[1] Barsukov, V. L., Grigorian, S. V., Ovchinnikov, L. N., 1981. Geochemical Methods of Ore Deposit Prospecting. Science Publishing House, Moscow. 317 (in Russian)
[2] Chen, Y. L., Lu, L. J., Li, X. B., 2014. Application of Continuous Restricted Boltzmann Machine to Identify Multivariate Geochemical Anomaly. Journal of Geochemical Exploration, 140: 56-63. https://doi.org/10.1016/j.gexplo.2014.02.013
[3] Chen, Y., 1987. Geochemical Characteristics and Geochemical Prospecting of Gold in the Western Junggar Au Metallogenic Belt: [Dissertation]. Changchun College of Geology, Changchun (in Chinese with English Abstract)
[4] Cheng, Q. M., 2007. Mapping Singularities with Stream Sediment Geochemical Data for Prediction of Undiscovered Mineral Deposits in Gejiu, Yunnan Province, China. Ore Geology Reviews, 32(1/2): 314-324. https://doi.org/10.1016/j.oregeorev.2006.10.002
[5] Cheng, Q. M., 2012. Singularity Theory and Methods for Mapping Geochemical Anomalies Caused by Buried Sources and for Predicting Undiscovered Mineral Deposits in Covered Areas. Journal of Geochemical Exploration, 122: 55-70. https://doi.org/10.1016/j.gexplo.2012.07.007
[6] Cheng, Q. M., 2014. Vertical Distribution of Elements in Regolith over Mineral Deposits and Implications for Mapping Geochemical Weak Anomalies in Covered Areas. Geochemistry: Exploration, Environment, Analysis, 14(3): 277-289. https://doi.org/10.1144/geochem2012-174
[7] Cheng, Q. M., Agterberg, F. P., Ballantyne, S. B., 1994. The Separation of Geochemical Anomalies from Background by Fractal Methods. Journal of Geochemical Exploration, 51(2): 109-130. https://doi.org/10.1016/0375-6742(94)90013-2
[8] Cheng, Q. M., Xu, Y. G., Grunsky, E., 1999. Integrated Spatial and Spectral Analysis for Geochemical Anomaly Separation. In: Lippard S. J., Naess, A., Sinding-Larsen, R., eds., Proceedings of the Fifth Annual Conference of the International Association for Mathematical Geology. August 6-11, Trondheim. 87-92
[9] Cheng, Q. M., Xu, Y. G., Grunsky, E., 2000. Integrated Spatial and Spectrum Method for Geochemical Anomaly Separation. Natural Resources Research, 9: 43-52. https://doi.org/10.1023/a:1010109829861
[10] Cheng, Y. B., Mao, J. W., 2010. Age and Geochemistry of Granites in Gejiu Area, Yunnan Province, SW China: Constraints on Their Petrogenesis and Tectonic Setting. Lithos, 120(3/4): 258-276. https://doi.org/10.1016/j.lithos.2010.08.013
[11] Cheng, Y. B., Mao, J. W., Chang, Z. S., et al., 2013. The Origin of the World Class Tin-Polymetallic Deposits in the Gejiu District, SW China: Constraints from Metal Zoning Characteristics and 40Ar-39Ar Geochronology. Ore Geology Reviews, 53: 50-62. https://doi.org/10.1016/j.oregeorev.2012.12.008
[12] China Geological Survey, 2016. China Geochemical Survey Report 2016. China Geological Survey, Beijing (in Chinese)
[13] de Caritat, P., Reimann, C., 2012. Comparing Results from Two Continental Geochemical Surveys to World Soil Composition and Deriving Predicted Empirical Global Soil (PEGS2) Reference Values. Earth and Planetary Science Letters, 319/320: 269-276. https://doi.org/10.1016/j.epsl.2011.12.033
[14] de Mulder, E. F. J., Cheng, Q. M., Agterberg, F., et al., 2016. New and Game-Changing Developments in Geochemical Exploration. Episodes, 39(1): 70-71. https://doi.org/10.18814/epiiugs/2016/v39i1/010
[15] De Vos, W., Tarvainen, T., Salminen, R., et al., 2006. Geochemical Atlas of Europe. Part 2-Interpretation of Geochemical Maps, Additional Tables, Figures, Maps, and Related Publications. Geological Survey of Finland, Espoo. 692
[16] Egozcue, J. J., Pawlowsky-Glahn, V., Mateu-Figueras, G., et al., 2003. Isometric Logratio Transformations for Compositional Data Analysis. Mathematical Geology, 35: 279-300. https://doi.org/10.1023/a:1023818214614
