[1] Abily, B., Ceuleneer, G., Launeau, P., 2011. Synmagmatic Normal Faulting in the Lower Oceanic Crust:Evidence from the Oman Ophiolite. Geology, 39(4):391-394. https://doi.org/10.1130/g31652.1
[2] Acquafredda, P., Caggianelli, A., Piccarreta, G., 1992. Late Magmatic to Subsolidus Coronas in Gabbroic Rocks from the Sila Massif (Calabria, Italy). Mineralogy and Petrology, 46(3):229-238. https://doi.org/10.1007/bf01164648
[3] Ambler, E. P., Ashley, P. M., 1977. Vermicular Orthopyroxene-Magnetite Symplectites from the Wateranga Layered Mafic Intrusion, Queensland, Australia. Lithos, 10(3):163-172. https://doi.org/10.1016/0024-4937(77)90044-5
[4] Baltatzis, E., Skounakis, S., 1990. Coronas in Olivine-Gabbros from La-vanovo Village, Northern Pindos, Greece. Chemie der Erde-Geochemistry, 50:297-302
[5] Barton, M., Gaans, C. V., 1988. Formation of Orthopyroxene-Fe-Ti Oxide Symplectites in Precambrian Intrusives, Rogaland, Southwestern Nor-way. American Mineralogist, 73(9/10):1046-1059 http://www.minsocam.org/ammin/AM73/AM73_1046.pdf
[6] Bucher, K., Grapes, R., 2009. The Eclogite-Facies Allalin Gabbro of the Zermatt-Saas Ophiolite, Western Alps:A Record of Subduction Zone Hydration. Journal of Petrology, 50(8):1405-1442. https://doi.org/10.1093/petrology/egp035
[7] Chen, C., Yuan, J. L., Kong, L. Y., et al., 2018. Documentation of Early Paleozoic Mafic Dykes in the Dahongshan Region, Northern Yangze Block and Its Geological Significance. Earth Science, 43(7):2370-2388 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201807013.htm
[8] Chen, S., Li, X. P., Kong, F. M., et al., 2018. Metamorphic Evolution and Zircon U-Pb Ages of the Nanshankou Mafic High Pressure Granulites from the Jiaobei Terrane, North China Craton. Journal of Earth Science, 29(5):1219-1235. https://doi.org/10.1007/s12583-017-0956-9
[9] Cheng, C., Xia, B., Zheng, H., et al., 2018. Chronology, Geochemistry and Tectonic Significance of Daba Ophiolites in Western Segment of Yarlung Zangbo Suture Zone, Tibet. Earth Science, 43(4):975-990 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201804004.htm
[10] Claeson, D. T., 1998. Coronas, Reaction Rims, Symplectites and Emplacement Depth of the Rymmen Gabbro, Transscandinavian Igneous Belt, Southern Sweden. Mineralogical Magazine, 62(6):743-757. https://doi.org/10.1180/002646198548133
[11] Coombs, M. L., Gardner, J. E., 2004. Reaction Rim Growth on Olivine in Silicic Melts:Implications for Magma Mixing. American Mineralogist, 89(5/6):748-758. https://doi.org/10.2138/am-2004-5-608
[12] Cruciani, G., Franceschelli, M., Groppo, C., et al., 2008. Formation of Clinopyroxene+Spinel and Amphibole+Spinel Symplectites in Coro-nitic Gabbros from the Sierra de San Luis (Argentina):A Key to Post-Magmatic Evolution. Journal of Metamorphic Geology, 26(7):759-774. https://doi.org/10.1111/j.1525-1314.2008.00786.x
[13] de Haas, G. J. L., Nijland, T. G., Valbracht, P. J., et al., 2002. Magmatic versus Metamorphic Origin of Olivine-Plagioclase Coronas. Contribu-tions to Mineralogy and Petrology, 143(5):537-550. https://doi.org/10.1007/s00410-002-0362-9
[14] Deng, H., Peng, S. B., Polat, A., et al., 2017. Neoproterozoic IAT Intrusion into Mesoproterozoic MOR Miaowan Ophiolite, Yangtze Craton:Evi-dence for Evolving Tectonic Settings. Precambrian Research, 289:75-94. https://doi.org/10.1016/j.precamres.2016.12.003
[15] Dirksen, O., Humphreys, M. C. S., Pletchov, P., et al., 2006. The 2001-2004 Dome-Forming Eruption of Shiveluch Volcano, Kamchatka:Observation, Petrological Investigation and Numerical Modelling. Journal of Volcanology and Geothermal Research, 155(3/4):201-226. https://doi.org/10.1016/j.jvolgeores.2006.03.029
