[1] Algeo, T. J., Kuwahara, K., Sano, H., et al., 2011. Spatial Variation in Sediment Fluxes, Redox Conditions, and Productivity in the Permian-Triassic Panthalassic Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology, 308(1/2): 65-83. https://doi.org/10.1016/j.palaeo.2010.07.007
[2] Algeo, T. J., Lyons, T. W., 2006. Mo-Total Organic Carbon Covariation in Modern Anoxic Marine Environments: Implications for Analysis of Paleoredox and Paleohydrographic Conditions. Paleoceanography, 21(1): 1112. https://doi.org/10.1029/2004pa001112
[3] Algeo, T. J., Maynard, J. B., 2004. Trace-Element Behavior and Redox Facies in Core Shales of Upper Pennsylvanian Kansas-Type Cyclothems. Chemical Geology, 206(3/4): 289-318. https://doi.org/10.1016/j.chemgeo.2003.12.009
[4] Algeo, T. J., Maynard, J. B., 2008. Trace-Metal Covariation as a Guide to Water-Mass Conditions in Ancient Anoxic Marine Environments. Geosphere, 4(5): 872-887. https://doi.org/10.1130/ges00174.1
[5] Algeo, T. J., Tribovillard, N., 2009. Environmental Analysis of Paleoceanographic Systems Based on Molybdenum-Uranium Covariation. Chemical Geology, 268(3/4): 211-225. https://doi.org/10.1016/j.chemgeo.2009.09.001
[6] Arthur, M. A., Sageman, B. B., 1994. Marine Black Shales: Depositional Mechanisms and Environments of Ancient Deposits. Annual Review of Earth and Planetary Sciences, 22(1): 499-551. https://doi.org/10.1146/annurev.ea.22.050194.002435
[7] Brenchley, P. J., Marshall, J. D., Carden, G. A. F., et al., 1994. Bathymetric and Isotopic Evidence for a Short-Lived Late Ordovician Glaciation in a Greenhouse Period. Geology, 22(4): 295-298. https://doi.org/10.1130/0091-7613(1994)0220295:baiefa>2.3.co;2 doi: 10.1130/0091-7613(1994)0220295:baiefa>2.3.co;2
[8] Burdige, D. J., 2007. Preservation of Organic Matter in Marine Sediments: Controls, Mechanisms, and an Imbalance in Sediment Organic Carbon Budgets?. Chemical Reviews, 107(2): 467-485. https://doi.org/10.1021/cr050347q
[9] Calvert, S. E., Pedersen, T. F., 1993. Geochemistry of Recent Oxic and Anoxic Marine Sediments: Implications for the Geological Record. Marine Geology, 113(1/2): 67-88. https://doi.org/10.1016/0025-3227(93)90150-t
[10] Caplan, M. L., Bustin, R. M., 1999. Palaeoceanographic Controls on Geochemical Characteristics of Organic-Rich Exshaw Mudrocks: Role of Enhanced Primary Production. Organic Geochemistry, 30(2/3): 161-188. https://doi.org/10.1016/s0146-6380(98)00202-2
[11] Chen, C., Mu, C. L., Zhou, K. K., et al., 2016. The Geochemical Characteristics and Factors Controlling the Organic Matter Accumulation of the Late Ordovician-Early Silurian Black Shale in the Upper Yangtze Basin, South China. Marine and Petroleum Geology, 76: 159-175. https://doi.org/10.1016/j.marpetgeo.2016.04.022
[12] Chen, X., Rong, J. Y., Fan, J. X., et al., 2006. The Global Boundary Stratotype Section and Point (GSSP) for the Base of the Hirnantian Stage (the Uppermost of the Ordovician System). Episodes, 29(3): 183-196. https://doi.org/10.18814/epiiugs/2006/v29i3/004
[13] Chen, X., Rong, J. Y., Li, Y., et al., 2004. Facies Patterns and Geography of the Yangtze Region, South China, through the Ordovician and Silurian Transition. Palaeogeography, Palaeoclimatology, Palaeoecology, 204(3/4): 353-372. https://doi.org/10.1016/s0031-0182(03)00736-3
