441–474
[14] Fryer, B. J., 1977. Rare Earth Evidence in Iron-Formations for Changing Precambrian Oxidation States. Geochim. Cosmochim. Acta, 41(3): 361–367 doi: 10.1016/0016-7037(77)90263-0
[15] Gao, S., Ling, W. L., Qiu, Y., et al., 1999. Contrasting Geochemical and Sm-Nd Isotopic Compositions of Archean Metasediments from the Kongling High-Grade Terrain of the Yangtze Craton: Evidence for Cratonic Evolution and Redistribution of REE during Crustal Anatexis. Geochim. Cosmochim. Acta, 63(13–14): 2071–2088 http://www.sciencedirect.com/science/article/pii/S0016703799001532
[16] Gao, S., Qiu, M., Ling, W. L., et al., 2001. The Single Grain Zircon SHRIMP U-Pb Geochronology from Kongling High-Grade Metamorphic Terrain-Discovery of > 3.2 Ga Continental Crust in Yangtze Craton. Science in China (Series D), 31(1): 27–35 (in Chinese)
[17] Jiang, J. S., 1986. Isotopic Geochronology and Crustal Evolution of the Huangling Metamorphic Terrain. J. Changchun College of Geology, 3: 1–11 (in Chinese with English Abstract)
[18] Kato, Y., Ohta, I., Tsunematsu, T., et al., 1998. Rare Earth Element Variations in Mid-Archean Banded Iron Formations: Implications for the Chemistry of Ocean and Continent and Plate Tectonics. Geochim. Cosmochim. Acta, 62(21–22): 3475–3497 http://ea.c.u-tokyo.ac.jp/earth/Members/Isozaki/98Kato.pdf
[19] Klein, C., Beukes, N. J., 1989. Geochemistry and Sedimentology of a Facies Transition from Limestone to Iron-Formation Deposition in the Early Proterozoic Transvaal Supergroup, South Africa. Economic Geology, 84(7): 1733–1774 doi: 10.2113/gsecongeo.84.7.1733
[20] Klein, C., 2005. Some Precambrian Banded Iron-Formations (BIFs) from around the World: Their Age, Geologic Setting, Mineralogy, Metamorphism, Geochemistry, and Origins. American Mineralogist, 90: 1473–1499 doi: 10.2138/am.2005.1871
[21] Li, F. X., Nie, X. W., 1987. The Geological Age and Stratigraphic Division of Kongling Group in Northern Part of Huangling Faulted Upwapping. Arch. Geology of the Hubei Province, 1(1): 28–41 (in Chinese with English Abstract)
[22] Li, S. X., Ji, S. K., Ma, Z. H., et al., 1986. Geology of Metamorphic Sedimentary Iron Deposit in Wutaishan Area. Jilin Science and Technology Publishing House, Changchun (in Chinese)
[23] Ling, W. L., Gao, S., Zhang, B. R., et al., 2000. Late Paleoproterozoic Tectonic Thermal Event within the Yangtze Continental Interior and Its Evolution. Chin. Sci. Bull. , 45(21): 2343–2348 (in Chinese) doi: 10.1360/csb2000-45-21-2343
[24] Ma, D. Q., Li, Z. C., Xiao, Z. F., 1997. The Constitute, Geochronology and Geologic Evolution of the Kongling Complex, Western Hubei. Acta Geoscientica Sinica, 18(3): 233–241 (in Chinese with English Abstract)
[25] Pecoits, E., Gingras, M. K., Barley, M. E., et al., 2009. Petrography and Geochemistry of the Dales Gorge Banded Iron Formation: Paragenetic Sequence, Source and Implications for Palaeo-Ocean Chemistry. Precambrian Res. , 172(1–2): 163–187 http://www.onacademic.com/detail/journal_1000035432958410_a18b.html
[26] Peng, M., Wu, Y. B., Wang, J., et al., 2009. Paleoproterozoic Mafic Dyke from Kongling Terrain in the Yangtze Craton and Its Implication. Chin. Sci. Bull. , 54(5): 641–647 (in Chinese) doi: 10.1360/csb2009-54-5-641
[27] Peng, S. B., Kusky, T. M., Jiang, X. F., et al., 2012. Geology, Geochemistry and Geochronology of the Miaowan Ophiolite, Yangtze Craton: Implications for South China's Amalgamation History with the Rodinian Supercontinent. Gondwana Research, 21(2–3): 577–594 http://www.sciencedirect.com/science/article/pii/S1342937X11002024
[28] Qiu, Y. M., Gao, S., McNaughton, N. J., et al., 2000. First Evidence of > 3.2 Ga Continental Crust in the Yangtze Craton of South China and Its Implications for Archean Crustal Evolution and Phanerozoic Tectonics. Geology, 28(1): 11–14 doi: 10.1130/0091-7613(2000)028<0011:FEOGCC>2.0.CO;2
[29] Rogers, J. J. W., Santosh, M., 2002. Configuration of Columbia, a Mesoproterozoic Supercontinent. Gondwana Research, 5(1): 5–22 doi: 10.1016/S1342-937X(05)70883-2
