[1] Andrews-Hanna, J. C., Lewis, K. W., 2011. Early Mars Hydrology: 2. Hydrological Evolution in the Noachian and Hesperian Epochs. Journal of Geophysical Research, 116(E2): E02007. https://doi.org/10.1029/2010je003709
[2] Anglés, A., Li, Y. L., 2017. The Western Qaidam Basin as a Potential Martian Environmental Analogue: An Overview. Journal of Geophysical Research: Planets, 122(5): 856–888. https://doi.org/10.1002/2017je005293
[3] Bandfield, J. L., 2004. Atmospheric Correction and Surface Spectral Unit Mapping Using Thermal Emission Imaging System Data. Journal of Geophysical Research, 109(E10): E10008. https://doi.org/10.1029/2004je002289
[4] Christensen, P. R., Bandfield, J. L., Hamilton, V. E., et al., 2001. Mars Global Surveyor Thermal Emission Spectrometer Experiment: Investigation Description and Surface Science Results. Journal of Geophysical Research: Planets, 106(E10): 23823–23871. https://doi.org/10.1029/2000je001370
[5] Christensen, P. R., Jakosky, B. M., Kieffer, H. H., et al., 2004. The Thermal Emission Imaging System (THEMIS) for the Mars 2001 Odyssey Mission. Space Science Reviews, 110(1/2): 85–130. https://doi.org/10.1023/b:spac.0000021008.16305.94
[6] Christiansen, F. W., 1963. Polygonal Fracture and Fold Systems in the Salt Crust, Great Salt Lake Desert, Utah. Science, 139(3555): 607–609. https://doi.org/10.1126/science.139.3555.607
[7] Davila, A. F., Duport, L. G., Melchiorri, R., et al., 2010. Hygroscopic Salts and the Potential for Life on Mars. Astrobiology, 10(6): 617–628, https://doi.org/10.1089/ast.2009.0421.
[8] Ebinger, E., Mustard, J., 2015. Linear Ridges in the Nilosyrtis Region of Mars: Implications for Subsurface Fluid Flow. Lunar and Planetary Science Conference, The Woodlands
[9] Edwards, C. S., Christensen, P. R., Hill, J., 2011. Mosaicking of Global Planetary Image Datasets: 2. Modeling of Wind Streak Thicknesses Observed in Thermal Emission Imaging System (THEMIS) Daytime and Nighttime Infrared Data. Journal of Geophysical Research, 116(E10): E10005. https://doi.org/10.1029/2011je003857
[10] Ehlmann, B. L., Swayze, G. A., Milliken, R. E., et al., 2016. Discovery of Alunite in Cross Crater, Terra Sirenum, Mars: Evidence for Acidic, Sulfurous Waters. American Mineralogist, 101(7): 1527–1542. https://doi.org/10.2138/am-2016-5574
[11] El-Maarry, M. R., Pommerol, A., Thomas, N., 2013. Analysis of Polygonal Cracking Patterns in Chloride-Bearing Terrains on Mars: Indicators of Ancient Playa Settings. Journal of Geophysical Research: Planets, 118(11): 2263–2278. https://doi.org/10.1002/2013je004463
[12] El-Maarry, M. R., Watters, W., McKeown, N. K., et al., 2014. Potential Desiccation Cracks on Mars: A Synthesis from Modeling, Analogue-Field Studies, and Global Observations. Icarus, 241: 248–268. https://doi.org/10.1016/j.icarus.2014.06.033
[13] Fassett, C. I., Head, J. W. III, 2008. Valley Network-Fed, Open-Basin Lakes on Mars: Distribution and Implications for Noachian Surface and Subsurface Hydrology. Icarus, 198(1): 37–56. https://doi.org/10.1016/j.icarus.2008.06.016
[14] Fish, S. A., Shepherd, T. J., McGenity, T. J., et al., 2002. Recovery of 16S Ribosomal RNA Gene Fragments from Ancient Halite. Nature, 417(6887): 432–436. https://doi.org/10.1038/417432a
[15] Gillespie, A. R., Kahle, A. B., Walker, R. E., 1986. Color Enhancement of Highly Correlated Images. Ⅰ. Decorrelation and HSI Contrast Stretches. Remote Sensing of Environment, 20(3): 209–235. https://doi.org/10.1016/0034-4257(86)90044-1
