[1] Anderson, J. R., Payne, J. L., Kelsey, D. E., et al., 2012. High-Pressure Granulites at the Dawn of the Proterozoic. Geology, 40(5): 431–434. doi: 10.1130/g32854.1
[2] Anderson, L. J., Smith, R. D., 1995. The Effects of Temperature and fO2 on the Al-in-Hornblende Barometer. American Mineralogist, 80(5/6): 549–559. doi: 10.2138/am-1995-5-614
[3] Brown, M., 2007. Metamorphic Conditions in Orogenic Belts: A Record of Secular Change. International Geology Review, 49(3): 193–234. doi: 10.2747/0020-6814.49.3.193
[4] Brown, M., 2014. The Contribution of Metamorphic Petrology to Understanding Lithosphere Evolution and Geodynamics. Geoscience Frontiers, 5(4): 553–569. doi: 10.1016/j.gsf.2014.02.005
[5] Brown, M., Johnson, T., 2018. Secular Change in Metamorphism and the Onset of Global Plate Tectonics. American Mineralogist, 103(2): 181–196. doi: 10.2138/am-2018-6166
[6] Chen, S., Li, X.-P., Kong, F. M., et al., 2018a. Metamorphic Evolution and Zircon U-Pb Ages of the Nanshankou Mafic High Pressure Granulites from the Jiaobei Terrane, North China Craton. Journal of Earth Science, 29(5): 1219–1235. doi: 10.1007/s12583-017-0956-9
[7] Chen, S., Li, X.-P., Duan, W. Y., et al., 2018b. Petrological and Geochronological Study of Amphibolite from Jiaobei Terrane. Earth Science, 43(3): 716–732. doi: 10.3799/dqkx.2018.903 (in Chinese with English Abstract)
[8] Chopin, F., Schulmann, K., Štípská, P., et al., 2012. Microstructural and Metamorphic Evolution of a High-Pressure Granitic Orthogneiss during Continental Subduction (Orlica-Śnieżnik Dome, Bohemian Massif). Journal of Metamorphic Geology, 30(4): 347–376. doi: 10.1111/j.1525-1314.2011.00970.x
[9] Dong, J., Wei, C. J., Zhang, J. X., 2019. Ultra High Temperature Metamorphism of Mafic Granulites from South Altyn Orogen, West China: A Result from the Rapid Exhumation of Deeply Subducted Continental Crust. Journal of Metamorphic Geology, 37(3): 315–338. doi: 10.1111/jmg.12464
[10] Ernst, W. G., Liu, J., 1998. Experimental Phase-Equilibrium Study of Al-and Ti-Contents of Calcic Amphibole in MORB: A Semiquantitative Thermobarometer. American Mineralogist, 83(9/10): 952–969. doi: 10.2138/am-1998-9-1004
[11] Ernst, W. G., Liou, J. G., 2008. High- and Ultrahigh-Pressure Metamorphism: Past Results and Future Prospects. American Mineralogist, 93(11/12): 1771–1786. doi: 10.2138/am.2008.2940
[12] Fuhrman, M. L., Lindsley, D. H., 1988. Ternary-Feldspar Modeling and Thermometry. American Mineralogist, 73: 201–215
[13] Gerya, T. V., Perchuk, L. L., Triboulet, C., et al., 1997. Petrology of the Tumanshet Zonal Metamorphic Complex. Eastern Sayan Petrology, 5(6): 503–533
[14] Green, E. C. R., White, R. W., Diener, J. F. A., et al., 2016. Activity-Composition Relations for the Calculation of Partial Melting Equilibria in Metabasic Rocks. Journal of Metamorphic Geology, 34(9): 845–869. doi: 10.1111/jmg.12211
