[1] Amorosi, A., Zuffa, G. G., 2011. Sand Composition Changes across Key Boundaries of Siliciclastic and Hybrid Depositional Sequences. Sedimentary Geology, 236(1/2):153-163. https://doi.org/10.1016/j.sedgeo.2011.01.003
[2] Beard, D. C., Weyl, P. K., 1973. Influence of Texture on Porosity and Permeability of Unconsolidated Sand. AAPG Bulletin, 57(2):349-369. https://doi.org/10.2118/4736-pa
[3] Beigi, M., Jafarian, A., Javanbakht, M., et al., 2017. Facies Analysis, Diagenesis and Sequence Stratigraphy of the Carbonate-Evaporite Succession of the Upper Jurassic Surmeh Formation:Impacts on Reservoir Quality (Salman Oil Field, Persian Gulf, Iran). Journal of African Earth Sciences, 129:179-194. https://doi.org/10.1016/j.jafrearsci.2017.01.005
[4] Ben-Avraham, Z., Lyakhovsky, V., Schubert, G., 2010. Drop-Down Formation of Deep Basins along the Dead Sea and Other Strike-Slip Fault Systems. Geophysical Journal International, 181(1):185-197. https://doi.org/10.1111/j.1365-246x.2010.04525.x
[5] Bjørlykke, K., Jahren, J., 2010. Sandstone and Sandstone Reservoirs. In: Bjørlykke, K., ed., Petroleum Geoscience: From Sedimentary Environments to Rock Physics, Springer, Berlin. 113-140
[6] Bjørlykke, K., 2014. Relationships between Depositional Environments, Burial History and Rock Properties. Some Principal Aspects of Diagenetic Process in Sedimentary Basins. Sedimentary Geology, 301:1-14. https://doi.org/10.1016/j.sedgeo.2013.12.002
[7] Bloch, S., 1994. Secondary Porosity in Sandstones:Significance, Origin, Relationship to Subaerial Unconformities and Effect on Predrill Reservoir Quality Prediction. In:Wilson, M. D., ed., Reservoir Quality Assessment and Prediction in Clastic Rocks, SEPM Short Course Notes, 30:137-160 http://www.researchgate.net/publication/290271803_Secondary_Porosity_in_Sandstones_Significance_Origin_Relationship_to_Subaerial_Unconformities_and_Effect_on_Predrill_Reservoir_Quality_Prediction
[8] Blott, S. J., Pye, K., 2001. GRADISTAT:A Grain Size Distribution and Statistics Package for the Analysis of Unconsolidated Sediments. Earth Surface Processes and Landforms, 26(11):1237-1248. https://doi.org/10.1002/esp.261
[9] Bodnar, R. J., 1990. Petroleum Migration in the Miocene Monterey Formation, California, USA:Constraints from Fluid-Inclusion Studies. Mineralogical Magazine, 54(375):295-304. https://doi.org/10.1180/minmag.1990.054.375.15
[10] Boggs, S. J., 2006. Principles of Sedimentology and Stratigraphy, Pearson Prentice Hall, Upper Saddle River, New Jersey. 74-116
[11] Boles, J. R., Ramseyer, K., 1987. Diagenetic Carbonate in Miocene Sandstone Reservoir, San Joaquin Basin, California. AAPG Bulletin, 71(12):1475-1487. https://doi.org/10.1029/jb092ib13p14177
[12] Bridges, R. A., Castle, J. W., 2003. Local and Regional Tectonic Control on Sedimentology and Stratigraphy in a Strike-Slip Basin:Miocene Temblor Formation of the Coalinga Area, California, USA. Sedimentary Geology, 158(3/4):271-297. https://doi.org/10.1016/s0037-0738(02)00314-7
[13] Caracciolo, L., Arribas, J., Ingersoll, R. V., et al., 2013. The Diagenetic Destruction of Porosity in Plutoniclastic Petrofacies:The Miocene Diligencia and Eocene Maniobra Formations, Orocopia Mountains, Southern California, USA. Geological Society, London, Special Publications, 386(1):49-62. https://doi.org/10.1144/sp386.9