[16] Glotch, T. D., Bandfield, J. L., Tornabene, L. L., et al., 2010. Distribution and Formation of Chlorides and Phyllosilicates in Terra Sirenum, Mars. Geophysical Research Letters, 37(16): 127–137. https://doi.org/10.1029/2010gl044557
[17] Glotch, T. D., Bandfield, J. L., Wolff, M. J., et al., 2016. Constraints on the Composition and Particle Size of Chloride Salt-Bearing Deposits on Mars. Journal of Geophysical Research: Planets, 121(3): 454–471. https://doi.org/10.1002/2015je004921
[18] Griffith, J. D., Willcox, S., Powers, D. W., et al., 2008. Discovery of Abundant Cellulose Microfibers Encased in 250 Ma Permian Halite: A Macromolecular Target in the Search for Life on other Planets. Astrobiology, 8(2): 215–228. https://doi.org/10.1089/ast.2007.0196
[19] Head, J. W., Mustard, J. F., 2006. Breccia Dikes and Crater-Related Faults in Impact Craters on Mars: Erosion and Exposure on the Floor of a Crater 75 km in Diameter at the Dichotomy Boundary. Meteoritics & Planetary Science, 41(10): 1675–1690. https://doi.org/10.1111/j.1945-5100.2006.tb00444.x
[20] Herkenhoff, K. E., Byrne, S., Russell, P. S., et al., 2007. Meter-Scale Morphology of the North Polar Region of Mars. Science, 317(5845): 1711–1715. https://doi.org/10.1126/science.1143544
[21] Huang, J., Salvatore, M., Edwards, C., et al., 2018. A Complex Fluviolacustrine Environment on Early Mars and Its Astrobiological Potentials. Astrobiology, 18(8): 1081–1091. https://doi.org/10.1089/ast.2017.1757
[22] Hynek, B. M., Beach, M., Hoke, M. R. T., 2010. Updated Global Map of Martian Valley Networks and Implications for Climate and Hydrologic Processes. Journal of Geophysical Research, 115(E9): E9008. https://doi.org/10.1029/2009je003548
[23] Hynek, B. M., Osterloo, M. K., Kierein-Young, K. S., 2015. Late-Stage Formation of Martian Chloride Salts through Ponding and Evaporation. Geology, 43(9): 787–790. https://doi.org/10.1130/g36895.1
[24] Jensen, H. B., Glotch, T. D., 2011. Investigation of the Near-Infrared Spectral Character of Putative Martian Chloride Deposits. Journal of Geophysical Research, 116(E12): E00J03. https://doi.org/10.1029/2011je003887
[25] Kerber, L., Dickson, J. L., Head, J. W., et al., 2017. Polygonal Ridge Networks on Mars: Diversity of Morphologies and the Special Case of the Eastern Medusae Fossae Formation. Icarus, 281: 200–219. https://doi.org/10.1016/j.icarus.2016.08.020
[26] Kirk, R. L., Howington-Kraus, E., Rosiek, M. R., et al., 2008. Ultrahigh Resolution Topographic Mapping of Mars with MRO HiRISE Stereo Images: Meter-Scale Slopes of Candidate Phoenix Landing Sites. Journal of Geophysical Research, 113(E12): E00A24. https://doi.org/10.1029/2007je003000
[27] Krinsley, D. B., 1970. A Geomorphological and Paleoclimatological Study of the Playas of Iran. Journal of Hydrology, 16(1): 66. https://doi.org/10.1016/0022-1694(72)90188-6
[28] Levy, J. S., Head, J. W., Marchant, D. R., 2009b. Concentric Crater Fill in Utopia Planitia: History and Interaction between Glacial "Brain Terrain" and Periglacial Mantle Processes. Icarus, 202(2): 462–476. https://doi.org/10.1016/j.icarus.2009.02.018
[29] Levy, J., Head, J., Marchant, D., 2009a. Thermal Contraction Crack Polygons on Mars: Classification, Distribution, and Climate Implications from HiRISE Observations. Journal of Geophysical Research, 114(E1): E01007. https://doi.org/10.1029/2008je003273
[30] Malin, M. C., Bell, J. F. III, Cantor, B. A., et al., 2007. Context Camera Investigation on Board the Mars Reconnaissance Orbiter. Journal of Geophysical Research, 112(E5): E05S04. https://doi.org/10.1029/2006je002808
[31] Mangold, N., 2005. High Latitude Patterned Grounds on Mars: Classification, Distribution and Climatic Control. Icarus, 174(2): 336–359. https://doi.org/10.1016/j.icarus.2004.07.030