[14] Chen, X., Rong, J. Y., Mitchell, C. E., et al., 2000. Late Ordovician to Earliest Silurian Graptolite and Brachiopod Biozonation from the Yangtze Region, South China, with a Global Correlation. Geological Magazine, 137(6): 623-650. https://doi.org/10.1017/s0016756800004702
[15] Chen, X., Rong, J. Y., Zhou, Z. Y., et al., 2001. The Central Guizhou and Yi-Chang Uplifts, Upper Yangtze Region, between Ordovician and Silurian. Chinese Science Bulletin, 46(18): 1580-1584. https://doi.org/10.1007/bf02900587
[16] Crombez, V., Baudin, F., Rohais, S., et al., 2017. Basin Scale Distribution of Organic Matter in Marine Fine-Grained Sedimentary Rocks: Insight from Sequence Stratigraphy and Multi-Proxies Analysis in the Montney and Doig Formations. Marine and Petroleum Geology, 83: 382-401. https://doi.org/10.1016/j.marpetgeo.2016.10.013
[17] Crusius, J., Calvert, S., Pedersen, T., et al., 1996. Rhenium and Molybdenum Enrichments in Sediments as Indicators of Oxic, Suboxic and Sulfidic Conditions of Deposition. Earth and Planetary Science Letters, 145(1/2/3/4): 65-78. https://doi.org/10.1016/s0012-821x(96)00204-x
[18] Delabroye, A., Vecoli, M., 2010. The End-Ordovician Glaciation and the Hirnantian Stage: A Global Review and Questions about Late Ordovician Event Stratigraphy. Earth-Science Reviews, 98(3/4): 269-282. https://doi.org/10.1016/j.earscirev.2009.10.010
[19] Demaison, G. J., Moore, G. T., 1980. Anoxic Environments and Oil Source Bed Genesis. Organic Geochemistry, 2(1): 9-31. https://doi.org/10.1016/0146-6380(80)90017-0
[20] Deuser, W. G., 1971. Organic-Carbon Budget of the Black Sea. Deep Sea Research and Oceanographic Abstracts, 18(10): 995-1004. https://doi.org/10.1016/0011-7471(71)90004-0
[21] Dymond, J., Suess, E., Lyle, M., 1992. Barium in Deep-Sea Sediment: A Geochemical Proxy for Paleoproductivity. Paleoceanography, 7(2): 163-181. https://doi.org/10.1029/92pa00181
[22] Finnegan, S., Bergmann, K., Eiler, J. M., et al., 2011. The Magnitude and Duration of Late Ordovician-Early Silurian Glaciation. Science, 331(6019): 903-906. https://doi.org/10.1126/science.1200803
[23] François, R., Honjo, S., Manganini, S. J., et al., 1995. Biogenic Barium Fluxes to the Deep Sea: Implications for Paleoproductivity Reconstruction. Global Biogeochemical Cycles, 9(2): 289-303. https://doi.org/10.1029/95gb00021
[24] Gallego-Torres, D., Martínez-Ruiz, F., Paytan, A., et al., 2007. Pliocene- Holocene Evolution of Depositional Conditions in the Eastern Mediterranean: Role of Anoxia vs. Productivity at Time of Sapropel Deposition. Palaeogeography, Palaeoclimatology, Palaeoecology, 246(2/3/4): 424-439. https://doi.org/10.1016/j.palaeo.2006.10.008
[25] Gingele, F., Dahmke, A., 1994. Discrete Barite Particles and Barium as Tracers of Paleoproductivity in South Atlantic Sediments. Paleoceanography, 9(1): 151-168. https://doi.org/10.1029/93pa02559
[26] González-Álvarez, I., Kerrich, R., 2011. Trace Element Mobility in Dolomitic Argillites of the Mesoproterozoic Belt-Purcell Supergroup, Western North America. Geochimica et Cosmochimica Acta, 75(7): 1733-1756. https://doi.org/10.1016/j.gca.2011.01.006
[27] Gouldey, J. C., Saltzman, M. R., Young, S. A., et al., 2010. Strontium and Carbon Isotope Stratigraphy of the Llandovery (Early Silurian): Implications for Tectonics and Weathering. Palaeogeography, Palaeoclimatology, Palaeoecology, 296(3/4): 264-275. https://doi.org/10.1016/j.palaeo.2010.05.035
