[1] Adams, D. M., Williams, A. D., 1980. Vibrational Spectroscopy at very High Pressures. Part 26. An Infrared Study of the Metastable Phases of Ca[CO3]. Journal of the Chemical Society, Dalton Transactions, 8: 1482. https://doi.org/10.1039/dt9800001482
[2] Andersen, F. A., Brečević, L., Beuter, G., et al., 1991. Infrared Spectra of Amorphous and Crystalline Calcium Carbonate. Acta Chemica Scandinavica, 45: 1018-1024. https://doi.org/10.3891/acta.chem.scand.45-1018
[3] Antao, S. M., Hassan, I., Mulder, W. H., et al., 2009. In-situ Study of the R3c-R3m Orientational Disorder in Calcite. Physics and Chemistry of Minerals, 36(3): 159-169. https://doi.org/10.1007/s00269-008-0266-y
[4] Antao, S. M., Mulder, W. H., Hassan, I., et al., 2004. Cation Disorder in Dolomite, CaMg(CO3)2, and Its Influence on the Aragonite+Magnesite↔Dolomite Reaction Boundary. American Mineralogist, 89(7): 1142-1147. https://doi.org/10.2138/am-2004-0728
[5] Biellmann, C., Gillet, P., 1992. High-Pressure and High-Temperature Behaviour of Calcite, Aragonite and Dolomite: A Raman Spectroscopic Study. European Journal of Mineralogy, 4(2): 389-394. https://doi.org/10.1127/ejm/4/2/0389
[6] Biellmann, C., Gillet, P., Guyot, F., et al., 1993. Experimental Evidence for Carbonate Stability in the Earth's Lower Mantle. Earth and Planetary Science Letters, 118(1/2/3/4): 31-41. https://doi.org/10.1016/0012-821x(93)90157-5
[7] Bigeleisen, J., Mayer, M. G., 1947. Calculation of Equilibrium Constants for Isotopic Exchange Reactions. The Journal of Chemical Physics, 15(5): 261-267. https://doi.org/10.1063/1.1746492
[8] Böttcher, M., Gehlken, P. L., Steele, D. F., 1997. Characterization of Inorganic and Biogenic Magnesian Calcites by Fourier Transform Infrared Spectroscopy. Solid State Ionics, 101-103: 1379-1385. https://doi.org/10.1016/s0167-2738(97)00235-x
[9] Böttcher, M. E., Gehlken, P. L., Usdowski, E., 1992. Infrared Spectroscopic Investigations of the Calcite-Rhodochrosite and Parts of the Calcite-Magnesite Mineral Series. Contributions to Mineralogy and Petrology, 109(3): 304-306. https://doi.org/10.1007/bf00283320
[10] Boulard, E., Gloter, A., Corgne, A., et al., 2011. New Host for Carbon in the Deep Earth. Proceedings of the National Academy of Sciences of the United States of America, 108(13): 5184-5187. https://doi.org/10.1073/pnas.1016934108
[11] Boulard, E., Menguy, N., Auzende, A. L., et al., 2012. Experimental Investigation of the Stability of Fe-Rich Carbonates in the Lower Mantle. Journal of Geophysical Research: Solid Earth, 117(B2): B02208. https://doi.org/10.1029/2011jb008733
[12] Brenker, F. E., Vollmer, C., Vincze, L., et al., 2007. Carbonates from the Lower Part of Transition Zone or Even the Lower Mantle. Earth and Planetary Science Letters, 260(1/2): 1-9. https://doi.org/10.1016/j.epsl.2007.02.038
[13] Bromiley, F. A., Ballaran, T. B., Langenhorst, F., et al., 2007. Order and Miscibility in the Otavite-Magnesite Solid Solution. American Mineralogist, 92(5/6): 829-836. https://doi.org/10.2138/am.2007.2315
[14] Catalli, K., Williams, Q., 2005. A High-Pressure Phase Transition of Calcite-Ⅲ. American Mineralogist, 90(10): 1679-1682. https://doi.org/10.2138/am.2005.1954