[14] Cecil, M. R., Saleeby, Z., Saleeby, J., et al., 2014. Pliocene-Quaternary Subsidence and Exhumation of the Southeastern San Joaquin Basin, California, in Response to Mantle Lithosphere Removal. Geosphere, 10(1):129-147. https://doi.org/10.1130/ges00882.1
[15] De Ros, L. F., Goldberg, K., 2007. Reservoir Petrofacies:A Tool for Quality Characterization and Prediction. AAPG Annual Conference and Exhibition, 6:6 http://searchanddiscovery.com/documents/2007/07117deros/images/deros.pdf
[16] Dickinson, W. R., 1995. Forearc Basins. In: Busby, C. J., Ingersoll, R. V., eds., Tectonics of Sedimentary Basins, Blackwell, Cambridge. 221-261
[17] Dorsey, R. J., Housen, B. A., Janecke, S. U., et al., 2011. Stratigraphic Record of Basin Development within the San Andreas Fault System:Late Cenozoic Fish Creek-Vallecito Basin, Southern California. Geological Society of America Bulletin, 123(5/6):771-793. https://doi.org/10.1130/b30168.1
[18] Feldman, M. D., Kwon, S. T., Boles, J. R., et al., 1993. Diagenetic Mass Transport in the Southern San Joaquin Basin, California, U.S.A.:Implications from the Strontium Isotopic Composition of Modern Pore Fluids. Chemical Geology, 110:329-343 http://www.sciencedirect.com/science/article/pii/000925419390327F
[19] Folk, R. L., 1980. Petrology of Sedimentary Rocks, Hemphill's Book Store, Austin. 184
[20] Goodman, E. D., Malin, P. E., 1992. Evolution of the Southern San Joaquin Basin and Mid-Tertiary "Transitional" Tectonics, Central California. Tectonics, 11(3):478-498. https://doi.org/10.1029/91tc02871
[21] Hakimi, M. H., Shalaby, M. R., Abdullah, W. H., 2012. Diagenetic Characteristics and Reservoir Quality of the Lower Cretaceous Biyadh Sandstones at Kharir Oilfield in the Western Central Masila Basin, Yemen. Journal of Asian Earth Sciences, 51:109-120. https://doi.org/10.1016/j.jseaes.2012.03.004
[22] Harper, D. A., Longstaffe, F. J., Wadleigh, M. A., et al., 1995. Secondary K-Feldspar at the Precambrian-Paleozoic Unconformity, Southwestern Ontario. Canadian Journal of Earth Sciences, 32(9):1432-1450. https://doi.org/10.1139/e95-116
[23] Harrison, C. P., Graham, S. A., 1999. Upper Miocene Stevens Sandstone, San Joaquin Basin, California:Reinterpretation of a Petroliferous, Sand-Rich, Deep-Sea Depositional System. AAPG Bulletin, 83:898-924. https://doi.org/10.1111/meca.12024
[24] Hayes, M. J., Boles, J. R., 1993. Evidence for Meteoric Recharge in the San Joaquin Basin, California, Provided by Isotopic and Trace Element Chemistry of Calcite, Mar. Petrol. Geol., 10:135-144. https://doi.org/10.1016/0264-8172(93)90018-n
[25] Heizler, M. T., Harrison, T. M., 1991. The Heating Duration and Provenance Age of Rocks in the Salton Sea Geothermal Field, Southern California. Journal of Volcanology and Geothermal Research, 46(1/2):73-97. https://doi.org/10.1016/0377-0273(91)90077-d
[26] Houseknecht, W. D., 1987. Assessing the Relative Importance of Compaction Processes and Cementation to Reduction of Porosity in Sandstones. Bulletin of American Association of Petroleum Geologists, 71:633-642 https://pubs.geoscienceworld.org/aapgbull/article-abstract/73/10/1274/38390/assessing-the-relative-importance-of-compaction