[16] Efimov, A. A., Malitch, K. N., 2012. Magnetite-Orthopyroxene Symplectites in Gabbros of the Urals:A Structural Track of Olivine Oxidation. Geology of Ore Deposits, 54(7):531-539. https://doi.org/10.1134/s1075701511070075
[17] England, R. N., 1974. Corona Structures Formed by Near-Isochemical Reaction between Olivine and Plagioclase in a Metamorphosed Dolerite. Mineralogical Magazine, 39(307):816-818. https://doi.org/10.1180/minmag.1974.039.307.11
[18] Faryad, S. W., Kachlík, V., Sláma, J., et al., 2015. Implication of Corona Formation in a Metatroctolite to the Granulite Facies Overprint of HP-UHP Rocks in the Moldanubian Zone (Bohemian Massif). Journal of Metamorphic Geology, 33(3):295-310. https://doi.org/10.1111/jmg.12121
[19] Gao, S., Yang, J., Zhou, L., et al., 2011. Age and Growth of the Archean Kongling Terrain, South China, with Emphasis on 3.3 Ga Granitoid Gneisses. American Journal of Science, 311(2):153-182. https://doi.org/10.2475/02.2011.03
[20] Gardner, P. M., Robins, B., 1974. The Olivine-Plagioclase Reaction:Geological Evidence from the Seiland Petrographic Province, Northern Norway. Contributions to Mineralogy and Petrology, 44(2):149-156. https://doi.org/10.1007/bf00385787
[21] Goode, A. D. T., 1974. Oxidation of Natural Olivines. Nature, 248(5448):500-501. https://doi.org/10.1038/248500a0
[22] Grant, S. M., 1988. Diffusion Models for Corona Formation in Metagabbros from the Western Grenville Province, Canada. Contributions to Miner-alogy and Petrology, 98(1):49-63. https://doi.org/10.1007/bf00371909
[23] Hammarstrom, J. M., Zen, E., 1986. Aluminum in Hornblende:An Empirical Igneous Geobarometer. American Mineralogist, 71(11):1297-1313. https://doi.org/10.1180/minmag.1986.050.358.28
[24] Han, Q. S., Peng, S. B., Kusky, T., et al., 2017. A Paleoproterozoic Ophiolitic Mélange, Yangtze Craton, South China:Evidence for Paleoproterozoic Suturing and Microcontinent Amalgamation. Precambrian Research, 293:13-38. https://doi.org/10.1016/j.precamres.2017.03.004
[25] Haselton, J. D., Nash, W. P., 1975. Ilmenite-Orthopyroxene Intergrowths from the Moon and the Skaergaard Intrusion. Earth and Planetary Science Letters, 26(3):287-291. https://doi.org/10.1016/0012-821x(75)90003-5
[26] Helz, R. T., 1973. Phase Relations of Basalts in Their Melting Range at PH2O=5 kb as a Function of Oxygen Fugacity. Part Ⅰ. Mafic Phases. Journal of Petrology, 14(2):249-302. https://doi.org/10.1093/petrology/14.2.249
[27] Holness, M. B., Stripp, G., Humphreys, M. C. S., et al., 2011. Silicate Liquid Immiscibility within the Crystal Mush:Late-Stage Magmatic Microstructures in the Skaergaard Intrusion, East Greenland. Journal of Petrology, 52(1):175-222. https://doi.org/10.1093/petrology/egq077
[28] Ikeda, T., Nishiyama, T., Yamada, S., et al., 2007. Microstructures of Olivine-Plagioclase Corona in Meta-Ultramafic Rocks from Sefuri Mountains, NW Kyushu, Japan. Lithos, 97(3/4):289-306. https://doi.org/10.1016/j.lithos.2006.12.016
[29] Jiang, X. F., 2014. Genesis and Tectonic Significance of the Miaowan Ophiolite Complex in the Huangling Anticline, Yangtze Craton: [Dis-sertation]. China University of Geosciences, Wuhan. 168 (in Chinese with English Abstract)
[30] Jiang, X. F., Peng, S. B., Kusky, T. M., et al., 2018. Petrogenesis and Geotectonic Significance of Early-Neoproterzoic Olivine-Gabbro within the Yangtze Craton:Constrains from the Mineral Composition, U-Pb Age and Hf Isotopes of Zircons. Journal of Earth Science, 29(1):93-102. https://doi.org/10.1007/s12583-018-0821-5