[15] Chang, L. L. Y., Howie, R. A., Zussman, J., 1996. Non-Silicates: Sulfates, Carbonates, Phosphates and Halides. The Geological Society, Longman, London. https://ci.nii.ac.jp/naid/10011703589/en/
[16] Chen, P. F., Chiao, L. Y., Huang, P. H., et al., 2006. Elasticity of Magnesite and Dolomite from a Genetic Algorithm for Inverting Brillouin Spectroscopy Measurements. Physics of the Earth and Planetary Interiors, 155(1/2): 73-86. https://doi.org/10.1016/j.pepi.2005.10.004
[17] Cynn, H., Hofmeister, A. M., Burnley, P. C., et al., 1996. Thermodynamic Properties and Hydrogen Speciation from Vibrational Spectra of Dense Hydrous Magnesium Silicates. Physics and Chemistry of Minerals, 23(6): 361-376. https://doi.org/10.1007/bf00199502
[18] Dasgupta, R., Hirschmann, M. M., 2010. The Deep Carbon Cycle and Melting in Earth's Interior. Earth and Planetary Science Letters, 298(1/2): 1-13. https://doi.org/10.1016/j.epsl.2010.06.039
[19] Dorfman, S. M., Badro, J., Nabiei, F., et al., 2018. Carbonate Stability in the Reduced Lower Mantle. Earth and Planetary Science Letters, 489: 84-91. https://doi.org/10.1016/j.epsl.2018.02.035
[20] Dorogokupets, P. I., 2007. Equation of State of Magnesite for the Conditions of the Earth's Lower Mantle. Geochemistry International, 45(6): 561-568. https://doi.org/10.1134/s0016702907060043
[21] Dorogokupets, P. T., Oganov, A. R., 2004. Intrinsic Anharmonicity in Equations of State of SOLIDS and Minerals. Doklady Earth Sciences, 395(2): 238-241 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=264048df3a271830f11ab3d70ff4d5a5
[22] Dove, M. T., Powell, B. M., 1989. Neutron Diffraction Study of the Tricritical Orientational Order/disorder Phase Transition in Calcite at 1 260 K. Physics and Chemistry of Minerals, 16(5): 503-507. https://doi.org/10.1007/bf00197019
[23] Dove, M. T., Swainson, I. P., Powell, B. M., et al., 2005. Neutron Powder Diffraction Study of the Orientational Order-Disorder Phase Transition in Calcite, CaCO3. Physics and Chemistry of Minerals, 32(7): 493-503. https://doi.org/10.1007/s00269-005-0026-1
[24] Effenberger, H., Mereiter, K., Zemann, J., 1981. Crystal Structure Refinements of Magnesite, Calcite, Rhodochrosite, Siderite, Smithonite, and Dolomite, with Discussion of some Aspects of the Stereochemistry of Calcite Type Carbonates. Zeitschrift für Kristallographie-Crystalline Materials, 156(3/4): 233-243. https://doi.org/10.1524/zkri.1981.156.3-4.233
[25] Fahad, M., Iqbal, Y., Riaz, M., et al., 2016. Metamorphic Temperature Investigation of Coexisting Calcite and Dolomite Marble-Examples from Nikani Ghar Marble and Nowshera Formation, Peshawar Basin, Pakistan. Journal of Earth Science, 27(6): 989-997. https://doi.org/10.1007/s12583-015-0643-7
[26] Fahad, M., Saeed, S., 2018. Determination and Estimation of Magnesium Content in the Single Phase Magnesium-Calcite[Ca(1-x)MgxCO3(S)] Using Electron Probe Micro-Analysis (EPMA) and X-Ray Diffraction (XRD). Geosciences Journal, 22(2): 303-312. https://doi.org/10.1007/s12303-017-0059-8
[27] Falini, G., Fermani, S., Gazzano, M., et al., 1998. Structure and Morphology of Synthetic Magnesium Calcite. Journal of Materials Chemistry, 8(4): 1061-1065. https://doi.org/10.1039/a707893e
[28] Fei, Y., 1995. Thermal Expansion. In: Ahrens. T. J., ed., Mineral Physics & Crystallography: A Handbook of Physical Constants, Volume 2. American Geophysical Union, Washington, D.C. 29-44. https://doi.org/10.1029/rf002