[27] Hulen, J. B., Pulka, F. S., 2001. Newly-Discovered, Ancient Extrusive Rhyolite in the Salton Sea Geothermal Field, Imperial Valley, California:Implication for Reservoir Characterization and Duration of Volcanism in the Salton Trough. Proceedings, Twenty-Sixth Workshop on Geothermal Reservoir Engineering, 168:16
[28] Jardim, C. M., De Ros, L. F., Ketzer, J. M., 2011. Reservoir Quality Assessment and Petrofacies of the Lower Cretaceous Siliciclastic, Carbonate and Hybrid Arenites from the Jequitinhonha Basin, Eastern Brazil. Journal of Petroleum Geology, 34(3):305-335. https://doi.org/10.1111/j.1747-5457.2011.00507.x
[29] Jiang, S., Wang, H., Cai, D. S., et al., 2010. The Secondary Porosity and Permeability Characteristics of Tertiary Strata and Their Origins, Liaodong Bay Basin, China. Energy Exploration & Exploitation, 28(4):207-222. https://doi.org/10.1260/0144-5987.28.4.207
[30] Jung, B., Garven, G., Boles, J. R., 2014. Effects of Episodic Fluid Flow on Hydrocarbon Migration in the Newport-Inglewood Fault Zone, Southern California. Geofluids, 14(2):234-250. https://doi.org/10.1111/gfl.12070
[31] Ketzer, J. M., Holz, M., Morad, S., et al., 2003. Sequence Stratigraphic Distribution of Diagenetic Alterations in Coal-Bearing, Paralic Sandstones:Evidence from the Rio Bonito Formation (Early Permian), Southern Brazil. Sedimentology, 50(5):855-877. https://doi.org/10.1046/j.1365-3091.2003.00586.x
[32] Ketzer, J. M., Morad, S., 2006. Predictive Distribution of Shallow Marine, Low-Porosity (Pseudomatrix-Rich) Sandstones in a Sequence Stratigraphic Framework-Example from the Ferron Sandstone, Upper Cretaceous, USA. Marine and Petroleum Geology, 23(1):29-36. https://doi.org/10.1016/j.marpetgeo.2005.05.001
[33] Lai, J., Wang, G. W., Ran, Y., et al., 2015. Predictive Distribution of High-Quality Reservoirs of Tight Gas Sandstones by Linking Diagenesis to Depositional Facies:Evidence from Xu-2 Sandstones in the Penglai Area of the Central Sichuan Basin, China. Journal of Natural Gas Science and Engineering, 23:97-111. https://doi.org/10.1016/j.jngse.2015.01.026
[34] Lai, J., Wang, G. W., Ran, Y., et al., 2016. Impact of Diagenesis on the Reservoir Quality of Tight Oil Sandstones:The Case of Upper Triassic Yanchang Formation Chang 7 Oil Layers in Ordos Basin, China. Journal of Petroleum Science and Engineering, 145:54-65. https://doi.org/10.1016/j.petrol.2016.03.009
[35] Lan, C. L., Yang, M. H., Zhang, Y. Z., 2016. Impact of Sequence Stratigraphy, Depositional Facies and Diagenesis on Reservoir Quality:A Case Study on the Pennsylvanian Taiyuan Sandstones, Northeastern Ordos Basin, China. Marine and Petroleum Geology, 69:216-230. https://doi.org/10.1016/j.marpetgeo.2015.09.009
[36] Li, Y. J., Shao, L. Y., Eriksson, K. A., et al., 2014. Linked Sequence Stratigraphy and Tectonics in the Sichuan Continental Foreland Basin, Upper Triassic Xujiahe Formation, Southwest China. Journal of Asian Earth Sciences, 88:116-136. https://doi.org/10.1016/j.jseaes.2014.02.025