[28] Guo, Q. J., Shields, G. A., Liu, C. Q., et al., 2007. Trace Element Chemostratigraphy of Two Ediacaran-Cambrian Successions in South China: Implications for Organo-Sedimentary Metal Enrichment and Silicification in the Early Cambrian. Palaeogeography, Palaeoclimatology, Palaeoecology, 254(1/2): 194-216. https://doi.org/10.1016/j.palaeo.2007.03.016
[29] Guo, T. L., Zhang, H. R., 2014. Formation and Enrichment Mode of Jiaoshiba Shale Gas Field, Sichuan Basin. Petroleum Exploration and Development, 41(1): 31-40. https://doi.org/10.1016/s1876-3804(14)60003-3
[30] Hao, F., Zou, H. Y., Lu, Y. C., 2013. Mechanisms of Shale Gas Storage: Implications for Shale Gas Exploration in China. AAPG Bulletin, 97(8): 1325-1346. https://doi.org/10.1306/02141312091
[31] Hartnett, H. E., Devol, A. H., 2003. Role of a Strong Oxygen-Deficient Zone in the Preservation and Degradation of Organic Matter: A Carbon Budget for the Continental Margins of Northwest Mexico and Washington State. Geochimica et Cosmochimica Acta, 67(2): 247-264. https://doi.org/10.1016/s0016-7037(02)01076-1
[32] Huff, W. D., Bergström, S. M., Kolata, D. R., 2010. Ordovician Explosive Volcanism. The Ordovician Earth System. In: Finney, S. C., Berry, W. B. N., eds., The Ordovician Earth System. Geological Society of America Special Paper, 466: 13-28. https://doi.org/10.1130/2010.2466(02)
[33] Isozaki, Y., Servais, T., 2018. The Hirnantian (Late Ordovician) and End-Guadalupian (Middle Permian) Mass-Extinction Events Compared. Lethaia, 51(2): 173-186. https://doi.org/10.1111/let.12252
[34] Jacobs, L., Emerson, S., Skei, J., 1985. Partitioning and Transport of Metals across the O2H2S Interface in a Permanently Anoxic Basin: Framvaren Fjord, Norway. Geochimica et Cosmochimica Acta, 49(6): 1433-1444. https://doi.org/10.1016/0016-7037(85)90293-5
[35] Jagoutz, O., MacDonald, F. A., Royden, L., 2016. Low-Latitude Arc-Continent Collision as a Driver for Global Cooling. Proceedings of the National Academy of Sciences of the United States of America, 113(18): 4935-4940. https://doi.org/10.1073/pnas.1523667113
[36] Jones, B., Manning, D. A. C., 1994. Comparison of Geochemical Indices Used for the Interpretation of Palaeoredox Conditions in Ancient Mudstones. Chemical Geology, 111(1/2/3/4): 111-129. https://doi.org/10.1016/0009-2541(94)90085-x
[37] Katz, B. J., 2005. Controlling Factors on Source Rock Development-A Review of Productivity, Preservation, and Sedimentation Rate. Deposition of Organic-Carbon-Rich Sediments: Models. SEPM (Society for Sedimentary Geology), 132: 7-16. https://doi.org/10.2110/pec.05.82.0007
[38] Kimura, H., Watanabe, Y., 2001. Oceanic Anoxia at the Precambrian-Cambrian Boundary. Geology, 29(11): 995-998. https://doi.org/10.1130/0091-7613(2001)0290995:oaatpc>2.0.co;2 doi: 10.1130/0091-7613(2001)0290995:oaatpc>2.0.co;2
[39] Kump, L. R., Arthur, M. A., Patzkowsky, M. E., et al., 1999. A Weathering Hypothesis for Glaciation at High Atmospheric pCO2 during the Late Ordovician. Palaeogeography, Palaeoclimatology, Palaeoecology, 152(1/2): 173-187. https://doi.org/10.1016/s0031-0182(99)00046-2
[40] Lash, G. G., Blood, D. R., 2014. Organic Matter Accumulation, Redox, and Diagenetic History of the Marcellus Formation, Southwestern Pennsylvania, Appalachian Basin. Marine and Petroleum Geology, 57: 244-263. https://doi.org/10.1016/j.marpetgeo.2014.06.001
[41] Li, X. H., 1997. Geochemistry of the Longsheng Ophiolite from the Southern Margin of Yangtze Craton, SE China. Geochemical Journal, 31(5): 323-337. https://doi.org/10.2343/geochemj.31.323