[29] Fiquet, G., Guyot, F., Itie, J. P., 1994. High-Pressure X-Ray Diffraction Study of Carbonates: MgCO3, CaMg(CO3)2, and CaCO3. American Mineralogist, 79(1-2): 15-23
[30] Fiquet, G., Reynard, B., 1999. High-Pressure Equation of State of Magnesite; New Data and a Reappraisal. American Mineralogist, 84(5/6): 856-860. https://doi.org/10.2138/am-1999-5-619
[31] Fiquet, G., Richet, P., Montagnac, G., 1999. High-Temperature Thermal Expansion of Lime, Periclase, Corundum and Spinel. Physics and Chemistry of Minerals, 27(2): 103-111. https://doi.org/10.1007/s002690050246
[32] Fujimori, H., Komatsu, H., Ioku, K., et al., 2002. Anharmonic Lattice Mode of Ca2SiO4: Ultraviolet Laser Raman Spectroscopy at High Temperatures. Physical Review B, 66(6): 064306. https://doi.org/10.1103/physrevb.66.064306
[33] Gong, Q., Deng, J., Wang, Q., et al., 2010. Experimental Determination of Calcite Dissolution Rates and Equilibrium Concentrations in Deionized Water Approaching Calcite Equilibrium. Journal of Earth Science, 21(4): 402-411. https://doi.org/ 10.1007/s12583-010-0103-3
[34] Gillet, P., Guyot, F., Malezieux, J. M., 1989. High-Pressure, High-Temperature Raman Spectroscopy of Ca2GeO4 (Olivine Form): Some Insights on Anharmonicity. Physics of the Earth and Planetary Interiors, 58(2/3): 141-154. https://doi.org/10.1016/0031-9201(89)90050-2
[35] Gillet, P., Biellmann, C., Reynard, B., et al., 1993. Raman Spectroscopic Studies of Carbonates Part Ⅰ: High-Pressure and High-Temperature Behaviour of Calcite, Magnesite, Dolomite and Aragonite. Physics and Chemistry of Minerals, 20(1): 1-18. https://doi.org/10.1007/bf00202245
[36] Gillet, P., McMillan, P., Schott, J., et al., 1996. Thermodynamic Properties and Isotopic Fractionation of Calcite from Vibrational Spectroscopy of 18O-Substituted Calcite. Geochimica et Cosmochimica Acta, 60(18): 3471-3485. https://doi.org/10.1016/0016-7037(96)00178-0
[37] Grzechnik, A., Simon, P., Gillet, P., et al., 1999. An Infrared Study of MgCO3 at High Pressure. Physica B: Condensed Matter, 262(1/2): 67-73. https://doi.org/10.1016/s0921-4526(98)00437-2
[38] Hazen, R. M., Downs, R. T., Jones, A. P., et al., 2013. Carbon Mineralogy and Crystal Chemistry. Reviews in Mineralogy and Geochemistry, 75(1): 7-46. https://doi.org/10.2138/rmg.2013.75.2
[39] Holland, T. J. B., Redfern, S. A. T., 1997. Unit Cell Refinement from Powder Diffraction Data: The Use of Regression Diagnostics. Mineralogical Magazine, 61(404): 65-77. https://doi.org/10.1180/minmag.1997.061.404.07
[40] Holland, T. J. B., Powell, R., 2004. An Internally Consistent Thermodynamic Data Set for Phases of Petrological Interest. Journal of Metamorphic Geology, 16(3): 309-343. https://doi.org/10.1111/j.1525-1314.1998.00140.x
[41] Isshiki, M., Irifune, T., Hirose, K., et al., 2004. Stability of Magnesite and Its High-Pressure Form in the Lowermost Mantle. Nature, 427(6969): 60-63. https://doi.org/10.1038/nature02181
[42] Koch-Müller, M., Jahn, S., Birkholz, N., et al., 2016. Phase Transitions in the System CaCO3 at High P and T Determined by in Situ Vibrational Spectroscopy in Diamond Anvil Cells and First-Principles Simulations. Physics and Chemistry of Minerals, 43(8): 545-561. https://doi.org/10.1007/s00269-016-0815-8