[37] Lundegard, P. D., 1992. Sandstone Porosity Loss; A "Big Picture" View of the Importance of Compaction. Journal of Sedimentary Research, 62(2):250-260. https://doi.org/10.1306/d42678d4-2b26-11d7-8648000102c1865d
[38] Lutz, R., Gaedicke, C., Berglar, K., et al., 2011. Petroleum Systems of the Simeulue Fore-Arc Basin, Offshore Sumatra, Indonesia. AAPG Bulletin, 95(9):1589-1616. https://doi.org/10.1306/01191110090
[39] Mahon, K. I., Harrison, T. M., McKeegan, K. D., 1998. The Thermal and Cementation Histories of a Sandstone Petroleum Reservoir, Elk Hills, California. Chemical Geology, 152(3/4):257-271. https://doi.org/10.1016/s0009-2541(98)00116-8
[40] Mansurbeg, H., Morad, S., Salem, A., et al., 2008. Diagenesis and Reservoir Quality Evolution of Palaeocene Deep-Water, Marine Sandstones, the Shetland-Faroes Basin, British Continental Shelf. Marine and Petroleum Geology, 25(6):514-543. https://doi.org/10.1016/j.marpetgeo.2007.07.012
[41] Marcussen, Ø., Maast, T. E., Mondol, N. H., et al., 2010. Changes in Physical Properties of a Reservoir Sandstone as a Function of Burial Depth—The Etive Formation, Northern North Sea. Marine and Petroleum Geology, 27(8):1725-1735. https://doi.org/10.1016/j.marpetgeo.2009.11.007
[42] McKinley, J. M., Atkinson, P. M., Lloyd, C. D., et al., 2011. How Porosity and Permeability Vary Spatially with Grain Size, Sorting, Cement Volume, and Mineral Dissolution in Fluvial Triassic Sandstones:The Value of Geostatistics and Local Regression. Journal of Sedimentary Research, 81(12):844-858. https://doi.org/10.2110/jsr.2011.71
[43] McKinley, J. M., Worden, R. H., Ruffell, A. U., 2003. Smectite in Sandstones:A Review of the Controls on Occurrence and Behaviour during Diagenesis. Sedimentology, 34:109-128 doi: 10.1002/9781444304336.ch5/pdf
[44] Molenaar, N., 1990. Calcite Cementation in Shallow Marine Eocene Sandstones and Constraints of Early Diagenesis. Journal of the Geological Society, 147(5):759-768. https://doi.org/10.1144/gsjgs.147.5.0759
[45] Morad, S., 1998. Carbonate Cementation in Sandstones: Distribution Patterns and Geochemical Evolution, In: Morad, S., ed., Carbonate Cementation in Sandstones, International Association of Sedimentologists Special Publications, 26: 1-26
[46] Morad, S., Al Suwaidi, M., Mansurbeg, H., et al., 2019. Diagenesis of a Limestone Reservoir (Lower Cretaceous), Abu Dhabi, United Arab Emirates:Comparison between the Anticline Crest and Flanks. Sedimentary Geology, 380:127-142. https://doi.org/10.1016/j.sedgeo.2018.12.004
[47] Morad, S., Al-Ramadan, K., Ketzer, J. M., et al., 2010. The Impact of Diagenesis on the Heterogeneity of Sandstone Reservoirs:A Review of the Role of Depositional Facies and Sequence Stratigraphy. AAPG Bulletin, 94(8):1267-1309. https://doi.org/10.1306/04211009178
[48] Morad, S., Ketzer, J. M., De Ros, L. F., 2000. Spatial and Temporal Distribution of Diagenetic Alterations in Siliciclastic Rocks:Implications for Mass Transfer in Sedimentary Basins. Sedimentology, 47:95-120. https://doi.org/10.1046/j.1365-3091.2000.00007.x
[49] Morad, S., Ketzer, J. M., De Ros, L. F., 2012. Linking Diagenesis to Sequence Stratigraphy:An Integrated Tool for Understanding and Predicting Reservoir Quality Distribution. International Association of Sedimentologists Special Publications, 45:1-36 doi: 10.1002/9781118485347.ch1/pdf