[42] Li, Y. F., Schieber, J., Fan, T. L., et al., 2017. Regional Depositional Changes and Their Controls on Carbon and Sulfur Cycling across the Ordovician-Silurian Boundary, Northwestern Guizhou, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 485: 816-832. https://doi.org/10.1016/j.palaeo.2017.07.039
[43] Li, Y., Shao, D., Lu, H., et al., 2015. A Relationship between Elemental Geochemical Characteristics and Organic Matter Enrichment in Marine Shale of Wufeng Formation-Longmaxi Formation, Sichuan Basin. Acta Petrolei Sinica, 36: 1470-1483 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB201512002.htm
[44] Li, Z. M., Gong, S. Y., Chen, J. Q., et al., 1997. Ordovician-Silurian Depositional Sequences and Their Relations with Tectonic Movement in South China. Earth Science, 22(5): 526-530 (in Chinese with English Abstract)
[45] Liu, Z. H., Algeo, T. J., Guo, X. S., et al., 2017. Paleo-Environmental Cyclicity in the Early Silurian Yangtze Sea (South China): Tectonic or Glacio-Eustatic Control?. Palaeogeography, Palaeoclimatology, Palaeoecology, 466: 59-76. https://doi.org/10.1016/j.palaeo.2016.11.007
[46] Long, P. Y., Zhang, J. C., Jiang, W. L., et al., 2012. Analysis on Pores Forming Features and Its Influence Factors of Reservoir Well Yuye-1. Journal of Central South University (Science and Technology), 43(10): 3954-3963 (in Chinese with English Abstract) http://qikan.cqvip.com/Qikan/Article/Detail?id=43803892
[47] Ma, X. H., Xie, J., 2018. The Progress and Prospects of Shale Gas Exploration and Development in Southern Sichuan Basin, SW China. Petroleum Exploration and Development, 45(1): 172-182. https://doi.org/10.1016/S1876-3804(18)30018-1
[48] Metcalfe, I., 1994. Late Palaeozoic and Mesozoic Palaeogeography of Eastern Pangea and Tethys. Canadian Society of Petroleum Geologists Memoir, 17: 97-111
[49] Monnin, C., 1999. A Thermodynamic Model for the Solubility of Barite and Celestite in Electrolyte Solutions and Seawater to 200 ℃ and to 1 kbar. Chemical Geology, 153(1/2/3/4): 187-209. https://doi.org/10.1016/s0009-2541(98)00171-5
[50] Morford, J. L., Emerson, S., 1999. The Geochemistry of Redox Sensitive Trace Metals in Sediments. Geochimica et Cosmochimica Acta, 63(11/12): 1735-1750. https://doi.org/10.1016/s0016-7037(99)00126-x
[51] Morford, J. L., Russell, A. D., Emerson, S., 2001. Trace Metal Evidence for Changes in the Redox Environment Associated with the Transition from Terrigenous Clay to Diatomaceous Sediment, Saanich Inlet, BC. Marine Geology, 174(1/2/3/4): 355-369. https://doi.org/10.1016/s0025-3227(00)00160-2
[52] Mort, H., Jacquat, O., Adatte, T., et al., 2007. The Cenomanian/Turonian Anoxic Event at the Bonarelli Level in Italy and Spain: Enhanced Productivity and/or Better Preservation?. Cretaceous Research, 28(4): 597-612. https://doi.org/10.1016/j.cretres.2006.09.003
[53] Murphy, A. E., Sageman, B. B., Hollander, D. J., et al., 2000. Black Shale Deposition and Faunal Overturn in the Devonian Appalachian Basin: Clastic Starvation, Seasonal Water-Column Mixing, and Efficient Biolimiting Nutrient Recycling. Paleoceanography, 15(3): 280-291. https://doi.org/10.1029/1999pa000445
[54] Murray, R. W., Leinen, M., 1993. Chemical Transport to the Seafloor of the Equatorial Pacific Ocean across a Latitudinal Transect at 135°W: Tracking Sedimentary Major, Trace, and Rare Earth Element Fluxes at the Equator and the Intertropical Convergence Zone. Geochimica et Cosmochimica Acta, 57(17): 4141-4163. https://doi.org/10.1016/0016-7037(93)90312-k