[15] Guo, J. H., O'Brien, P. J., Zhai, M. G., 2002. High-Pressure Granulites in the Sanggan Area, North China Craton: Metamorphic Evolution, P-T Paths and Geotectonic Significance. Journal of Metamorphic Geology, 20(8): 741–756. doi: 10.1046/j.1525-1314.2002.00401.x
[16] Guo, J. H., Sun, M., Chen, F. K., et al., 2005. Sm-Nd and SHRIMP U-Pb Zircon Geochronology of High-Pressure Granulites in the Sanggan Area, North China Craton: Timing of Paleoproterozoic Continental Collision. Journal of Asian Earth Sciences, 24(5): 629–642. doi: 10.1016/j.jseaes.2004.01.017
[17] Guo, J. H., Chen, Y., Peng, P., et al., 2006. Sapphirine Granulite from Daqingshan Area, Inner Mongolia 1.85 Ga Ultrahigh Temperature (UHT) Metamorphism. In: Proceedings of National Conference on Petrology and Geodynamics in China, Nanjing. 213–216 (in Chinese)
[18] Guo, J. H., Peng, P., Chen, Y., et al., 2012. UHT Sapphirine Granulite Metamorphism at 1.93–1.92 Ga Caused by Gabbronorite Intrusions: Implications for Tectonic Evolution of the Northern Margin of the North China Craton. Precambrian Research, 222/223: 124–142. doi: 10.1016/j.precamres.2011.07.020
[19] Guo, J. H., Zhai, M. G., Peng, P., et al., 2015. Paleoproterozoic Granulites in the North China Craton and Their Geological Implications. In: Precambrian Geology of China. Springer, Berlin, Heidelberg. 137–169. doi: 10.1007/978-3-662-47885-1_3
[20] Harley, S. L., 1984. An Experimental Study of the Partitioning of Fe and Mg between Garnet and Orthopyroxene. Contributions to Mineralogy and Petrology, 86(4): 359–373. doi: 10.1007/bf01187140
[21] Holland, T. J. B., Powell, R., 2003. Activity-Composition Relations for Phases in Petrological Calculations: An Asymmetric Multicomponent Formulation. Contributions to Mineralogy and Petrology, 145(4): 492–501. doi: 10.1007/s00410-003-0464-z
[22] Holland, T. J. B., Powell, R., 2011. An Improved and Extended Internally Consistent Thermodynamic Dataset for Phases of Petrological Interest, Involving a New Equation of State for Solids. Journal of Metamorphic Geology, 29(3): 333–383. doi: 10.1111/j.1525-1314.2010.00923.x
[23] Hu, Z. C., Liu, Y. S., Chen, L., et al., 2011. Contrasting Matrix Induced Elemental Fractionation in NIST SRM and Rock Glasses During Laser Ablation ICP-MS Analysis at High Spatial Resolution. Journal of Analytical Atomic Spectrometry, 26(2): 425–430. doi: 10.1039/c0ja00145g
[24] Huang, G. Y., Brown, M., Guo, J. H., et al., 2018. Challenges in Constraining the P-T Conditions of Mafic Granulites: An Example from the Northern Trans-North China Orogen. Journal of Metamorphic Geology, 36(6): 739–768. doi: 10.1111/jmg.12308
[25] Jiao, S. J., Fitzsimons, C. M., Guo, J. H., 2017. Paleoproterozoic UHT Metamorphism in the Daqingshan Terrane, North China Craton: New Constraints from Phase Equilibria Modeling and SIMS U-Pb Zircon Dating. Precambrian Research, 303: 208–227. doi: 10.1016/j.precamres.2017.03.024.
