[1] Anand, R., Balakrishnan, S., Kooijman, E., et al., 2014. Neoarchean Crustal Growth by Accretionary Processes:Evidence from Combined Zircon-Titanite U-Pb Isotope Studies on Granitoid Rocks around the Hutti Greenstone Belt, Eastern Dharwar Craton, India. Journal of Asian Earth Sciences, 79:72-85. https://doi.org/10.1016/j.jseaes.2013.09.017
[2] Bakker, R. J., Jansen, J. B. H., 1990. Preferential Water Leakage from Fluid Inclusions by Means of Mobile Dislocations. Nature, 345(6270):58-60. https://doi.org/10.1038/345058a0
[3] Bakker, R. J., Jansen, J. B. H., 1994. A Mechanism for Preferential H2O Leakage from Fluid Inclusions in Quartz, Based on TEM Observations. Contributions to Mineralogy and Petrology, 116(1/2):7-20. https://doi.org/10.1007/bf00310686
[4] Bodnar, R. J., 2003. Reequilibration of Fluid Inclusions. In: Samson, I., Anderson, A., Marshall, D., eds., Fluid Inclusions: Analysis and Interpretation. Mineral. Assoc. Canada, Short Course 32. Mineralogical Association of Canada, Vancouver. 213-230
[5] Chadwick, B., Vasudev, V. N., Hegde, G. V., 2000. The Dharwar Craton, Southern India, Interpreted as the Result of Late Archaean Oblique Convergence. Precambrian Research, 99(1/2):91-111. https://doi.org/10.1016/s0301-9268(99)00055-8
[6] Colvine, A. C., Fyon, J. A., Heather, K. B., et al., 1988. Archean Lode Gold Deposits in Ontario. Ontario Ministry of Northern Development and Mines, Paper 139, Sudbury. 154
[7] Diamond, L. W., 2003. Systematics of H2O inclusions. In: Samson, I., Anderson, A., Marshall, D., eds., Fluid Inclusions: Analysis and Interpretation. Mineral. Assoc. Canada, Short Course 32. Mineralogical Association of Canada, Vancouver. 55-79
[8] Dijkstra, I., Schmatz, J., Post, A., et al., 2011. The Role of Fluid-Inclusion Composition on Dynamic Recrystallization in Experimentally Deformed Quartz Single Crystals. Journal of the Virtual Explorer, 38. https://doi.org/10.3809/jvirtex.2011.00281
[9] Elmer, F. L., White, R. W., Powell, R., 2006. Devolatilization of Metabasic Rocks during Greenschist-Amphibolite Facies Metamorphism. Journal of Metamorphic Geology, 24(6):497-513. https://doi.org/10.1111/j.1525-1314.2006.00650.x
[10] Eilu, P. K., Mathison, C., Groves, D., et al., 1999. Atlas of Alteration Assemblages, Styles and Zoning in Orogenic Lode-Gold Deposits in a Variety of Host Rock and Metamorphic Settings. Geology Publications, UWA Extension, University of Western Australia, Perth. 50
[11] Gebre-Mariam, M., Hagemann, S. G., Groves, D. I., 1995. A Classification Scheme for Epigenetic Archaean Lode-Gold Deposits. Mineralium Deposita, 30(5):408-410. https://doi.org/10.1007/bf00202283
[12] Gill, R., 2014. Chemical Fundamentals of Geology and Environmental Geoscience. John Wiley & Son, Chichester. 261
[13] Giritharan, T. S., Rajamani, V., 1998. Geochemistry of the Metavolcanics of the Hutti-Maski Schist Belt, South India:Implications to Gold Metallogeny in the Eastern Dharwar Craton. Geological Society of India, 51(5):583-594
[14] Goldfarb, R. J., Groves, D. I., 2015. Orogenic Gold:Common or Evolving Fluid and Metal Sources through Time. Lithos, 233:2-26. https://doi.org/10.1016/j.lithos.2015.07.011
[15] Goldfarb, R. J., Groves, D. I., Gardoll, S., 2001. Orogenic Gold and Geologic Time:A Global Synthesis. Ore Geology Reviews, 18(1/2):1-75. https://doi.org/10.1016/s0169-1368(01)00016-6
[16] Groves, D. I., Goldfarb, R. J., Robert, F., et al., 2003. Gold Deposits in Metamorphic Belts:Overview of Current Understanding, Outstanding Problems, Future Research, and Exploration Significance. Economic Geology, 98(1):1-29. https://doi.org/10.2113/gsecongeo.98.1.1
[17] Groves, D. I., Goldfarb, R. J., Gebre-Mariam, M., et al., 1998. Orogenic Gold Deposits:A Proposed Classification in the Context of Their Crustal Distribution and Relationship to Other Gold Deposit Types. Ore Geology Reviews, 13(1/2/3/4/5):7-27. https://doi.org/10.1016/s0169-1368(97)00012-7