[55] Neira, C., Sellanes, J., Levin, L. A., et al., 2001. Meiofaunal Distributions on the Peru Margin: Relationship to Oxygen and Organic Matter Availability. Deep Sea Research Part I: Oceanographic Research Papers, 48(11): 2453-2472. https://doi.org/10.1016/s0967-0637(01)00018-8
[56] Ocubalidet, S. G., Rimmer, S. M., Conder, J. A., 2018. Redox Conditions Associated with Organic Carbon Accumulation in the Late Devonian New Albany Shale, West-Central Kentucky, Illinois Basin. International Journal of Coal Geology, 190: 42-55. https://doi.org/10.1016/j.coal.2017.11.017
[57] Opsahl, S., Benner, R., 1997. Distribution and Cycling of Terrigenous Dissolved Organic Matter in the Ocean. Nature, 386(6624): 480-482. https://doi.org/10.1038/386480a0
[58] Paytan, A., Averyt, K., Faul, K., et al., 2007. Barite Accumulation, Ocean Productivity, and Sr/Ba in Barite across the Paleocene-Eocene Thermal Maximum. Geology, 35(12): 1139-1142. https://doi.org/10.1130/g24162a.1
[59] Pedersen, T. F., Calvert, S. E., 1990. Anoxia vs. Productivity: What Controls the Formation of Organic-Carbon-Rich Sediments and Sedimentary Rocks?. (I). AAPG Bulletin, 74: 454-466. https://doi.org/10.1306/0c9b232b-1710-11d7-8645000102c1865d
[60] Prakash, B. C., Brumsack, H. J., Schnetger, B., et al., 2002. Barium as a Productivity Proxy in Continental Margin Sediments: A Study from the Eastern Arabian Sea. Marine Geology, 184(3/4): 189-206. https://doi.org/10.1016/s0025-3227(01)00286-9
[61] Qiu, Z., Dong, D. Z., Lu, B., et al., 2016. Discussion on the Relationship between Graptolite Abundance and Organic Enrichment in Shales from the Wufeng and Longmaxi Formation, South China. Acta Sedimentologica Sinica, 34(6): 1011-1020. https://doi.org/10.14027/j.cnki.cjxb.2016.06.001 (in Chinese with English Abstract)
[62] Qiu, Z., Zou, C. N., 2020a. Controlling Factors on the Formation and Distribution of "Sweet-Spot Areas" of Marine Gas Shales in South China and a Preliminary Discussion on Unconventional Petroleum Sedimentology. Journal of Asian Earth Sciences, 194: 103989. https://doi.org/10.1016/j.jseaes.2019.103989
[63] Qiu, Z., Zou, C. N., 2020b. Unconventional Petroleum Sedimentology: Connotation and Prospect. Acta Sedimentologica Sinica, 38: 1-29 (in Chinese with English Abstract)
[64] Qiu, Z., Zou, C. N., Li, J. Z., et al., 2013. Unconventional Petroleum Resources Assessment: Progress and Future Prospects. Natural Gas Geoscience, 24(2): 238-246 (in Chinese with English Abstract) http://www.ga.gov.au/scientific-topics/energy/resources/petroleum-resources/unconventional-resources
[65] Qiu, Z., Zou, C. N., Wang, H. Y., et al., 2020. Discussion on the Characteristics and Controlling Factors of Differential Enrichment of Shale Gas in the Wufeng-Longmaxi Formations in South China. Journal of Natural Gas Geoscience, 5(3): 117-128. https://doi.org/10.1016/j.jnggs.2020.05.004
[66] Ran, B., Liu, S. G., Jansa, L., et al., 2015. Origin of the Upper Ordovician-Lower Silurian Cherts of the Yangtze Block, South China, and Their Palaeogeographic Significance. Journal of Asian Earth Sciences, 108: 1-17. https://doi.org/10.1016/j.jseaes.2015.04.007