[26] Korhonen, F. J., Brown, M., Clark, C., et al., 2013. Osumilite-Melt Interactions in Ultrahigh Temperature Granulites: Phase Equilibria Modelling and Implications for the P-T-t Evolution of the Eastern Ghats Province, India. Journal of Metamorphic Geology, 31(8): 881–907. doi: 10.1111/jmg.12049
[27] Krogh, E. J., 1988. The Garnet-Clinopyroxene Fe-Mg Geothermometer—A Reinterpretation of Existing Experimental Data. Contributions to Mineralogy and Petrology, 99(1): 44–48. doi: 10.1007/bf00399364
[28] Leake, B. E., Woolley, A. R., Arps, C. E. S., et al., 1997. Nomenclature of Amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. American Mineralogist, 82(9): 1019–1037. doi: 10.1180/minmag.1997.061.405.13
[29] Liao, Y., Wei, C. J., 2019. Ultrahigh-Temperature Mafic Granulite in the Huai'an Complex, North China Craton: Evidence from Phase Equilibria Modelling and Amphibole Thermometers. Gondwana Research, 76: 62–76. doi: 10.1016/j.gr.2019.05.010
[30] Li, J. H., Zhai, M. G., Qian, X. L., et al., 1998. The Geological Occurrence, Regional Tectonic Setting and Exhumation of Late Archaean High-Pressure Granulite with the High Grade Metamorphic Terranes, North to Central Portion of North China Craton. Acta Petrologica Sinica, 14: 176–189 (in Chinese with English Abstract)
[31] Li, X.-P., Wang, H., Kong, F. M., 2019. Probe into the Genesis of High Temperature-Ultrahigh Temperature Metamorphism: The Enlightenment from the Western Khondalite Belt of the North China Craton and the Namaqua Mobile Belt and the Bushveld Metamorphic Complex of South Africa. Acta Petrologica Sinica, 35(2): 295–311. doi: 10.18654/1000-0569/2019.02.02 (in Chinese with English Abstract)
[32] Li, X.-P., Wang, X., Chen, S., et al., 2018. Petrology and Zircon U-Pb Dating of Meta-Calcsilicate from the Jiaobei Terrane in the Jiao-Liao-Ji Belt of the North China Craton. Precambrian Research, 313: 221–241. doi: 10.1016/j.precamres.2018.04.018
[33] Li, X.-P., Yang, Z. Y., Zhao, G. C., et al., 2011. Geochronology of Khondalite-Series Rocks of the Jining Complex: Confirmation of Depositional Age and Tectonometamorphic Evolution of the North China Craton. International Geology Review, 53(10): 1194–1211. doi: 10.1080/00206810903548984
[34] Li, X. W., Wei, C. J., 2016. Phase Equilibria Modelling and Zircon Age Dating of Pelitic Granulites in Zhaojiayao, from the Jining Group of the Khondalite Belt, North China Craton. Journal of Metamorphic Geology, 34(6): 595–615. doi: 10.1111/jmg.12195
[35] Li, X. W., Wei, C. J., 2018. Ultrahigh-Temperature Metamorphism in the Tuguiwula Area, Khondalite Belt, North China Craton. Journal of Metamorphic Geology, 36(4): 489–509. doi: 10.1111/jmg.12301
[36] Li, Y., Zhang, C., Liu, X. Y., et al., 2019. Metamorphism and Oceanic Crust Exhumation—Constrained by the Jilang Eclogite and Meta-Quartzite from the Sumdo (U)HP Metamorphic Belt. Journal of Earth Science, 30(3): 510–524. doi: 10.1007/s12583-019-0894-9
[37] Liu, H., Li, X.-P., Kong, F. M., et al., 2019. Ultra-High Temperature Overprinting of High Pressure Pelitic Granulites in the Huai'an Complex, North China Craton: Evidence from Thermodynamic Modeling and Isotope Geochronology. Gondwana Research, 72: 15–33. doi: 10.1016/j.gr.2019.02.003