[18] Hall, D. L., Sterner, S. M., 1993. Preferential Water Loss from Synthetic Fluid Inclusions. Contributions to Mineralogy and Petrology, 114(4):489-500. https://doi.org/10.1007/bf00321753
[19] Hazarika, P., Pruseth, K. L., Mishra, B., 2015a. Neoarchean Greenstone Metamorphism in the Eastern Dharwar Craton, India:Constraints from Monazite U-Th-Pbtotal Ages and PT Pseudosection Calculations. The Journal of Geology, 123(5):429-461. https://doi.org/10.1086/683334
[20] Hazarika, P., Mishra, B., Pruseth, K. L., 2015b. Diverse Tourmaline Compositions from Orogenic Gold Deposits in the Hutti-Maski Greenstone Belt, India:Implications for Sources of Ore-Forming Fluids. Economic Geology, 110(2):337-353. https://doi.org/10.2113/econgeo.110.2.337
[21] Hagemann, S. G., Brown, P. E., 1996. Geobarometry in Archean Lode-Gold Deposits. European Journal of Mineralogy, 8(5):937-960. https://doi.org/10.1127/ejm/8/5/0937
[22] Holland, T., Powell, R., 1991. A Compensated-Redlich-Kwong (CORK) Equation for Volumes and Fugacities of CO2 and H2O in the Range 1 bar to 50 kbar and 100-1 600 ℃. Contributions to Mineralogy and Petrology, 109(2):265-273. https://doi.org/10.1007/bf00306484
[23] Jayananda, M., Peucat, J. J., Chardon, D., et al., 2013. Neoarchean Greenstone Volcanism and Continental Growth, Dharwar Craton, Southern India:Constraints from SIMS U-Pb Zircon Geochronology and Nd Isotopes. Precambrian Research, 227:55-76. https://doi.org/10.1016/j.precamres.2012.05.002
[24] Kerrich, R., 1976. Some Effects of Tectonic Recrystallisation on Fluid Inclusions in Vein Quartz. Contributions to Mineralogy and Petrology, 59(2):195-202. https://doi.org/10.1007/bf00371308
[25] Krienitz, M. S., Trumbull, R. B., Hellmann, A., et al., 2008. Hydrothermal Gold Mineralization at the Hira Buddini Gold Mine, India:Constraints on Fluid Evolution and Fluid Sources from Boron Isotopic Compositions of Tourmaline. Mineralium Deposita, 43(4):421-434. https://doi.org/10.1007/s00126-007-0172-0
[26] McCuaig, T. C., Kerrich, R., 1998. P-T-t-Deformation-Fluid Characteristics of Lode Gold Deposits:Evidence from Alteration Systematics. Ore Geology Reviews, 12(6):381-453. https://doi.org/10.1016/s0169-1368(98)80002-4
[27] Michels, A., Michels, C., 1933. The Influence of Pressure on the Dielectric Constant of Carbon Dioxide up to 1 000 Atmospheres between 25 and 150℃. Philosophical Transactions of the Royal Society of London Series A, Containing Papers of a Mathematical or Physical Character, 231(694-706):409-434. https://doi.org/10.1098/rsta.1933.0011
[28] Mishra, B., Pal, N., 2008. Metamorphism, Fluid Flux, and Fluid Evolution Relative to Gold Mineralization in the Hutti-Maski Greenstone Belt, Eastern Dharwar Craton, India. Economic Geology, 103(4):801-827. https://doi.org/10.2113/gsecongeo.103.4.801
[29] Owona, S., Ondoa, J. M., Ekodeck, G. E., 2013. Evidence of Quartz, Feldspar and Amphibole Crystal Plastic Deformations in the Paleoproterozoic Nyong Complex Shear Zones under Amphibolite to Granulite Conditions (West Central African Fold Belt, SW Cameroon). Journal of Geography and Geology, 5(3):186-201. https://doi.org/10.5539/jgg.v5n3p186
[30] Pal, N., Mishra, B., 2002. Alteration Geochemistry and Fluid Inclusion Characteristics of the Greenstone-Hosted Gold Deposit of Hutti, Eastern Dharwar Craton, India. Mineralium Deposita, 37(8):722-736. https://doi.org/10.1007/s00126-002-0257-8
[31] Passchier, C. W., Trouw, R. A. J., 2005. Microtectonics. Springer, Heidelberg. 366
[32] Phillips, G. N., Powell, R., 2010. Formation of Gold Deposits:A Metamorphic Devolatilization Model. Journal of Metamorphic Geology, 28(6):689-718. https://doi.org/10.1111/j.1525-1314.2010.00887.x