[67] Riboulleau, A., Baudin, F., Deconinck, J. F., et al., 2003. Depositional Conditions and Organic Matter Preservation Pathways in an Epicontinental Environment: The Upper Jurassic Kashpir Oil Shales (Volga Basin, Russia). Palaeogeography, Palaeoclimatology, Palaeoecology, 197(3/4): 171-197. https://doi.org/10.1016/s0031-0182(03)00460-7
[68] Rimmer, S. M., 2004. Geochemical Paleoredox Indicators in Devonian-Mississippian Black Shales, Central Appalachian Basin (USA). Chemical Geology, 206(3/4): 373-391. https://doi.org/10.1016/ j.chemgeo.2003.12.029 doi: 10.1016/j.chemgeo.2003.12.029
[69] Rong, J. Y., 1984. Ecostratigraphic Evidence of Regression and Influence of Glaciation of Late Ordovician in the Upper Yangtze Area. Stratigraphy Journal, 8: 9-20 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DCXZ198401002.htm
[70] Rong, J. Y., Wang, Y., Zhan, R. B., et al., 2019. Silurian Integrative Stratigraphy and Timescale of China. Science China Earth Sciences, 62(1): 89-111. https://doi.org/10.1007/s11430-017-9258-0
[71] Sageman, B. B., Murphy, A. E., Werne, J. P., et al., 2003. A Tale of Shales: The Relative Roles of Production, Decomposition, and Dilution in the Accumulation of Organic-Rich Strata, Middle-Upper Devonian, Appalachian Basin. Chemical Geology, 195(1/2/3/4): 229-273. https://doi.org/10.1016/s0009-2541(02)00397-2
[72] Schenau, S. J., Reichart, G. J., de Lange, G. J., 2005. Phosphorus Burial as a Function of Paleoproductivity and Redox Conditions in Arabian Sea Sediments. Geochimica et Cosmochimica Acta, 69(4): 919-931. https://doi.org/10.1016/j.gca.2004.05.044
[73] Schoepfer, S. D., Shen, J., Wei, H. Y., et al., 2015. Total Organic Carbon, Organic Phosphorus, and Biogenic Barium Fluxes as Proxies for Paleomarine Productivity. Earth-Science Reviews, 149: 23-52. https://doi.org/10.1016/j.earscirev.2014.08.017
[74] Shen, J., Zhou, L., Feng, Q. L., et al., 2014. Paleo-Productivity Evolution across the Permian-Triassic Boundary and Quantitative Calculation of Primary Productivity of Black Rock Series from the Dalong Formation, South China. Science China Earth Sciences, 57(7): 1583-1594. https://doi.org/10.1007/s11430-013-4780-5
[75] Su, W. B., Huff, W. D., Ettensohn, F. R., et al., 2009. K-Bentonite, Black-Shale and Flysch Successions at the Ordovician-Silurian Transition, South China: Possible Sedimentary Responses to the Accretion of Cathaysia to the Yangtze Block and Its Implications for the Evolution of Gondwana. Gondwana Research, 15(1): 111-130. https://doi.org/10.1016/j.gr.2008.06.004
[76] Su, W. B., Li, Z. M., Chen, J. Q., et al., 1999. A Reliable Example for Eustacy Ordovician Sequence Stratigraphy on the Southeastern Margin of the Upper Yangtze Platform. Acta Sedimentologica Sinica, 17(3): 345-353 (in Chinese with English Abstract)
[77] Swanson-Hysell, N. L., MacDonald, F. A., 2017. Tropical Weathering of the Taconic Orogeny as a Driver for Ordovician Cooling. Geology, 45: 719-722. https://doi.org/10.1130/g38985.1
[78] Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell, London. 57-72
[79] Tian, H., Pan, L., Xiao, X. M., et al., 2013. A Preliminary Study on the Pore Characterization of Lower Silurian Black Shales in the Chuandong Thrust Fold Belt, Southwestern China Using Low Pressure N2 Adsorption and FE-SEM Methods. Marine and Petroleum Geology, 48: 8-19. https://doi.org/10.1016/j.marpetgeo.2013.07.008
[80] Tømmerås, A., Mann, U., 2008. Improved Hydrocarbon Charge Prediction by Source-Rock Modelling. Petroleum Geoscience, 14(3): 291-299. https://doi.org/10.1144/1354-079308-766