[38] Liu, F., Guo, J. H., Peng, P., et al., 2012. Zircon U-Pb Ages and Geochemistry of the Huai'an TTG Gneisses Terrane: Petrogenesis and Implications for 2.5 Ga Crustal Growth in the North China Craton. Precambrian Research, 212/213: 225–244. doi: 10.1016/j.precamres.2012.06.006
[39] Liu, J. H., Liu, F. L., Ding, Z. J., et al., 2013. The Growth, Reworking and Metamorphism of Early Precambrian Crust in the Jiaobei Terrane, the North China Craton: Constraints from U-Th-Pb and Lu-Hf Isotopic Systematics, and REE Concentrations of Zircon from Archean Granitoid Gneisses. Precambrian Research, 224: 287–303. doi: 10.1016/j.precamres.2012.10.003
[40] Liu, T., Wei, C. J., 2018. Metamorphic Evolution of Archean Ultrahigh-Temperature Mafic Granulites from the Western Margin of Qian'an Gneiss Dome, Eastern Hebei Province, North China Craton: Insights into the Archean Tectonic Regime. Precambrian Research, 318: 170–187. doi: 10.1016/j.precamres.2018.10.007
[41] Liu, Y. S., Hu, Z. C., Zong, K. Q., et al., 2010. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535–1546. doi: 10.1007/s11434-010-3052-4
[42] Liu, Y. C., Wang, A. D., Rolfo, F., et al., 2009. Geochronological and Petrological Constraints on Palaeoproterozoic Granulite Facies Metamorphism in Southeastern Margin of the North China Craton. Journal of Metamorphic Geology, 27(2): 125–138. doi: 10.1111/j.1525-1314.2008.00810.x
[43] Liu, S. W., Zhao, G. C., Wilde, S. A., et al., 2006. Th-U-Pb Monazite Geochronology of the Lüliang and Wutai Complexes: Constraints on the Tectonothermal Evolution of the Trans-North China Orogen. Precambrian Research, 148(3/4): 205–224. doi: 10.1016/j.precamres.2006.04.003
[44] Ludwig, K. R., 2003. Users Manual for Isoplot/Ex (Rev. 2.49). Ageochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication No. 1a, Berkeley. 55
[45] Morimoto, N., 1988. Nomenclature of Pyroxenes. Mineralogy & Petrology, 39: 55–76. doi: 10.1007/bf01226262
[46] Newton, R. C., Perkins, D., 1982. Thermodynamic Calibration of Geobarometers Based on the Assemblages Garnet-Plagioclase-Orthopyroxene (Clinopyroxene)-Quartz. American Mineralogist, 67: 203–222
[47] Nickel, K. G., Brey, G. P., Kogarko, L., 1985. Orthopyroxene-Clinopyroxene Equilibria in the System CaO-MgO-Al2O3-SiO2 (CMAS): New Experimental Results and Implications for Two-Pyroxene Thermometry. Contributions to Mineralogy and Petrology, 91(1): 44–53. doi: 10.1007/bf00429426
[48] O'Brien, P. J., Walte, N., Li, J. H., 2005. The Petrology of Two Distinct Granulite Types in the Hengshan Mts, China, and Tectonic Implications. Journal of Asian Earth Sciences, 24(5): 615–627. doi: 10.1016/j.jseaes.2004.01.002
[49] Peng, P., Wang, X. P., Windley, B. F., et al., 2014. Spatial Distribution of 1 950–1 800 Ma Metamorphic Events in the North China Craton: Implications for Tectonic Subdivision of the Craton. Lithos, 202/203: 250–266. doi: 10.1016/j.lithos.2014.05.033
[50] Peng, P., Zhai, M. G., Guo, J. H., et al., 2007. Nature of Mantle Source Contributions and Crystal Differentiation in the Petrogenesis of the 1.78 Ga Mafic Dykes in the Central North China Craton. Gondwana Research, 12(1/2): 29–46. doi: 10.1016/j.gr.2006.10.022
[51] Peng, P., Zhai, M. G., Zhang, H. F., et al., 2005. Geochronological Constraints on the Paleoproterozoic Evolution of the North China Craton: SHRIMP Zircon Ages of Different Types of Mafic Dikes. International Geology Review, 47(5): 492–508. doi: 10.2747/0020-6814.47.5.492