[17] Fawcett, T., 2006. An Introduction to ROC Analysis. Pattern Recognition Letters, 27(8): 861-874. https://doi.org/10.1016/j.patrec.2005.10.010
[18] Ge, C. H., Han, F., Zou, T. R., et al., 1981. Geological Characteristics of the Makeng Iron Deposit of Marine Volcano-Sedimentary Origin. Acta Geosicientia Sinica, 3: 47-69 (in Chinese with English Abstract) http://www.researchgate.net/publication/283995417_Geological_characteristics_of_the_Makeng_iron_deposit_of_marine_volcano-sedimentary_origin
[19] Gonçalves, M. A., Mateus, A., 2019. Delimiting Geochemical Anomalies in the Exploration of Covered Deposits with Multifractal Methods and Using Stream Sediment Data from the Iberian Pyrite Belt, Southwest Iberia. Ore Geology Reviews, 112: 103018. https://doi.org/10.1016/j.oregeorev.2019.103018
[20] Gong, Q. J., Yan, T. T., Li, J. Z., et al., 2016. Experimental Simulation of Element Mass Transfer and Primary Halo Zone on Water-Rock Interaction. Applied Geochemistry, 69: 1-11. https://doi.org/10.1016/j.apgeochem.2016.04.001
[21] Govett, G. J. S., 1983. Handbook of Exploration Geochemistry. Vol. 3. Rock Geochemistry in Mineral Exploration. Elsevier, Amsterdam. 461
[22] Grunsky, E. C., 2010. The Interpretation of Geochemical Survey Data. Geochemistry: Exploration, Environment, Analysis, 10(1): 27-74. https://doi.org/10.1144/1467-7873/09-210
[23] Han, F., Ge, C. H., 1983. Geological and Geochemical Features of Submarine Volcanic Hydrothermal-Sedimentary Mineralization of Makeng Iron Deposit, Fujian Province. Bulletin of the Institute of Mineral Deposits Chinese Academy of Geological Sciences, 7: 1-118 (in Chinese with English Abstract) http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDJ198300008010.htm
[24] Hawkes, H. E., 1957. Principles of Geochemical Prospecting. U.S. Geological Survey, Washington D. C. 225-355
[25] Hawkes, H. E., Webb, J. S., 1962. Geochemistry in Mineral Exploration. Harper and Row, New York
[26] Lecumberri-Sanchez, P., Vieira, R., Heinrich, C. A., et al., 2017. Fluid-Rock Interaction is Decisive for the Formation of Tungsten Deposits. Geology, 45(7): 579-582. https://doi.org/10.1130/g38974.1
[27] Li, F., 1993. Geochemical Characteristics and Indicative Significance of Barium in Two Types of Deposits. Geological Science and Technology Information, 12: 68-72 (in Chinese with English Abstract) http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ199303012.htm
[28] Liu, Y. P., Ma, S. M., Zhu, L. X., et al., 2016. The Multi-Attribute Anomaly Structure Model: An Exploration Tool for the Zhaojikou Epithermal Pb-Zn Deposit, China. Journal of Geochemical Exploration, 169: 50-59. https://doi.org/10.1016/j.gexplo.2016.07.006
[29] Ma, S. M., Zhu, L. X., Liu, C. M., et al., 2013. Anomaly Models of Spatial Structures for Copper-Molybdenum Ore Deposits and Their Application. Acta Geologica Sinica-English Edition, 87(3): 843-857. https://doi.org/10.1111/1755-6724.12093
[30] Mao, J. W., Cheng, Y. B., Guo, C. L., et al., 2008. Gejiu Tin Polymetallic Ore-Field: Deposit Model and Discussion. Acta Geologica Sinica, 81: 1456-1468 (in Chinese with English Abstract) http://www.researchgate.net/publication/285875153_Gejiu_tin_polymetallic_Ore-Field_Deposit_model_and_discussion_for_several_points_concerned?ev=auth_pub
[31] Matheron, G., 1962. Traité de Géostatistique Appliquée. Editions Technip, Paris
[32] Reimann, C., de Caritat, P., GEMAS Project Team, et al., 2012. New Soil Composition Data for Europe and Australia: Demonstrating Comparability, Identifying Continental-Scale Processes and Learning Lessons for Global Geochemical Mapping. Science of the Total Environment, 416: 239-252. https://doi.org/10.1016/j.scitotenv.2011.11.019