[81] Torres, M. E., Brumsack, H. J., Bohrmann, G., et al., 1996. Barite Fronts in Continental Margin Sediments: A New Look at Barium Remobilization in the Zone of Sulfate Reduction and Formation of Heavy Barites in Diagenetic Fronts. Chemical Geology, 127(1/2/3): 125-139. https://doi.org/10.1016/0009-2541(95)00090-9
[82] Torsvik, T. H., Cocks, L. R., 2013. New Global Paleogeographical Reconstructions for the Early Palaeozoic and Their Generation. In: Harper, D. A. T., Servais, T., eds., Early Palaeozoic Biogeography and Palaeogeography. Geological Society London Memoirs, 38: 5-24
[83] Tribovillard, N., Algeo, T. J., Baudin, F., et al., 2012. Analysis of Marine Environmental Conditions Based Onmolybdenum-Uranium Covariation- Applications to Mesozoic Paleoceanography. Chemical Geology, 324/325: 46-58. https://doi.org/10.1016/j.chemgeo.2011.09.009
[84] Tribovillard, N., Algeo, T. J., Lyons, T., et al., 2006. Trace Metals as Paleoredox and Paleoproductivity Proxies: An Update. Chemical Geology, 232(1/2): 12-32. https://doi.org/10.1016/j.chemgeo.2006.02.012
[85] Tyson, R. V., 2005. The "Productivity versus Preservation" Controversy: Cause, Flaws, and Resolution. Deposition of Organic-Carbon-Rich Sediments: Models. SEPM (Society for Sedimentary Geology), 82: 17-33. https://doi.org/10.2110/pec.05.82.0017
[86] van Os, B. J. H., Middelburg, J. J., de Lange, G. J., 1991. Possible Diagenetic Mobilization of Barium in Sapropelic Sediment from the Eastern Mediterranean. Marine Geology, 100(1/2/3/4): 125-136. https://doi.org/10.1016/0025-3227(91)90229-w
[87] van Santvoort, P. J. M., de Lange, G. J., Thomson, J., et al., 1996. Active Post-Depositional Oxidation of the Most Recent Sapropel (S1) in Sediments of the Eastern Mediterranean Sea. Geochimica et Cosmochimica Acta, 60(21): 4007-4024. https://doi.org/10.1016/s0016-7037(96)00253-0
[88] Wang, H., 1985. Atlas of the Palaeogeography of China. Cartographic Publishing House, Beijing. 1-143 (in Chinese)
[89] Wang, Y. X., Xu, S., Hao, F., et al., 2019. Geochemical and Petrographic Characteristics of Wufeng-Longmaxi Shales, Jiaoshiba Area, Southwest China: Implications for Organic Matter Differential Accumulation. Marine and Petroleum Geology, 102: 138-154. https://doi.org/10.1016/j.marpetgeo.2018.12.038
[90] Wang, Y., Zhu, Y. M., Chen, S. B., et al., 2014. Characteristics of the Nanoscale Pore Structure in Northwestern Hunan Shale Gas Reservoirs Using Field Emission Scanning Electron Microscopy, High-Pressure Mercury Intrusion, and Gas Adsorption. Energy & Fuels, 28(2): 945-955. https://doi.org/10.1021/ef402159e
[91] Wei, H. Y., Chen, D. Z., Wang, J. G., et al., 2012. Organic Accumulation in the Lower Chihsia Formation (Middle Permian) of South China: Constraints from Pyrite Morphology and Multiple Geochemical Proxies. Palaeogeography, Palaeoclimatology, Palaeoecology, 353/354/355: 73-86. https://doi.org/10.1016/j.palaeo.2012.07.005
[92] Wei, H. Y., Jiang, X. C., 2019. Early Cretaceous Ferruginous and Its Control on the Lacustrine Organic Matter Accumulation: Constrained by Multiple Proxies from the Bayingebi Formation in the Bayingebi Basin, Inner Mongolia, NW China. Journal of Petroleum Science and Engineering, 178: 162-179. https://doi.org/10.1016/j.petrol.2019.03.037
[93] Wei, H. Y., Wei, X. M., Qiu, Z., et al., 2016. Redox Conditions across the G-L Boundary in South China: Evidence from Pyrite Morphology and Sulfur Isotopic Compositions. Chemical Geology, 440: 1-14. https://doi.org/10.1016/j.chemgeo.2016.07.009