[52] Perkins, D. III, Chipera, S. J., 1985. Garnet-Orthopyroxene-Plagioclase-Quartz Barometry: Refinement and Application to the English River Subprovince and the Minnesota River Valley. Contributions to Mineralogy and Petrology, 89(1): 69–80. doi: 10.1007/bf01177592
[53] Powell, R., Holland, T. J. B., 1988. An Internally Consistent Dataset with Uncertainties and Correlations: 3. Applications to Geobarometry, Worked Examples and a Computer Program. Journal of Metamorphic Geology, 6(2): 173–204. doi: 10.1111/j.1525-1314.1988.tb00415.x
[54] Prakash, D., Arima, M., Mohan, A., 2007. Ultrahigh-Temperature Mafic Granulites from Panrimalai, South India: Constraints from Phase Equilibria and Thermobarometry. Journal of Asian Earth Sciences, 29(1): 41–61. doi: 10.1016/j.jseaes.2006.01.002
[55] Qian, J. H., Wei, C. J., Clarke, G. L., et al., 2015. Metamorphic Evolution and Zircon Ages of Garnet-Orthoamphibole Rocks in Southern Hengshan, North China Craton: Insights into the Regional Paleoproterozoic P-T-t History. Precambrian Research, 256: 223–240. doi: 10.1016/j.precamres.2014.11.013
[56] Qian, J. H., Wei, C. J., 2016. P-T-t Evolution of Garnet Amphibolites in the Wutai-Hengshan Area, North China Craton: Insights from Phase Equilibria and Geochronology. Journal of Metamorphic Geology, 34(5): 423–446. doi: 10.1111/jmg.12186
[57] Qian, J. H., Wei, C. J., Yin, C. Q., 2017. Paleoproterozoic P-T-t Evolution in the Hengshan-Wutai-Fuping Area, North China Craton: Evidence from Petrological and Geochronological Data. Precambrian Research, 303: 91–104. doi: 10.1016/j.precamres.2017.02.016
[58] Santosh, M., Sajeev, K., Li, J. H., 2006. Extreme Crustal Metamorphism during Columbia Supercontinent Assembly: Evidence from North China Craton. Gondwana Research, 10(3/4): 256–266. doi: 10.1016/j.gr.2006.06.005
[59] Santosh, M., Tsunogae, T., Li, J. H., et al., 2007a. Discovery of Sapphirine-Bearing Mg-Al Granulites in the North China Craton: Implications for Paleoproterozoic Ultrahigh Temperature Metamorphism. Gondwana Research, 11(3): 263–285. doi: 10.1016/j.gr.2006.10.009
[60] Santosh, M., Wilde, S., Li, J., 2007b. Timing of Paleoproterozoic Ultrahigh-Temperature Metamorphism in the North China Craton: Evidence from SHRIMP U-Pb Zircon Geochronology. Precambrian Research, 159(3/4): 178–196. doi: 10.1016/j.precamres.2007.06.006
[61] Santosh, M., Kusky, T. M., 2010. Origin of Paired High Pressure-Ultrahigh-Temperature Orogens: A Ridge Subduction and Slab Window Model. Terra Nova, 22(1): 35–42. doi: 10.1111/j.1365-3121.2009.00914.x
[62] Santosh, M., Liu, S. J., Tsunogae, T., et al., 2012. Paleoproterozoic Ultrahigh-Temperature Granulites in the North China Craton: Implications for Tectonic Models on Extreme Crustal Metamorphism. Precambrian Research, 222/223: 77–106. doi: 10.1016/j.precamres.2011.05.003
[63] Santosh, M., Yang, Q. Y., Teng, X. M., et al., 2015. Paleoproterozoic Crustal Growth in the North China Craton: Evidence from the Lüliang Complex. Precambrian Research, 263: 197–231. doi: 10.1016/j.precamres.2015.03.015
[64] Santosh, M., Teng, X. M., He, X. F., et al., 2016. Discovery of Neoarchean Suprasubduction Zone Ophiolite Suite from Yishui Complex in the North China Craton. Gondwana Research, 38: 1–27. doi: 10.1016/j.gr.2015.10.017
[65] Shen, Q. H., Geng, Y. S., Song, H. X., 2018. Progress on Metamorphic Petrology and Metamorphic Geology of China in the Last nearly 70 Years. Earth Science, 43(1): 1–23. doi: 10.3799/dqkx.2018.001 (in Chinese with English Abstract)