[33] Rose, A. W., Hawkes, H. E., Webb, J. S., 1979. Geochemistry in Mineral Exploration. Academic Press, New York. 657
[34] Shi, C. Y., Wang, C. F., 1995. Regional Geochemical Secondary Negative Anomalies and Their Significance. Journal of Geochemical Exploration, 55(1/2/3): 11-23. https://doi.org/10.1016/0375-6742(95)00033-x
[35] Smith, D. B., Cannon, W. F., Woodruff, L. G., et al., 2012. History and Progress of the North American Soil Geochemical Landscapes Project, 2001-2010. Earth Science Frontiers, 19(3): 19-32 http://d.wanfangdata.com.cn/periodical/dxqy201203004
[36] Tukey, J. W., 1977. Exploratory Data Analysis. Addison-Wesley, Reading
[37] Wang, H. C., Cheng, Q. M., Zuo, R. G., 2015a. Quantifying the Spatial Characteristics of Geochemical Patterns via GIS-Based Geographically Weighted Statistics. Journal of Geochemical Exploration, 157: 110-119. https://doi.org/10.1016/j.gexplo.2015.06.004
[38] Wang, H. C., Cheng, Q. M., Zuo, R. G., 2015b. Spatial Characteristics of Geochemical Patterns Related to Fe Mineralization in the Southwestern Fujian Province (China). Journal of Geochemical Exploration, 148: 259-269. https://doi.org/10.1016/j.gexplo.2014.10.010
[39] Wang, H. C., Zuo, R. G., 2015. A Comparative Study of Trend Surface Analysis and Spectrum-Area Multifractal Model to Identify Geochemical Anomalies. Journal of Geochemical Exploration, 155: 84-90. https://doi.org/10.1016/j.gexplo.2015.04.013
[40] Wang, J., Zuo, R. G., 2020. Quantifying the Distribution Characteristics of Geochemical Elements and Identifying Their Associations in Southwestern Fujian Province, China. Minerals, 10(2): 183. https://doi.org/10.3390/min10020183
[41] Xi, X. H., 2007. Geological Survey Strategic Choice of 21st Century Exploration Geochemistry. Geophysical & Geochemical Exploration, 31(4): 283-288 (in Chinese with English Abstract) http://www.cnki.com.cn/Article/CJFDTotal-WTYH200704002.htm
[42] Xie, X., 1981. Geological Dictionary. Book 5. Geological Publishing House, Beijing. 188-189 (in Chinese)
[43] Xie, X. J., 1999. Empirical Prospecting, Scientific Exploration and Information Exploration. Journal of Geochemical Exploration, 67(1/2/3): 97-108. https://doi.org/10.1016/s0375-6742(99)00073-4
[44] Xie, X. J., Mu, X. Z., Ren, T. X., 1997. Geochemical Mapping in China. Journal of Geochemical Exploration, 60(1): 99-113. https://doi.org/10.1016/s0375-6742(97)00029-0
[45] Xie, X., Wang, J., Yang, Z., et al., 1990. A Computer System for the Rapid Evaluation and Sorting of Multi-Element Geochemical Anomalies (System BBSMA). Bulletin of Institute of Geophysical and Geochemical Exploration, 4: 181-222 (in Chinese with English Abstract)
[46] Xiong, Y. H., Zuo, R. G., 2016. Recognition of Geochemical Anomalies Using a Deep Autoencoder Network. Computers & Geosciences, 86: 75-82. https://doi.org/10.1016/j.cageo.2015.10.006
[47] Xiong, Y. H., Zuo, R. G., 2018. GIS-Based Rare Events Logistic Regression for Mineral Prospectivity Mapping. Computers & Geosciences, 111: 18-25. https://doi.org/10.1016/j.cageo.2017.10.005
[48] Xiong, Y. H., Zuo, R. G., 2020. Recognizing Multivariate Geochemical Anomalies for Mineral Exploration by Combining Deep Learning and One-Class Support Vector Machine. Computers & Geosciences, 140: 104484. https://doi.org/10.1016/j.cageo.2020.104484
[49] Xiong, Y. H., Zuo, R. G., Carranza, E. J. M., 2018. Mapping Mineral Prospectivity through Big Data Analytics and a Deep Learning Algorithm. Ore Geology Reviews, 102: 811-817. https://doi.org/10.1016/j.oregeorev.2018.10.006