[94] Wu, L. Y., Lu, Y. C., Jiang, S., et al., 2018. Effects of Volcanic Activities in Ordovician Wufeng-Silurian Longmaxi Period on Organic-Rich Shale in the Upper Yangtze Area, South China. Petroleum Exploration and Development, 45(5): 862-872. https://doi.org/10.1016/s1876-3804(18)30089-2
[95] Yan, D., Wang, H., Fu, Q. L., et al., 2015. Organic Matter Accumulation of Late Ordovician Sediments in North Guizhou Province, China: Sulfur Isotope and Trace Element Evidences. Marine and Petroleum Geology, 59: 348-358. https://doi.org/10.1016/j.marpetgeo.2014.09.017
[96] Zhang, H. Q., Xu, X. S., Liu, W., et al., 2013. Late Ordovician-Early Silurian Sedimentary Facies and Palaeogeographic Evolution and Its Bearings on the Black Shales in the Middle-Upper Yangtze Area. Sedimentary Geology and Tethyan Geology, 33(2): 17-24 (in Chinese with English Abstract) http://www.zhangqiaokeyan.com/academic-journal-cn_sedimentary-geology-tethyan_thesis/0201252083524.html
[97] Zhao, J. H., Jin, Z. K., Geng, Y. K., et al., 2016. Main Diagenesis Controlling Factors for Longmaxi Formation Organic Matter-Rich Shale in Sichuan Basin. Petroleum Geology & Oilfield Development in Daqing, 35(2): 140-147 (in Chinese with English Abstract) http://www.cnki.com.cn/Article/CJFDTotal-DQSK201602026.htm
[98] Zhou, L. L., Friis, H., Poulsen, M. L. K., 2015. Geochemical Evaluation of the Late Paleocene and Early Eocene Shales in Siri Canyon, Danish-Norwegian Basin. Marine and Petroleum Geology, 61: 111-122. https://doi.org/10.1016/j.marpetgeo.2014.12.014
[99] Zhou, W. D., Xie, S. Y., Bao, Z. Y., et al., 2019. Chemical Compositions and Distribution Characteristics of Cements in Longmaxi Formation Shales, Southwest China. Journal of Earth Science, 30(5): 879-892. https://doi.org/10.1007/s12583-019-1013-7
[100] Zhu, B., Jiang, S. Y., Pi, D. H., et al., 2018. Trace Elements Characteristics of Black Shales from the Ediacaran Doushantuo Formation, Hubei Province, South China: Implications for Redox and Open vs. Restricted Basin Conditions. Journal of Earth Science, 29(2): 342-352. https://doi.org/10.1007/s12583-017-0907-5
[101] Zonneveld, K. A. F., Versteegh, G. J. M., Kasten, S., et al., 2010. Selective Preservation of Organic Matter in Marine Environments: Processes and Impact on the Sedimentary Record. Biogeosciences, 7(2): 483-511. https://doi.org/10.5194/bg-7-483-2010
[102] Zou, C. N., Dong, D. Z., Wang, S. J., et al., 2010. Geological Characteristics and Resource Potential of Shale Gas in China. Petroleum Exploration and Development, 37(6): 641-653. https://doi.org/10.1016/s1876-3804(11)60001-3
[103] Zou, C. N., Dong, D. Z., Wang, Y. M., et al., 2015. Shale Gas in China: Characteristics, Challenges and Prospects (I). Petroleum Exploration and Development, 42(6): 753-767. https://doi.org/10.1016/s1876-3804(15)30072-0
[104] Zou, C. N., Qiu, Z., Poulton, S. W., et al., 2018a. Ocean Euxinia and Climate Change "Double Whammy" Drove the Late Ordovician Mass Extinction. Geology, 46(6): 535-538. https://doi.org/10.1130/g40121.1
[105] Zou, C. N., Qiu, Z., Wei, H. Y., et al., 2018b. Euxinia Caused the Late Ordovician Extinction: Evidence from Pyrite Morphology and Pyritic Sulfur Isotopic Composition in the Yangtze Area, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 511: 1-11. https://doi.org/10.1016/j.palaeo.2017.11.033