[1] Banerjee, N. R., Gillis, K. M., Muehlenbachs, K., 2000. Discovery of Epidosites in a Modern Oceanic Setting, the Tonga Forearc. Geology, 28(2): 151–154 doi: 10.1130/0091-7613(2000)28<151:DOEIAM>2.0.CO;2
[2] Bettison-Varga, L., Varga, R. J., Schiffman, P., 1992. Relation between Ore-Forming Hydrothermal Systems and Extensional Deformation in the Solea Graben Spreading Center, Troodos Ophiolite, Cyprus. Geology, 20(11): 987–990 doi: 10.1130/0091-7613(1992)020<0987:RBOFHS>2.3.CO;2
[3] Deng, H., Kusky, T. M., Wang, L., et al., 2012. Discovery of a Sheeted Dike Complex in the Northern Yangtze Craton and Its Implications for Craton Evolution. Journal of Earth Science, 23(5): 676–695 doi: 10.1007/s12583-012-0287-9
[4] Harper, G. D., Bowman, J. R., Kuhns, R., 1988. A Field, Chemical, and Stable Isotope Study of Subseafloor Metamorphism of the Josephine Ophiolite, California-Oregon. Journal of Geophysical Research, 93(B5): 4625–4656 doi: 10.1029/JB093iB05p04625
[5] Jiang, X. F., Peng, S. B., Kusky, T. M., et al., 2012. Geological Features and Deformational Ages of the Basal Thrust Belt of the Miaowan Ophiolite in the Southern Huangling Anticline and Its Tectonic Implications. Journal of Earth Science, 23(5): 705–718 doi: 10.1007/s12583-012-0289-7
[6] Lu, Y. F., 2004. Geokit: A Geochemical Toolkit for Microsoft Excel. Geochimica, 33(5): 459–464 (in Chinese with English Abstract) http://search.cnki.net/down/default.aspx?filename=DQHX200405003&dbcode=CJFD&year=2004&dflag=pdfdown
[7] Nehlig, P., Juteau, T., Bendel, V., et al., 1994. The Root Zones of Oceanic Hydrothermal Systems: Constraints from the Samail Ophiolite (Oman). Journal of Geophysical Research, 99(B3): 4703–4713 doi: 10.1029/93JB02663
[8] Peng, S. B., Kusky, T. M., Jiang, X. F., et al., 2012. Geology, Geochemistry, and Geochronology of the Miaowan Ophiolite, Yangtze Craton: Implications for South China's Amalgamation History with the Rodinian Supercontinent. Gondwana Research, 21(2): 577–594
[9] Polat, A., Appel, P. W. U., Frei, R., et al., 2007. Field and Geochemical Characteristics of the Mesoarchean (~3 075 Ma) Ivisaartoq Greenstone Belt, Southern West Greenland: Evidence for Seafloor Hydrothermal Alteration in a Supra-Subduction Oceanic Crust. Gondwana Research, 11(1–2): 69–91
[10] Richardson, C. J., Cann, J. R., Richards, H. G., et al., 1987. Metal-Depleted Root Zones of the Troodos Ore-Forming Hydrothermal Systems, Cyprus. Earth and Planetary Science Letters, 84(2–3): 243–253 http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-0012821X87900896&originContentFamily=serial&_origin=article&_ts=1425219021&md5=bba0d947e9a8826c1a9e176f314713a3
[11] Schiffman, P., Smith, B. M., Varga, R. J., et al., 1987. Geometry, Conditions and Timing of Off-Axis Hydrothermal Metamorphism and Ore Deposition in the Solea Graben. Nature, 325: 423–425 doi: 10.1038/325423a0
[12] Schiffman, P., Smith, B. M., 1988. Petrology and Oxygen Isotope Geochemistry of a Fossil Seawater Hydrothermal System within the Solea Graben, Northern Troodos Ophiolite, Cyprus. Journal of Geophysical Research, 93(B5): 4612–4624 doi: 10.1029/JB093iB05p04612
[13] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. In: Saunders, A. D., Norry, M. J., eds., Magmatism of the Ocean Basins. Geol. Soc. Spec. Publ., London, 42: 313–345