[31] Jiang, X. F., Peng, S. B., Polat, A., et al., 2016. Geochemistry and Geo-chronology of Mylonitic Metasedimentary Rocks Associated with the Proterozoic Miaowan Ophiolite Complex, Yangtze Craton, China:Im-plications for Geodynamic Events. Precambrian Research, 279:37-56. https://doi.org/10.1016/j.precamres.2016.04.004
[32] Joesten, R., 1986. The Role of Magmatic Reaction, Diffusion and Annealing in the Evolution of Coronitic Microstructure in Troctolitic Gabbro from Risör, Norway. Mineralogical Magazine, 50(357):441-467. https://doi.org/10.1180/minmag.1986.050.357.08
[33] Keeditse, M., Rajesh, H. M., Belyanin, G. A., et al., 2016. Primary Mag-matic Amphibole in Archaean Meta-Pyroxenite from the Central Zone of the Limpopo Complex, South Africa. South African Journal of Geology, 119(4):607-622. https://doi.org/10.2113/gssajg.119.4.607
[34] Kendrick, J. L., Jamieson, R. A., 2016. The Fate of Olivine in the Lower Crust:Pseudomorphs after Olivine in Coronitic Metagabbro from the Grenville Orogen, Ontario. Lithos, 260:356-370. https://doi.org/10.1016/j.lithos.2016.06.002
[35] Kretz, R., 1983. Symbols for Rock Forming Minerals. American Mineralo-gist, 68:277-279. https://doi.org/10.1016/0040-1951(84)90122-7
[36] Leake, B. E., Woolley, A. R., Arps, C. E. S., et al., 1997. Nomenclature of Amphiboles:Report of the Subcommittee on Amphiboles of the Inter-national Mineralogical Association Commission on New Minerals and Mineral Names. European Journal of Mineralogy, 9(3):623-651. https://doi.org/10.1127/ejm/9/3/0623
[37] Ma, D. Q., Du, S. H., Xiao, Z. F., 2002. The Origin of Huangling Granite Batholith. Acta Petrologica et Mineralogica, 21(2):151-161 (in Chi-nese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW200202008.htm
[38] Ma, D. Q., Li, Z. C., Xiao, Z. F., 1997. The Constitute, Geochronology and Geologic Evolution of the Kongling Complex, Western Hubei. Acta Geoscientia Sinica, 18(3):233-241 (in Chinese with English Abstract)
[39] Mason, R., 1967. Electron-Probe Microanalysis of Coronas in a Troctolite from Sulitjelma, Norway. Mineralogical Magazine, 36(280):504-514. https://doi.org/10.1180/minmag.1967.036.280.04
[40] Mercier, J. C., 1976. Single-Pyroxene Geothermometry and Geobarometry. American Mineralogist, 61:603-615 http://www.minsocam.org/ammin/AM61/AM61_603.pdf
[41] Meurer, W. P., Claeson, D. T., 2002. Evolution of Crystallizing Interstitial Liquid in an Arc-Related Cumulate Determined by LA ICP-MS Mapping of a Large Amphibole Oikocryst. Journal of Petrology, 43(4):607-629. https://doi.org/10.1093/petrology/43.4.607
[42] Mongkoltip, P., Ashworth, J. R., 1983. Quantitative Estimation of an Open-System Symplectite-Forming Reaction:Restricted Diffusion of Al and Si in Coronas around Olivine. Journal of Petrology, 24(4):635-661. https://doi.org/10.1093/petrology/24.4.635
[43] Muir, I. D., Tilley, C. E., 1957. Contribution to the Petrology of Hawaiian Basalts, 1. The Picrite Basalts of Kilauea. American Journal of Science, 255(4):241-253 doi: 10.2475/ajs.255.4.241
[44] Nilsen, O., 1973. Petrology of the Hyllingen Gabbro Complex, Sør-Trøndelag, Norway. Norsk Geologisk Tidsskrift, 53:213-231
[45] Otten, M. T., 1984. The Origin of Brown Hornblende in the Artfjället Gabbro and Dolerites. Contributions to Mineralogy and Petrology, 86(2):189-199. https://doi.org/10.1007/bf00381846
[46] Peng, S. B., Kusky, T. M., Jiang, X. F., et al., 2012. Geology, Geochemistry, and Geochronology of the Miaowan Ophiolite, Yangtze Craton:Impli-cations for South China's Amalgamation History with the Rodinian Supercontinent. Gondwana Research, 21(2/3):577-594. https://doi.org/10.1016/j.gr.2011.07.010