[50] Nilsen, T. H., Sylvester, A. G., 1999. Strike-Slip Basins:Part 1. The Leading Edge, 18(10):1146-1152. https://doi.org/10.1190/1.1438170
[51] Noble, L. F., 1954. The San Andreas Fault Zone from Soledad Pass to Cajon Pass, California, In:Jahns, R. H., ed., Geology of Southern California, California Division of Mines Bulletin, 170:37-48
[52] Oluwadebi, A. G., Taylor, K. G., Dowey, P. J., 2018. Diagenetic Controls on the Reservoir Quality of the Tight Gas Collyhurst Sandstone Formation, Lower Permian, East Irish Sea Basin, United Kingdom. Sedimentary Geology, 371:55-74. https://doi.org/10.1016/j.sedgeo.2018.04.006
[53] Parrish, J. G., 2006. Simplified Geologic Map of California, California Geological Survey, Map Sheet 57. https: //www.earthsciweek.org/sites/default/files/gmd/simplifiedgeologicmapofcalifornia.pdf
[54] Peters, K. E., Magoon, L. B., Lampe, C., et al., 2007. A Four-Dimensional Petroleum Systems Model for the San Joaquin Basin Province, California. In: Scheirer, A. H., ed., Petroleum Systems and Geological Assessment of Oil and Gas in the San Joaquin Basin Province, Califofrnia; Energy Resources Program, U.S. Geological Survey Professional Paper, 1713: 35
[55] Primmer, T. J., Cade C. A., Evans, J., et al., 1997. Global Patterns in Sandstone Diagenesis: Their Application to Reservoir Quality Prediction for Petroleum Exploration, In: Kupecz, J. A., Gluyas, J., Block, B., eds., Reservoir Quality Prediction in Sandstones and Carbonates, AAPG Memoir, 69: 61-67
[56] Pusch, R., Karnland, O., 1996. Physico/Chemical Stability of Smectite Clays. Engineering Geology, 41(1/2/3/4):73-85. https://doi.org/10.1016/0013-7952(95)00027-5
[57] Rahman, M. J. J., Worden, R. H., 2016. Diagenesis and Its Impact on the Reservoir Quality of Miocene Sandstones (Surma Group) from the Bengal Basin, Bangladesh. Marine and Petroleum Geology, 77:898-915. https://doi.org/10.1016/j.marpetgeo.2016.07.027
[58] Ramseyer, K., Boles, J. R., 1986. Mixed-Layer Illite/Smectite Minerals in Tertiary Sandstones and Shales, San Joaquin Basin, California. Clays and Clay Minerals, 34(2):115-124. https://doi.org/10.1346/ccmn.1986.0340202
[59] Ramseyer, K., Boles, J. R., Lichtner, P. C., 1992. Mechanism of Plagioclase Albitization, Journal of Sedimentary Petrology, 62:349-356. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.890.9372&rep=rep1&type=pdf http://www.researchgate.net/publication/279539489_Mechanism_of_plagioclase_albitization
[60] Saïag, J., Brigaud, B., Portier, É., et al., 2016. Sedimentological Control on the Diagenesis and Reservoir Quality of Tidal Sandstones of the Upper Cape Hay Formation (Permian, Bonaparte Basin, Australia). Marine and Petroleum Geology, 77:597-624. https://doi.org/10.1016/j.marpetgeo.2016.07.002
[61] Sass, J. H., Lachenbruch, A. H., Galanis, S. P. Jr, et al., 1994. Thermal Regime of the Southern Basin and Range Province & Colon; 1. Heat Flow Data from Arizona and the Mojave Desert of California and Nevada. Journal of Geophysical Research:Solid Earth, 99(B11):22093-22119. https://doi.org/10.1029/94jb01891