[66] Shen, Q. H., Geng, Y. S., Song, H. X., 2014. Geological Characters, Metamorphic Ages, P-T Paths and Their Tectonic Settings of the Granulites in Phanerozoic Orogens, China. Acta Petrolei Sinica, 30: 2777–2807 (in Chinese with English Abstract) http://d.old.wanfangdata.com.cn/Periodical/ysxb98201410001
[67] Sun, G. M., Li, X.-P., Duan, W. Y., et al., 2018. Metamorphic Characteristics and Tectonic Implications of the Kadui Blueschist in the Central Yarlung Zangbo Suture Zone, Southern Tibet. Journal of Earth Science, 29(5): 1026–1039. doi: 10.1007/s12583-018-0854-9
[68] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313–345. doi: 10.1144/gsl.sp.1989.042.01.19
[69] Tang, L., Santosh, M., Tsunogae, T., et al., 2017. Petrology, Phase Equilibria Modelling and Zircon U-Pb Geochronology of Paleoproterozoic Mafic Granulites from the Fuping Complex, North China Craton. Journal of Metamorphic Geology, 35(5): 517–540. doi: 10.1111/jmg.12243
[70] Tang, L., Santosh, M., 2018. Neoarchean-Paleoproterozoic Terrane Assembly and Wilson Cycle in the North China Craton: An Overview from the Central Segment of the Trans-North China Orogen. Earth-Science Reviews, 182: 1–27. doi: 10.1016/j.earscirev.2018.04.010
[71] Tsunogae, T., Dunkley, D. J., Horie, K., et al., 2014. Petrology and SHRIMP Zircon Geochronology of Granulites from Vesleknausen, Lützow-Holm Complex, East Antarctica: Neoarchean Magmatism and Neoproterozoic High-Grade Metamorphism. Geoscience Frontiers, 5(2): 167–182. doi: 10.1016/j.gsf.2013.04.003
[72] Wang, H. Z., Zhang, H. F., Zhai, M. G., et al., 2016. Granulite Facies Metamorphism and Crust Melting in the Huai'an Terrane at ~1.95 Ga, North China Craton: New Constraints from Geology, Zircon U-Pb, Lu-Hf Isotope and Metamorphic Conditions of Granulites. Precambrian Research, 286: 126–151. doi: 10.1016/j.precamres.2016.09.012
[73] Wang, J., Wu, Y. B., Gao, S., et al., 2010. Zircon U-Pb and Trace Element Data from Rocks of the Huai'an Complex: New Insights into the Late Paleoproterozoic Collision between the Eastern and Western Blocks of the North China Craton. Precambrian Research, 178(1/2/3/4): 59–71. doi: 10.1016/j.precamres.2010.01.007
[74] Wang, L. J., Guo, J. H., Peng, P., et al., 2011. Metamorphic and Geochronological Study of Garnet-Bearing Basic Granulites from Gushan, the Eastern End of the Khondalite Belt in the North China Craton. Acta Petrolei Sinica, 27: 3689–3700 (in Chinese with English Abstract) http://d.old.wanfangdata.com.cn/Periodical/ysxb98201112015
[75] Wang, L. J., Guo, J. H., Peng, P., et al., 2015. Lithological Units at the Boundary Zone between the Jining and Huai'an Complexes (Central-Northern Margin of the North China Craton): A Paleoproterozoic Tectonic Mélange?. Lithos, 227: 205–224. doi: 10.1016/j.lithos.2015.04.006
[76] Wang, K. Y., Li, J. L., Hao, J., et al., 1996. The Wutaishan Orogenic Belt within the Shanxi Province, Northern China: A Record of Late Archaean Collision Tectonics. Precambrian Research, 78(1/2/3): 95–103. doi: 10.1016/0301-9268(95)00071-2
[77] Wang, S. J., Wang, L., Brown, M., et al., 2016. Multi-Stage Barite Crystallization in Partially Melted UHP Eclogite from the Sulu Belt, China. American Mineralogist, 101(3): 564–579. doi: 10.2138/am-2016-5384