[43] Lane, M. D., Christensen, P. R., 1997. Thermal Infrared Emission Spectroscopy of Anhydrous Carbonates. Journal of Geophysical Research: Planets, 102(E11): 25581-25592. https://doi.org/10.1029/97je02046
[44] Lin, C. C., 2013. Elasticity of Calcite: Thermal Evolution. Physics and Chemistry of Minerals, 40(2): 157-166. https://doi.org/10.1007/s00269-012-0555-3
[45] Litasov, K. D., Fei, Y. W., Ohtani, E., et al., 2008. Thermal Equation of State of Magnesite to 32 GPa and 2 073 K. Physics of the Earth and Planetary Interiors, 168(3/4): 191-203. https://doi.org/10.1016/j.pepi.2008.06.018
[46] Liu, C. J., Zheng, H. F., Wang, D. J., 2017. Raman Spectroscopic Study of Calcite Ⅲ to Aragonite Transformation under High Pressure and High Temperature. High Pressure Research, 37(4): 545-557. https://doi.org/10.1080/08957959.2017.1384824
[47] Liu, J., Lin, J. F., Mao, Z., et al., 2014. Thermal Equation of State and Spin Transition of Magnesiosiderite at High Pressure and Temperature. American Mineralogist, 99(1): 84-93. https://doi.org/10.2138/am.2014.4553
[48] Liu, L. G., Mernagh, T. P., 1990. Phase Transitions and Raman Spectra of Calcite at High Pressures and Room Temperature. American Mineralogist, 75(7-8): 801-806
[49] Liu, Q., Tossell, J. A., Liu, Y., 2010. On the Proper Use of the Bigeleisen-Mayer Equation and Corrections to It in the Calculation of Isotopic Fractionation Equilibrium Constants. Geochimica et Cosmochimica Acta, 74(24): 6965-6983. https://doi.org/10.1016/j.gca.2010.09.014
[50] Mao, Z., Armentrout, M., Rainey, E., et al., 2011. Dolomite Ⅲ: A New Candidate Lower Mantle Carbonate. Geophysical Research Letters, 38(22): L22303. https://doi.org/10.1029/2011gl049519
[51] Markgraf, S. A., Reeder, R. J., 1985. High-Temperature Structure Refinements of Calcite and Magnesite. American Mineralogist, 70(5-6): 590-600
[52] Matas, J., Gillet, P., Ricard, Y., et al., 2000. Thermodynamic Properties of Carbonates at High Pressures from Vibrational Modelling. European Journal of Mineralogy, 12(4): 703-720. https://doi.org/10.1127/ejm/12/4/0703
[53] Megaw, H. D., 1973. Crystal Structures: A Working Approach. Saunders, London. 563
[54] Merlini, M., Sapelli, F., Fumagalli, P., et al., 2016. High-Temperature and High-Pressure Behavior of Carbonates in the Ternary Diagram CaCO3-MgCO3-FeCO3. American Mineralogist, 101(6): 1423-1430. https://doi.org/10.2138/am-2016-5458
[55] Oganov, A. R., Dorogokupets, P. I., 2004. Intrinsic Anharmonicity in Equations of State and Thermodynamics of Solids. Journal of Physics: Condensed Matter, 16(8): 1351-1360. https://doi.org/10.1088/0953-8984/16/8/018
[56] Oganov, A. R., Glass, C. W., Ono, S., 2006. High-Pressure Phases of CaCO3: Crystal Structure Prediction and Experiment. Earth and Planetary Science Letters, 241(1/2): 95-103. https://doi.org/10.1016/j.epsl.2005.10.014
[57] Paquette, J., Reeder, R. J., 1990. Single-Crystal X-Ray Structure Refinements of Two Biogenic Magnesian Calcite Crystals. American Mineralogist, 75(9): 1151-1158
[58] Pickard, C. J., Needs, R. J., 2015. Structures and Stability of Calcium and Magnesium Carbonates at Mantle Pressures. Physical Review B, 91(10): 104101 doi: 10.1103/PhysRevB.91.104101