[62] Scheirer, A. H., Magoon, L., 2007. Age, Distribution, and Stratigraphic Relationship of Rock Units in the San Joaquin Basin Province, California. In:Scheirer A. H., ed., Petroleum Systems and Geological Assessment of Oil and Gas in the San Joaquin Basin Province, Califofrnia, Energy Resources Program, U. S. Geological Survey Professional Paper, 1713:1-107 http://pubs.er.usgs.gov/publication/pp171311
[63] Schmid, S., Worden, R. H., Fisher, Q. J., 2004. Diagenesis and Reservoir Quality of the Sherwood Sandstone (Triassic), Corrib Field, Slyne Basin, West of Ireland. Marine and Petroleum Geology, 21(3):299-315. https://doi.org/10.1016/j.marpetgeo.2003.11.015
[64] Schmidt, V., McDonald, D. A., 1984. Secondary Porosity in the Course of Sandstone Diagenesis, The American Association of Petroleum Geologists Continuing Education Course Note Series, 125
[65] Schmitt, A. K., Hulen, J. B., 2008. Buried Rhyolites within the Active, High-Temperature Salton Sea Geothermal System. Journal of Volcanology and Geothermal Research, 178(4):708-718. https://doi.org/10.1016/j.jvolgeores.2008.09.001
[66] Schultz, J. L., Boles, J. R., Tilton, G. R., 1989. Tracking Calcium in the San Joaquin Basin, California:A Strontium Isotopic Study of Carbonate Cements at North Coles Levee. Geochimica et Cosmochimica Acta, 53(8):1991-1999. https://doi.org/10.1016/0016-7037(89)90319-0
[67] Sheldon, H. A., Wheeler, J., Worden, R. H., et al., 2003. An Analysis of the Roles of Stress, Temperature, and pH in Chemical Compaction of Sandstones. Journal of Sedimentary Research, 73:64-71 doi: 10.1306/070802730064
[68] Smiley, T. M., Hyland, E. G., Cotton, J. M., et al., 2018. Evidence of Early C4 Grasses, Habitat Heterogeneity, and Faunal Response during the Miocene Climatic Optimum in the Mojave Region. Palaeogeography, Palaeoclimatology, Palaeoecology, 490:415-430. https://doi.org/10.1016/j.palaeo.2017.11.020
[69] Smosna, R., Bruner, K., 1997. Depositional Controls over Porosity Development in Lithic Sandstones of the Appalachian Basin:Reducing Exploration Risk. AAPG Memoir, 69:249-265 http://www.researchgate.net/publication/293779157_Depositional_controls_over_porosity_development_in_lithic_sandstones_of_the_appalachian_basin_reducing_exploration_risk
[70] Środoń, J., 1999. Nature of Mixed-Layer Clays and Mechanisms of Their Formation and Alteration. Annual Review of Earth and Planetary Sciences, 27(1):19-53. https://doi.org/10.1146/annurev.earth.27.1.19
[71] Stang, D. M., 2013. Provenance, Offset Equivalent and Palinspastic Reconstruction of the Miocene Cajon Valley Formation, Southern California: [Dissertation]. University of California, Los Angeles
[72] Svensen, H., Karlsen, D. A., Sturz, A., et al., 2007. Processes Controlling Water and Hydrocarbon Composition in Seeps from the Salton Sea Geothermal System, California, USA. Geology, 35(1):85-88. https://doi.org/10.1130/g23101a.1
[73] Taylor, K. G., Soule, C. H., 1993. Reservoir Characterization and Diagenesis of the Oligocene 64-Zone Sandstone, North Belridge Field, Kern County, California, AAPG Bulletin, 77(9):1519-1566. https://doi.org/10.1306/bdff8ef2-1718-11d7-8645000102c1865d
[74] Thompson, B. J., Garrison, R. E., Moore, J. C., 2007. A Reservoir-Scale Miocene Injectite near Santa Cruz, California. AAPG Memoir, 87:151-162