[32] Mangold, N., Poulet, F., Mustard, J. F., et al., 2007. Mineralogy of the Nili Fossae Region with OMEGA/Mars Express Data: 2. Aqueous Alteration of the Crust. Journal of Geophysical Research: Planets, 112(E8): E08S04. https://doi.org/10.1029/2006je002835
[33] McEwen, A. S., Eliason, E. M., Bergstrom, J. W., et al., 2007. Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (HiRISE). Journal of Geophysical Research, 112(E5): E05S02. https://doi.org/10.1029/2005je002605
[34] Mellon, M. T., Arvidson, R. E., Marlow, J. J., et al., 2008. Periglacial Landforms at the Phoenix Landing Site and the Northern Plains of Mars. Journal of Geophysical Research, 113(E4): E00A23. https://doi.org/10.1029/2007je003039
[35] Mellon, M. T., Feldman, W. C., Prettyman, T. H., 2004. The Presence and Stability of Ground Ice in the Southern Hemisphere of Mars. Icarus, 169(2): 324–340. https://doi.org/10.1016/j.icarus.2003.10.022
[36] Mellon, M. T., Jakosky, B. M., 1995. The Distribution and Behavior of Martian Ground Ice during Past and Present Epochs. Journal of Geophysical Research, 100(E6): 11781–11799. https://doi.org/10.1029/95je01027
[37] Morgenstern, A., Hauber, E., Reiss, D., et al., 2007. Deposition and Degradation of a Volatile-Rich Layer in Utopia Planitia and Implications for Climate History on Mars. Journal of Geophysical Research, 112(E6): E06010. https://doi.org/10.1029/2006je002869
[38] Mormile, M. R., Biesen, M. A., Gutierrez, M. C., et al., 2003. Isolation of Halobacterium Salinarum Retrieved Directly from Halite Brine Inclusions. Environmental Microbiology, 5(11): 1094–1102. https://doi.org/10.1046/j.1462-2920.2003.00509.x
[39] Murchie, S. L., Mustard, J. F., Ehlmann, B. L., et al., 2009. A Synthesis of Martian Aqueous Mineralogy after 1 Mars Year of Observations from the Mars Reconnaissance Orbiter. Journal of Geophysical Research, 114(E2): E00D06. https://doi.org/10.1029/2009je003342
[40] Mutch, T. A., Binder, A. B., Huck, F. O., et al., 1976. The Surface of Mars: The View from the Viking 1 Lander. Science, 193(4255): 791–801. https://doi.org/10.1126/science.193.4255.791
[41] Okubo, C. H., McEwen, A. S., 2007. Fracture-Controlled Paleo-Fluid Flow in Candor Chasma, Mars. Science, 315(5814): 983–985. https://doi.org/10.1126/science.1136855
[42] Osterloo, M. M., Anderson, F. S., Hamilton, V. E., et al., 2010. Geologic Context of Proposed Chloride-Bearing Materials on Mars. Journal of Geophysical Research, 115(E10): E10012. https://doi.org/10.1029/2010je003613
[43] Osterloo, M. M., Hamilton, V. E., Bandfield, J. L., et al., 2008. Chloride-Bearing Materials in the Southern Highlands of Mars. Science, 319(5870): 1651–1654. https://doi.org/10.1126/science.1150690
[44] Park, J. S., Vreeland, R. H., Cho, B. C., et al., 2009. Haloarchaeal Diversity in 23, 121 and 419 MYA Salts. Geobiology, 7(5): 515–523. https://doi.org/10.1111/j.1472-4669.2009.00218.x
[45] Putzig, N. E., Mellon, M. T., Kretke, K. A., et al., 2005. Global Thermal Inertia and Surface Properties of Mars from the MGS Mapping Mission. Icarus, 173(2): 325–341. https://doi.org/10.1016/j.icarus.2004.08.017
[46] Radax, C., Gruber, C., Stan-Lotter, H., 2001. Novel Haloarchaeal 16S RRNA Gene Sequences from Alpine Permo-Triassic Rock Salt. Extremophiles, 5(4): 221–228. https://doi.org/10.1007/s007920100192
[47] Rosen, M. R., 1994. The Importance of Groundwater in Playas: A Review of Playa Classification and the Sedimentology and Hydrology of Playas, GSA Special Papers 289, Geological Society of America, Boulder, Co.