[78] Wang, S. J., Wang, L., Brown, M., et al., 2017. Fluid Generation and Evolution during Exhumation of Deeply Subducted UHP Continental Crust: Petrogenesis of Composite Granite-Quartz Veins in the Sulu Belt, China. Journal of Metamorphic Geology, 35(6): 601–629. doi: 10.1111/jmg.12248
[79] Wang, S. J., Li, X.-P., Schertl, H. P., et al., 2019a. Petrogenesis of Early Cretaceous Andesite Dykes in the Sulu Orogenic Belt, Eastern China. Mineralogy and Petrology, 113(1): 77–97. doi: 10.1007/s00710-018-0636-1
[80] Wang, S. J., Schertl, H. P., Pang, Y. M., 2019b. Geochemistry, Geochronology and Sr-Nd-Hf Isotopes of Two Types of Early Cretaceous Granite Porphyry Dykes in the Sulu Orogenic Belt, Eastern China. Canadian Journal of Earth Sciences. doi: 10.1139/cjes-2019-0003
[81] Wei, C. J., 2018. Paleoproterozoic Metamorphism and Tectonic Evolution in Wutai-Hengshan Region, Trans-North China Orogen. Earth Science. 43: 24–43. doi: 10.3799/dqkx.2018.002 (in Chinese with English Abstract)
[82] Wei, C. J., Powell, R., 2004. Calculated Phase Relations in High-Pressure Metapelites in the System NKFMASH (Na2O-K2O-FeO-MgO-Al2O3-SiO2-H2O). Journal of Petrology, 45(1): 183–202. doi: 10.1093/petrology/egg085
[83] Wei, C. J., Qian, J. H., Zhou, X. W., 2014. Paleoproterozoic Crustal Evolution of the Hengshan-Wutai-Fuping Region, North China Craton. Geoscience Frontiers, 5(4): 485–497. doi: 10.1016/j.gsf.2014.02.008
[84] White, R. W., Powell, R., Holland, T. B., et al., 2000. The Effect of TiO2 and Fe2O3 on Metapelitic Assemblages at Greenschist and Amphibolite Facies Conditions: Mineral Equilibria Calculations in the System K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3. Journal of Metamorphic Geology, 18(5): 497–511. doi: 10.1046/j.1525-1314.2000.00269.x
[85] Whitney, D. L., Evans, B. W., 2010. Abbreviations for Names of Rock-Forming Minerals. American Mineralogist, 95(1): 185–187. doi: 10.2138/am.2010.3371
[86] White, R. W., Powell, R., Holland, T. J. B., et al., 2014. New Mineral Activity-Composition Relations for Thermodynamic Calculations in Metapelitic Systems. Journal of Metamorphic Geology, 32(3): 261–286. doi: 10.1111/jmg.12071
[87] Wu, J. L., Zhang, H. F., Zhai, M. G., et al., 2016. Discovery of Pelitic High-Pressure Granulite from Manjinggou of the Huai'an Complex, North China Craton: Metamorphic P-T Evolution and Geological Implications. Precambrian Research, 278: 323–336. doi: 10.1016/j.precamres.2016.03.001
[88] Yang, C., Wei, C. J., 2017. Ultrahigh Temperature (UHT) Mafic Granulites in the East Hebei, North China Craton: Constraints from a Comparison between Temperatures Derived from REE-Based Thermometers and Major Element-Based Thermometers. Gondwana Research, 46: 156–169. doi: 10.1016/j.gr.2017.02.017
[89] Yang, J. H., Wu, F. Y., Wilde, S. A., et al., 2008. Mesozoic Decratonization of the North China Block. Geology, 36(6): 467–470. doi: 10.1130/g24518a.1
[90] Yoshino, T., Yamamoto, H., Okudaira, T., et al., 1998. Crustal Thickening of the Lower Crust of the Kohistan Arc (N. Pakistan) Deduced from Al Zoning in Clinopyroxene and Plagioclase. Journal of Metamorphic Geology, 16(6): 729–748. doi: 10.1111/j.1525-1314.1998.00168.x
[91] Zhai, M. G., Guo, J. H., Yan, Y. H., 1992. Discovery and Preliminary Study of the Archean High-Pressure Granulites in the North China. Science in China, 12: 1325–1330 (in Chinese)