[50] Yu, Y. A., Liu, H. L., Li, J. M., et al., 2010. Discovery and Enlightenment of the Large-Scale Polymetallic Mineralization Belt in Ajile, Inner Mongolia. Geology and Prospecting, 46(5): 798-804 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKT201005004.htm
[51] Zhang, Z. J., Zuo, R. G., 2014. Sr-Nd-Pb Isotope Systematics of Magnetite: Implications for the Genesis of Makeng Fe Deposit, Southern China. Ore Geology Reviews, 57:53-60. https://doi.org/10.1016/j.oregeorev.2013.09.009
[52] Zhang, Z. J., Zuo, R. G., Xiong, Y. H., 2016. A Comparative Study of Fuzzy Weights of Evidence and Random Forests for Mapping Mineral Prospectivity for Skarn-Type Fe Deposits in the Southwestern Fujian Metallogenic Belt, China. Science China Earth Sciences, 59(3): 556-572. https://doi.org/10.1007/s11430-015-5178-3
[53] Zheng, Y. Y., Sun, X., Gao, S. B., et al., 2014. Analysis of Stream Sediment Data for Exploring the Zhunuo Porphyry Cu Deposit, Southern Tibet. Journal of Geochemical Exploration, 143:19-30. https://doi.org/10.1016/j.gexplo.2014.02.012
[54] Zuo, R. G., Carranza, E. J. M., Wang, J., 2016. Spatial Analysis and Visualization of Exploration Geochemical Data. Earth-Science Reviews, 158:9-18. https://doi.org/10.1016/j.earscirev.2016.04.006
[55] Zuo, R. G., 2020. Geodata Science-Based Mineral Prospectivity Mapping: A Review. Natural Resources Research, 29(6): 3415-3424. https://doi.org/10.1007/s11053-020-09700-9
[56] Zuo, R. G., 2011. Identifying Geochemical Anomalies Associated with Cu and Pb-Zn Skarn Mineralization Using Principal Component Analysis and Spectrum-Area Fractal Modeling in the Gangdese Belt, Tibet (China). Journal of Geochemical Exploration, 111(1/2): 13-22. https://doi.org/10.1016/j.gexplo.2011.06.012
[57] Zuo, R. G., 2018. Selection of an Elemental Association Related to Mineralization Using Spatial Analysis. Journal of Geochemical Exploration, 184:150-157. https://doi.org/10.1016/j.gexplo.2017.10.020
[58] Zuo, R. G., Cheng, Q. M., Agterberg, F. P., et al., 2009. Application of Singularity Mapping Technique to Identify Local Anomalies Using Stream Sediment Geochemical Data, a Case Study from Gangdese, Tibet, Western China. Journal of Geochemical Exploration, 101(3): 225-235. https://doi.org/10.1016/j.gexplo.2008.08.003
[59] Zuo, R. G., Wang, J., 2016. Fractal/Multifractal Modeling of Geochemical Data: A Review. Journal of Geochemical Exploration, 164:33-41. https://doi.org/10.1016/j.gexplo.2015.04.010
[60] Zuo, R. G., Wang, J. L., 2020. ArcFractal: An ArcGIS Add-In for Processing Geoscience Data Using Fractal/Multifractal Models. Natural Resources Research, 29(1): 3-12. https://doi.org/10.1007/s11053-019-09513-5
[61] Zuo, R. G., Xiong, Y. H., 2018. Big Data Analytics of Identifying Geochemical Anomalies Supported by Machine Learning Methods. Natural Resources Research, 27(1): 5-13. https://doi.org/10.1007/s11053-017-9357-0
[62] Zuo, R. G., Xiong, Y. H., 2020. Geodata Science and Geochemical Mapping. Journal of Geochemical Exploration, 209:106431. https://doi.org/10.1016/j.gexplo.2019.106431
[63] Zuo, R. G., Xiong, Y. H., Wang, J., et al., 2019. Deep Learning and Its Application in Geochemical Mapping. Earth-Science Reviews, 192:1-14. https://doi.org/10.1016/j.earscirev.2019.02.023
[64] Zuo, R. G., Zhang, Z. J., Zhang, D. J., et al., 2015. Evaluation of Uncertainty in Mineral Prospectivity Mapping due to Missing Evidence: A Case Study with Skarn-Type Fe Deposits in Southwestern Fujian Province, China. Ore Geology Reviews, 71:502-515. https://doi.org/10.1016/j.oregeorev.2014.09.024
[65] Zuzolo, D., Cicchella, D., Albanese, S., et al., 2018. Exploring Uni-Element Geochemical Data under a Compositional Perspective. Applied Geochemistry, 91:174-184. https://doi.org/10.1016/j.apgeochem.2017.10.003