[47] Peng, S. B., Li, C. N., Kusky, T. M., et al., 2010. Discovery and Its Tectonic Significance of the Proterozoic Miaowan Ophiolites in the Southern Huangling Anticline, Western Hubei, China. Geological Bulletin of China, 29(1):8-20 (in Chinese with English Abstract)
[48] Pognante, U., Kienast, J. R., 1987. Blueschist and Eclogite Transformations in Fe-Ti Gabbros:A Case from the Western Alps Ophiolites. Journal of Petrology, 28(2):271-292. https://doi.org/10.1093/petrology/28.2.271
[49] Polat, A., Fryer, B. J., Samson, I. M., et al., 2012. Geochemistry of Ultramafic Rocks and Hornblendite Veins in the Fiskenæsset Layered Anorthosite Complex, SW Greenland:Evidence for Hydrous Upper Mantle in the Archean. Precambrian Research, 214/215:124-153. https://doi.org/10.1016/j.precamres.2011.11.013
[50] Turner, S. P., Stüwe, K., 1992. Low-Pressure Corona Textures between Olivine and Plagioclase in Unmetamorphosed Gabbros from Black Hill, South Australia. Mineralogical Magazine, 56(385):503-509. https://doi.org/10.1180/minmag.1992.056.385.06
[51] van Lamoen, H., 1979. Coronas in Olivine Gabbros and Iron Ores from Susimäki and Riuttamaa, Finland. Contributions to Mineralogy and Petrology, 68(3):259-268. https://doi.org/10.1007/bf00371546
[52] Wu, Y. B., Gao, S., Zhang, H. F., et al., 2012. Geochemistry and Zircon U-Pb Geochronology of Paleoproterozoic Arc Related Granitoid in the Northwestern Yangtze Block and Its Geological Implications. Pre-cambrian Research, 200-203:26-37. https://doi.org/10.1016/j.precamres.2011.12.015
[53] Wu, Y., Chen, S. Y., Qin, M. K., et al., 2018. Zircon U-Pb Ages of Dongcuo Ophiolite in Western Bangonghu-Nujiang Suture Zone and Their Geo-logical Significance. Earth Science, 43(4):1070-1087 (in Chinese with English Abstract) http://d.old.wanfangdata.com.cn/Periodical/dqkx201804010
[54] Xia, B., Yang, Q., Chen, N. S., et al., 2018. Phase Equilibrium Modeling of Retrograded Eclogite at the Kekesu Valley, Eastern Segment of SW Tianshan Orogen and Tectonic Implications. Journal of Earth Science, 29(5):1060-1073. https://doi.org/10.1007/s12583-018-0844-y
[55] Xie, Q. H., Zhang, Z. C., Cheng, Z. G., et al., 2017. Interstitial Microstructures in Ji'nan Mafic Intrusion, North China Craton:Magmatic or Hydrothermal Origin?. European Journal of Mineralogy, 29(5):839-850. https://doi.org/10.1127/ejm/2017/0029-2656
[56] Zeck, H. P., Shenouda, H. H., Rønsbo, J. G., et al., 1982. Hypersthene-Ilmenite (Magnetite) Symplectites in Coronitic Olivine-Gabbronorites. Lithos, 15(3):173-182. https://doi.org/10.1016/0024-4937(82)90008-1
[57] Zhang, L. J., Ma, C. Q., Wang, L. X., et al., 2011. Discovery of Paleoproterozoic Rapakivi Granite on the Northern Margin of the Yangtze Block and Its Geological Significance. Chinese Science Bulletin, 56(3):306-318. https://doi.org/10.1007/s11434-010-4236-7
[58] Zhang, S. B., Zheng, Y. F., 2013. Formation and Evolution of Precambrian Continental Lithosphere in South China. Gondwana Research, 23(4):1241-1260. https://doi.org/10.1016/j.gr.2012.09.005
[59] Zhang, Z. C., Hou, T., Li, H. M., et al., 2014. Enrichment Mechanism of Iron in Magmatic-Hydrothermal System. Acta Petrologica Sinica, 30 (5):1189-1204 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201405001.htm
[60] Zhong, X., Xi, A. H., Ge, Y. H. et al., 2018. Crystallization Sequence of Minerals and Origin of the Fe-Ti-V Oxide Ores from the Baima Layered Intrusion in the Panxi Area. Acta Mineralogica Sinica, 38(4):449-461 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-KWXB201804012.htm