[92] Zhai, M. G., 2009. Two Kinds of Granulites (HT-HP and HT-UHT) in North China Craton: Their Genetic Relation and Geo Tectonic Implications. Acta Petrolei Sinica, 25: 1753–1771 (In Chinese with English Abstract)
[93] Zhai, M. G., Santosh, M., 2011. The Early Precambrian Odyssey of the North China Craton: A Synoptic Overview. Gondwana Research, 20(1): 6–25. doi: 10.1016/j.gr.2011.02.005
[94] Zhang, D. D., Guo, J. H., Tian, Z. H., et al., 2016. Metamorphism and P-T Evolution of High Pressure Granulite in Chicheng, Northern Part of the Paleoproterozoic Trans-North China Orogen. Precambrian Research, 280: 76–94. doi: 10.1016/j.precamres.2016.04.009
[95] Zhang, H. F., Wang, H. Z., Santosh, M., et al., 2016. Zircon U-Pb Ages of Paleoproterozoic Mafic Granulites from the Huai'an Terrane, North China Craton (NCC): Implications for Timing of Cratonization and Crustal Evolution History. Precambrian Research, 272: 244–263. doi: 10.1016/j.precamres.2015.11.004
[96] Zhang, Y. C., Li, X.-P., Sun, G. M., et al., 2019. Metamorphic Petrology of Clinopyroxene Amphibolite from the Xigaze Ophiolite, Southern Tibet: P-T Constraints and Phase Equilibrium Modeling. Journal of Earth Science, 30(3): 549–562. doi: 10.1007/s12583-019-1222-0
[97] Zhang, Y. H., Wei, C. J., Tian, W., et al., 2013. Reinterpretation of Metamorphic Age of the Hengshan Complex, North China Craton. Chinese Science Bulletin, 58(34): 4300–4307. doi: 10.1007/s11434-013-5993-x
[98] Zhao, G. C., Cawood, P. A., Wilde, S. A., et al., 2000. Metamorphism of Basement Rocks in the Central Zone of the North China Craton: Implications for Paleoproterozoic Tectonic Evolution. Precambrian Research, 103(1): 55–88. doi: 10.1016/S0301-9268(00)00076-0
[99] Zhao, G. C., Sun, M., Wilde, S. A., et al., 2005. Late Archean to Paleoproterozoic Evolution of the North China Craton: Key Issues Revisited. Precambrian Research, 136(2): 177–202. doi: 10.1016/j.precamres.2004.10.002.
[100] Zhao, G. C., Wilde, S. A., Sun, M., et al., 2006. SHRIMP U-Pb Zircon Geochronology of the Huai'an Complex: Constraints on Late Archean to Paleoproterozoic Crustal Accretion and Collision of the Trans-North China Orogen. Geochimica et Cosmochimica Acta, 70: A740. doi: 10.1016/j.gca.2006.06.1332
[101] Zhao, G. C., 2009. Metamorphic Evolution of Major Tectonicunits in the Basement of the North China Craton: Key Issues and Discussion. Acta Petrologica Sinica, 25(8): 1772–1792 (in Chinese with English Abstract)
[102] Zhao, G. C., Cawood, P. A., Wilde, S. A., et al., 2001. High-Pressure Granulites (Retrograded Eclogites) from the Hengshan Complex, North China Craton: Petrology and Tectonic Implications. Journal of Petrology, 42(6): 1141–1170. doi: 10.1093/petrology/42.6.1141
[103] Zhao, G. C., Wilde, S. A., Guo, J. H., et al., 2010. Single Zircon Grainsrecord Two Continental Collisional Events in the North China Craton. Precambrian Research 177(3/4): 266–276. doi: 10.1016/j.precamres.2009.12.007
[104] Zhao, G. C., Cawood, P. A., Li, S. Z., et al., 2012. Amalgamation of the North China Craton: Key Issues and Discussion. Precambrian Research, 222/223: 55–76. doi: 10.1016/j.precamres.2012.09.016
[105] Zhao, G. C., Zhai, M. G., 2013. Lithotectonic Elements of Precambrian Basement in the North China Craton: Review and Tectonic Implications. Gondwana Research, 23(4): 1207–1240. doi: 10.1016/j.gr.2012.08.016