[48] Ruesch, O., Poulet, F., Vincendon, M., et al., 2012. Compositional Investigation of the Proposed Chloride-Bearing Materials on Mars Using Near-Infrared Orbital Data from OMEGA/MEx. Journal of Geophysical Research: Planets, 117(E11): E00J13. https://doi.org/10.1029/2012je004108
[49] Saper, L., Mustard, J. F., 2013. Extensive Linear Ridge Networks in Nili Fossae and Nilosyrtis, Mars: Implications for Fluid Flow in the Ancient Crust. Geophysical Research Letters, 40(2): 245–249. https://doi.org/10.1002/grl.50106
[50] Schubert, B. A., Lowenstein, T. K., Timofeeff, M. N., 2009. Microscopic Identification of Prokaryotes in Modern and Ancient Halite, Saline Valley and Death Valley, California. Astrobiology, 9(5): 467–482. https://doi.org/10.1089/ast.2008.0282
[51] Shean, D. E., Alexandrov, O., Moratto, Z. M., et al., 2016. An Automated, Open-Source Pipeline for Mass Production of Digital Elevation Models (DEMs) from Very-High-Resolution Commercial Stereo Satellite Imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 116: 101–117. https://doi.org/10.1016/j.isprsjprs.2016.03.012
[52] Soare, R. J., Osinski, G. R., Roehm, C. L., 2008. Thermokarst Lakes and Ponds on Mars in the very Recent (Late Amazonian) Past. Earth and Planetary Science Letters, 272(1/2): 382–393. https://doi.org/10.1016/j.epsl.2008.05.010
[53] Stein, N., Grotzinger, J. P., Schieber, J., et al., 2018. Desiccation Cracks Provide Evidence of Lake Drying on Mars, Sutton Island Member, Murray Formation, Gale Crater: REPLY. Geology, 46(8): e450–e450. https://doi.org/10.1130/g45237y.1
[54] Stivaletta, N., Barbieri, R., Picard, C., et al., 2009. Astrobiological Significance of the Sabkha Life and Environments of Southern Tunisia. Planetary and Space Science, 57(5/6): 597–605. https://doi.org/10.1016/j.pss.2008.10.002
[55] Thomas, D. S. G., 2011. Arid Zone Geomorphology: Process, Form and Change in Drylands. Wiley
[56] Villanueva, G. L., Mumma, M. J., Novak, R. E., et al., 2015. Strong Water Isotopic Anomalies in the Martian Atmosphere: Probing Current and Ancient Reservoirs. Science, 348(6231): 218–221. https://doi.org/10.1126/science.aaa3630
[57] Vreeland, R. H., Jones, J., Monson, A., et al., 2007. Isolation of Live Cretaceous (121–112 Million Years Old) Halophilic Archaea from Primary Salt Crystals. Geomicrobiology Journal, 24(3/4): 275–282. https://doi.org/10.1080/01490450701456917
[58] Wang, A. L., Sobron, P., Kong, F., et al., 2018. Dalangtan Saline Playa in a Hyperarid Region on Tibet Plateau: Ⅱ. Preservation of Salts with High Hydration Degrees in Subsurface. Astrobiology, 18(10): 1254–1276. https://doi.org/10.1089/ast.2018.1829
[59] Wang, C. W., Hong, H. L., Li, Z. H., et al., 2013. Climatic and Tectonic Evolution in the North Qaidam since the Cenozoic: Evidence from Sedimentology and Mineralogy. Journal of Earth Science, 24(3): 314–327. https://doi.org/10.1007/s12583-013-0332-3
[60] Wray, J. J., Milliken, R. E., Dundas, C. M., et al., 2011. Columbus Crater and other Possible Groundwater-Fed Paleolakes of Terra Sirenum, Mars. Journal of Geophysical Research, 116(E1): E01001. https://doi.org/10.1029/2010je003694
[61] Wray, J. J., Murchie, S. L., Squyres, S. W., et al., 2009. Diverse Aqueous Environments on Ancient Mars Revealed in the Southern Highlands. Geology, 37(11): 1043–1046. https://doi.org/10.1130/g30331a.1
[62] Xiao, L., Wang, J., Dang, Y. N., et al., 2017. A New Terrestrial Analogue Site for Mars Research: The Qaidam Basin, Tibetan Plateau (NW China). Earth-Science Reviews, 164: 84–101. https://doi.org/10.1016/j.earscirev.2016.11.003
[63] Yi, L. W., Gu, X. P., Lu, A. H., et al., 2017. Atacamite and Nantokite in Kaerqueka Copper Deposit of Qimantag Area: Evidence for Cenozoic Climate Evolution of the Qaidam Basin. Journal of Earth Science, 28(3): 492–499. https://doi.org/10.1007/s12583-017-0548-8
[64] Zanetti, M., Hiesinger, H., Reiss, D., et al., 2010. Distribution and Evolution of Scalloped Terrain in the Southern Hemisphere, Mars. Icarus, 206(2): 691–706. https://doi.org/10.1016/j.icarus.2009.09.010
[65] Zeng, F. M., Xiang, S. Y., 2017. Geochronology and Mineral Composition of the Pleistocene Sediments in Xitaijinair Salt Lake Region, Qaidam Basin: Preliminary Results. Journal of Earth Science, 28(4): 622–627. https://doi.org/10.1007/s12583-016-0712-6