[59] Polyakov, V. B., 1998. On Anharmonic and Pressure Corrections to the Equilibrium Isotopic Constants for Minerals. Geochimica et Cosmochimica Acta, 62(18): 3077-3085. https://doi.org/10.1016/s0016-7037(98)00220-8
[60] Polyakov, V. B., Kharlashina, N. N., 1994. Effect of Pressure on Equilibrium Isotopic Fractionation. Geochimica et Cosmochimica Acta, 58(21): 4739-4750. https://doi.org/10.1016/0016-7037(94)90204-6
[61] Redfern, S. A. T., Angel, R. J., 1999. High-Pressure Behaviour and Equation of State of Calcite, CaCO3. Contributions to Mineralogy and Petrology, 134(1): 102-106. https://doi.org/10.1007/s004100050471
[62] Reynard, B., Caracas, R., 2009. D/H Isotopic Fractionation between Brucite Mg(OH)2 and Water from First-Principles Vibrational Modeling. Chemical Geology, 262(3/4): 159-168. https://doi.org/10.1016/j.chemgeo.2009.01.007
[63] Reeder, R. J., 1983. Crystal Chemistry of the Rhombohedral Carbonates. Reviews in Mineralogy and Geochemistry, 11(1): 1-47 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1002/zaac.19754110211
[64] Reeder, R. J., Markgraf, S. A., 1986. High-Temperature Crystal Chemistry of Dolomite. American Mineralogist, 71(5-6): 795-804
[65] Ross, N. L., 1997. The Equation of State and High-Pressure Behavior of Magnesite. American Mineralogist, 82(7/8): 682-688. https://doi.org/10.2138/am-1997-7-805
[66] Ross, N. L., Reeder, R. J., 1992. High-Pressure Structural Study of Dolomite and Ankerite. American Mineralogist, 77(3-4): 412-421
[67] Santillán, J., 2005. An Infrared Study of Carbon-Oxygen Bonding in Magnesite to 60 GPa. American Mineralogist, 90(10): 1669-1673. https://doi.org/10.2138/am.2005.1703
[68] Santillán, J., Williams, Q., 2004. A High-Pressure Infrared and X-Ray Study of FeCO3 and MnCO3: Comparison with CaMg(CO3)2-Dolomite. Physics of the Earth and Planetary Interiors, 143-144: 291-304. https://doi.org/10.1016/j.pepi.2003.06.007
[69] Santillán, J., Williams, Q., Knittle, E., 2003. Dolomite-Ⅱ: A High-Pressure Polymorph of CaMg(CO3)2. Geophysical Research Letters, 30(2): 1054. https://doi.org/10.1029/2002gl016018
[70] Stekiel, M., Nguyen-Thanh, T., Chariton, S., et al., 2017. High Pressure Elasticity of FeCO3-MgCO3 Carbonates. Physics of the Earth and Planetary Interiors, 271: 57-63. https://doi.org/10.1016/j.pepi.2017.08.004
[71] Suito, K., Namba, J., Horikawa, T., et al., 2001. Phase Relations of CaCO3 at High Pressure and High Temperature. American Mineralogist, 86(9): 997-1002. https://doi.org/10.2138/am-2001-8-906
[72] Thomson, A. R., Walter, M. J., Kohn, S. C., et al., 2016. Slab Melting as a Barrier to Deep Carbon Subduction. Nature, 529(7584): 76-79. https://doi.org/10.1038/nature16174
[73] Titschack, J., Goetz-Neunhoeffer, F., Neubauer, J., 2011. Magnesium Quantification in Calcites [(Ca, Mg)CO3] by Rietveld-Based XRD Analysis: Revisiting a Well-Established Method. American Mineralogist, 96(7): 1028-1038. https://doi.org/10.2138/am.2011.3665
[74] Urey, H. C., 1947. The Thermodynamic Properties of Isotopic Substances. Journal of the Chemical Society (Resumed), 562-581. https://doi.org/10.1039/jr9470000562
[75] Valenzano, L., Noël, Y., Orlando, R., et al., 2007. Ab Initio Vibrational Spectra and Dielectric Properties of Carbonates: Magnesite, Calcite and Dolomite. Theoretical Chemistry Accounts, 117(5/6): 991-1000. https://doi.org/10.1007/s00214-006-0213-2