[75] Tian, Y., Liu, L., 2013. Geophysical Properties and Seismotectonics of the Tohoku Forearc Region. Journal of Asian Earth Sciences, 64:235-244. https://doi.org/10.1016/j.jseaes.2012.12.023
[76] Tian, Y., Zhao, D. P., Teng, J. W., 2007. Deep Structure of Southern California. Physics of the Earth and Planetary Interiors, 165(1/2):93-113. https://doi.org/10.1016/j.pepi.2007.08.003
[77] Velde, B., Suzuki, T., Nicot, E., 1986. Pressure-Temperature-Composition of Illite/Smectite Mixed-Layer Minerals:Niger Delta Mudstones and Other Examples. Clays and Clay Minerals, 34(4):435-441. https://doi.org/10.1346/ccmn.1986.0340410
[78] Wang, G., Chang, X., Yin, W., et al., 2017. Impact of Diagenesis on Reservoir Quality and Heterogeneity of the Upper Triassic Chang 8 Tight Oil Sandstones in the Zhenjing Area, Ordos Basin, China. Marine and Petroleum Geology, 83:84-96. https://doi.org/10.1016/j.marpetgeo.2017.03.008
[79] Watkins, R., 1992. Sedimentology and Paleoecology of Pliocene Shallow Marine Conglomerates, Salton Trough Region, California. Palaegeography, Palaeoclimatology, Palaeoecology, 95:319-333 doi: 10.1016/0031-0182(92)90148-X
[80] Wilkinson, M., Haszeldine, R. S., Fallick, A. E., 2006. Jurassic and Cretaceous Clays of the Northern and Central North Sea Hydrocarbon Reservoirs. Clay Minerals, 41(1):151-186 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0009855064110197
[81] Worden, R. H., Morad, S., 2003. Clay Minerals in Sandstones:Controls on Formation, Distribution and Evolution, In:Worden, R. H., Morad, S., eds., Clay Minerals in Sandstones, IAS Special Publication, Blackwell Scientific Publication, Oxford
[82] Worden, R. H., Burley, S. D., 2003. Sandstone Diagenesis:The Evolution of Sand to Stone, Sandstone Diagenesis, Blackwell Scientific Publication, Oxford
[83] Worden, R. H., Matray, J. M., 1998. Carbonate Cement in the Triassic Chaunoy Formation of the Paris Basin:Distribution and Effects on Flow Properties, In:Morad, S., ed., Carbonate Cementation in Sandstones, International Association of Sedimentologists Special Publication, 26:163-177 doi: 10.1002/9781444304893.ch7/pdf
[84] Worden, R. H., Morad, S., 2000. Quartz Cementation in Oil Field Sandstones:A Review of the Key Controversies. In:Worden, R. H., Morad, S., eds., Quartz Cementation in Sandstones, International Association of Sedimentologists Special Publications, 29:1-20 doi: 10.1002/9781444304237.ch1
[85] Younker, L. W., Kasameyer, P. W., Tewhey, J. D., 1982. Geological, Geophysical, and Thermal Characteristics of the Salton Sea Geothermal Field, California. Journal of Volcanology and Geothermal Research, 12(3/4):221-258. https://doi.org/10.1016/0377-0273(82)90028-2
[86] Zahid, M. A., Dong, C. M., Lin, C. Y., et al., 2016. Sequence Stratigraphy, Sedimentary Facies and Reservoir Quality of Es4s, Southern Slope of Dongying Depression, Bohai Bay Basin, East China. Marine and Petroleum Geology, 77:448-470. https://doi.org/10.1016/j.marpetgeo.2016.06.026
[87] Zeng, L. B., 2010. Microfracturing in the Upper Triassic Sichuan Basin Tight-Gas Sandstones:Tectonic, Overpressure, and Diagenetic Origins. AAPG Bulletin, 94(12):1811-1825. https://doi.org/10.1306/06301009191