[33] Ridley, J., Mikucki, E. J., Groves, D. I., 1996. Archean Lode-Gold Deposits:Fluid Flow and Chemical Evolution in Vertically Extensive Hydrothermal Systems. Ore Geology Reviews, 10(3/4/5/6):279-293. https://doi.org/10.1016/0169-1368(95)00027-5
[34] Ridley, J. R., Diamond, L. W., 2000. Fluid Chemistry of Orogenic Lode Gold Deposits and Implications for Genetic Models. Reviews in Economic Geology, 13:141-162
[35] Rogers, A. J., Kolb, J., Meyer, F. M., et al., 2007. Tectono-Magmatic Evolution of the Hutti-Maski Greenstone Belt, India:Constrained Using Geochemical and Geochronological Data. Journal of Asian Earth Sciences, 31(1):55-70. https://doi.org/10.1016/j.jseaes.2007.04.003
[36] Sahoo, A. K., Krishnamurthi, R., Sangurmath, P., 2018. Nature of Ore Forming Fluids, Wallrock Alteration and P-T Conditions of Gold Mineralization at Hira-Buddini, Hutti-Maski Greenstone Belt, Dharwar Craton, India. Ore Geology Reviews, 99:195-216. https://doi.org/10.1016/j.oregeorev.2018.06.008
[37] Sahoo, A. K., Krishnamurthi, R., Sangurmath, P., 2016. Auriferous Lode of Hira-Buddini Gold Mine, Hutti-Maski Schist Belt, Dharwar Craton:Mineralogy, Alteration, Types and Mechanism of Vein Emplacement. Journal of the Geological Society of India, 88(6):675-684. https://doi.org/10.1007/s12594-016-0534-2
[38] Sarma, D. S., Mcnaughton, N. J., Fletcher, I. R., et al., 2008. Timing of Gold Mineralization in the Hutti Gold Deposit, Dharwar Craton, South India. Economic Geology, 103(8):1715-1727. https://doi.org/10.2113/gsecongeo.103.8.1715
[39] Saunders, J. A., Hofstra, A. H., Goldfarb, R. J., et al., 2014. Geochemistry of Hydrothermal Gold Deposits. In: Holland, H. D., Turekian, K. K., eds., Treatise on Geochemistry, Second Edition, 13: 383-424
[40] Srikantia, S., 1995. Geology of the Hutti-Maski Greenstone Belt. In: Curtis, L. C., Radhakrishna, B. P., eds., Hutti Gold Mine into the 21st Century. Geological Society of India, Bangalore. 8-27
[41] Sterner, S. M., Hall, D. L., Keppler, H., 1995. Compositional Re-Equilibration of Fluid Inclusions in Quartz. Contributions to Mineralogy and Petrology, 119(1):1-15. https://doi.org/10.1007/bf00310713
[42] Stipp, M., Stünitz, H., Heilbronner, R., et al., 2002a. The Eastern Tonale Fault Zone:A 'Natural Laboratory' for Crystal Plastic Deformation of Quartz over a Temperature Range from 250 to 700℃. Journal of Structural Geology, 24(12):1861-1884. https://doi.org/10.1016/s0191-8141(02)00035-4
[43] Stipp, M., Stünitz, H., Heilbronner, R., et al., 2002b. Dynamic Recrystallization of Quartz:Correlation between Natural and Experimental Conditions. Geological Society, London, Special Publications, 200(1):171-190. https://doi.org/10.1144/gsl.sp.2001.200.01.11
[44] Tomkins, A. G., 2010. Windows of Metamorphic Sulfur Liberation in the Crust:Implications for Gold Deposit Genesis. Geochimica et Cosmochimica Acta, 74(11):3246-3259. https://doi.org/10.1016/j.gca.2010.03.003
[45] Vityk, M. O., Bodnar, R. J., 1995. Textural Evolution of Synthetic Fluid Inclusions in Quartz during Reequilibration, with Applications to Tectonic Reconstruction. Contributions to Mineralogy and Petrology, 121(3):309-323. https://doi.org/10.1007/bf02688246
[46] Vityk, M. O., Bodnar, R. J., Doukhan, J. C., 2000. Synthetic Fluid Inclusions. XV. TEM Investigation of Plastic Flow Associated with Reequilibration of Fluid Inclusions in Natural Quartz. Contributions to Mineralogy and Petrology, 139(3):285-297. https://doi.org/10.1007/s004100000142
[47] Williams-Jones, A. E., Bowell, R. J., Migdisov, A. A., 2009. Gold in Solution. Elements, 5(5):281-287. https://doi.org/10.2113/gselements.5.5.281
[48] Witt, W. K., 1993. Lithological and Structural Controls on Gold Mineralization in the Archaean Menzies-Kambalda Area, Western Australia. Australian Journal of Earth Sciences, 40(1):65-86. https://doi.org/10.1080/08120099308728064