[76] Wang, A. L., Pasteris, J. D., Meyer, H. O. A., et al., 1996. Magnesite-Bearing Inclusion Assemblage in Natural Diamond. Earth and Planetary Science Letters, 141(1/2/3/4): 293-306. https://doi.org/10.1016/0012-821x(96)00053-2
[77] Wang, G., Wang, J., Wang, Z., et al., 2017. Carbon Isotope Gradient of the Ediacaran Cap Carbonate in the Shennongjia Area and Its Implications for Ocean Stratification and Palaeogeography. Journal of Earth Science. 28(2): 42-56. https://doi.org/10.1007/s12583-016-0923-x
[78] Wang, M. L., Shi, G. H., Qin, J. Q., et al., 2018. Thermal Behaviour of Calcite-Structure Carbonates: A Powder X-Ray Diffraction Study between 83 and 618 K. European Journal of Mineralogy, 30(5): 939-949. https://doi.org/10.1127/ejm/2018/0030-2768
[79] Wang, X., Ye, Y., Wu, X., et al., 2019. High-Temperature Raman and FTIR Study of Aragonite-Group Carbonates. Physics and Chemistry of Minerals, 46(1): 51-62. https://doi.org/10.1007/s00269-018-0986-6
[80] Wei, S. H., Xu, X. X., 2018. Boosting Photocatalytic Water Oxidation Reactions over Strontium Tantalum Oxynitride by Structural Laminations. Applied Catalysis B: Environmental, 228: 10-18. https://doi.org/10.1016/j.apcatb.2018.01.071
[81] Weir, C. E., Lippincott, E. R., van Valkenburg, A., et al., 1959. Infrared Studies in the 1- to 15-Micron Region to 30, 000 Atmospheres. Journal of Research of the National Bureau of Standards Section A: Physics and Chemistry, 63A(1): 55-62. https://doi.org/10.6028/jres.063a.003
[82] White, W. B., 1974. The Carbonate Minerals. In: Farmer, V. C., ed., The Infrared Spectra of Minerals. Mineralogical Society of Great Britain and Ireland, London. 227-284
[83] Yang, J., Mao, Z., Lin, J.-F., et al., 2014. Single-Crystal Elasticity of the Deep-Mantle Magnesite at High Pressure and Temperature. Earth and Planetary Science Letters, 392: 292-299. https://doi.org/10.1016/j.epsl.2014.01.027
[84] You, X. L., Jia, W. Q., Xu, F., et al., 2018. Mineralogical Characteristics of Ankerite and Mechanisms of Primary and Secondary Origins. Earth Science, 43(11): 4046-4055 (in Chinese with English Abstract). https://doi.org/ 10.3799/dqkx.2018.152
[85] Zhang, J., Martinez, I., Guyot, F., et al., 1997. X-Ray Diffraction Study of Magnesite at High Pressure and High Temperature. Physics and Chemistry of Minerals, 24(2): 122-130. https://doi.org/10.1007/s002690050025s
[86] Zhang, J., Reeder, R., 1999. Comparative Compressibilities of Calcite-Structure Carbonates: Deviations from Empirical Relations. American Mineralogist, 84(5-6): 861-870. https://doi.org/10.2138/am-1999-5-620
[87] Zhang, X., Yang, S. Y., Zhao, H., et al., 2019. Effect of Beam Current and Diameter on Electron Probe Microanalysis of Carbonate Minerals. Journal of Earth Science, 30(4): 834-842. https://doi.org/10.1007/s12583-017-0939-x
[88] Zheng, R., Pan, Y., Zhao, C., et al., 2013. Carbon and Oxygen Isotope Stratigraphy of the Oxfordian Carbonate Rocks in Amu Darya Basin. Journal of Earth Science, 24(1): 42-56. https://doi.org/10.1007/s12583-013-0315-4
[89] Zhu, Y. F., Ogasawara, Y., 2002. Carbon Recycled into Deep Earth: Evidence from Dolomite Dissociation in Subduction-Zone Rocks. Geology, 30(10): 947-950. https://doi.org/10.1130/0091-7613(2002)030%3c0947:cridee%3e2.0.co; 2 doi: 10.1130/0091-7613(2002)030%3c0947:cridee%3e2.0.co;2