[30] Rogers, J. J. W., Santosh, M., 2003. Supercontinent in Earth History. Gondwana Research, 6(3): 357–368 doi: 10.1016/S1342-937X(05)70993-X
[31] Rogers, J. J. W., Santosh, M., 2009. Tectonics and Surface Effects of the Supercontinent Columbia. Gondwana Research, 15(3–4): 373–380 http://www.onacademic.com/detail/journal_1000035049678010_49fc.html
[32] Rubatto, D., 2002. Zircon Trace Element Geochemistry: Partitioning with Garnet and the Link between U-Pb Ages and Metamorphism. Chem. Geol. , 184(1–2): 123–138 http://www.researchgate.net/profile/Daniela_Rubatto/publication/223526967_Rubatto_D._Zircon_trace_element_geochemistry_partitioning_with_garnet_and_the_link_between_U-Pb_ages_and_metamorphism._Chem._Geol._184_123138/links/0a85e537d3da6b9f3d000000.pdf
[33] Shen, Q. H., Song, H. X., Yang, C. H., et al., 2011. Petrochemical Characteristics and Geological Significations of Banded Iron Formations in the Wutai Mountain of Shanxi and Qian'an of Eastern Hebei. Acta Petrologica et Mineralogica, 30(2): 161–171 (in Chinese with English Abstract) http://www.cnki.com.cn/Article/CJFDTotal-YSKW201102003.htm
[34] Slack, J. F., Grenne, T., Bekker, A., et al., 2007. Suboxic Deep Seawater in the Late Paleoproterozoic: Evidence from Hematitic Chert and Iron Formation Related to Seafloor-Hydrothermal Sulfide Deposits, Central Arizona, USA. Earth. Planet. Sci. Lett. , 255(1–2): 243–256 http://www.sciencedirect.com/science/article/pii/S0012821X06008983
[35] Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell, Oxford
[36] Trendall, A. F., 1983. Introduction. In: Trendall, A. F., Morris, R. C., eds., Iron-Formation: Facts and Problems. Elsevier, Amsterdam. 1–11
[37] Watson, E. B., Wark, D. A., Thomas, J. B., 2006. Crystallization Thermometers for Zircon and Rutile. Contrib. Mineral. Petrol. , 151(4): 413–433 doi: 10.1007/s00410-006-0068-5
[38] Wu, Y. B., Zheng, Y. F., 2004. Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age. Chin. Sci. Bull. , 49(16): 1589–1604 (in Chinese) doi: 10.1360/csb2004-49-16-1589
[39] Wu, Y. B., Gao, S., Gong, H. J., et al., 2009. Zircon U-Pb Age, Trace Element and Hf Isotope Composition of Kongling Terrane in the Yangtze Craton: Refining the Timing of Palaeoproterozoic High-Grade Metamorphism. J. Metamorph. Geol. , 27(6): 461–477 doi: 10.1111/j.1525-1314.2009.00826.x
[40] Xiong, Q., Zheng, J. P., Yu, C. M., et al., 2008. Zircon U-Pb Age and Hf Isotope of Quanyishang A-Type Granite in Yichang: Signification for the Yangtze Continental Cratonization in Paleoproterozoic. Chin. Sci. Bull. , 53(22): 2782–2792 (in Chinese) doi: 10.1360/csb2008-53-22-2782
[41] Yamaguchi, K. E., Ohmoto, H., 2000. Geochemistry of Rare Earth Elements in Precambrian Banded Iron Formations: I. Are the Ce Anomalies Real? First Astrobiology Science Conference, California. 296
[42] Yuan, H. H., Zhang, Z. L., Liu, W., et al., 1991. Direct Dating Method of Zircon Grains by 207Pb/206Pb. Mineral. Petrol. , 11(2): 72–79 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWYS199102012.htm
[43] Zhang, S. B., Zheng, Y. F., Wu, Y. B., et al., 2006. Zircon Isotope Evidence for ≥3.5 Ga Continental Crust in the Yangtze Craton of China. Precambrian Res. , 146(1–2): 16–34 http://www.researchgate.net/profile/Yong-Fei_Zheng/publication/248450700_Zircon_isotope_evidence_for_3.5Ga_continental_crust_in_the_Yangtze_Craton_of_China/links/00b4952cbb5f026e05000000.pdf
[44] Zhang, S. B., 2008. Geochemistry of the Yangtze Continental Nucleus and Its Anatectic Granitoids: [Dissertation]. University of Science and Technology of China, Hefei (in Chinese with English Abstract)
[45] Zhao, G. C., Li, S. Z., Sun, M., et al., 2011. Assembly, Accretion, and Break-up of the Palaeo-Mesoproterozoic Columbia Supercontinent: Record in the North China Craton Revisited. International Geology Review, 53(11–12): 1331–1356 http://www.onacademic.com/detail/journal_1000035253141510_f1a3.html