[1] Bennion, D. W., Shaw, D. R., Thomas, F. B., et al., 1999. Compositional Numerical Modelling in Naturally Fractured Reservoirs. Journal of Canadian Petroleum Technology, 38(7): 235-248. https://doi.org/10.2118/99-07-03
[2] Bryndzia, L. T., 2012. Origin of High Salinities in Hydraulic Fracture Flow Back Fluids-An Example from the Haynesville Shale Gas Play, USA. 3rd EAGE Shale Workshop-Shale Physics and Shale Chemistry, January 23-25, 2012, Barcelona. https://doi.org/10.3997/2214-4609.20143943
[3] Burnham, A. K., Sweeney, J. J., 1989. A Chemical Kinetic Model of Vitrinite Maturation and Reflectance. Geochimica et Cosmochimica Acta, 53(10): 2649-2657. https://doi.org/10.1016/0016-7037(89)90136-1
[4] Chalmers, G. R., Bustin, R. M., Power, I. M., 2012a. Characterization of Gas Shale Pore Systems by Porosimetry, Pycnometry, Surface Area, and Field Emission Scanning Electron Microscopy/Transmission Electron Microscopy Image Analyses: Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig Units. AAPG Bulletin, 96(6): 1099-1119. https://doi.org/10.1306/10171111052
[5] Chalmers, G. R. L., Ross, D. J. K., Bustin, R. M., 2012b. Geological Controls on Matrix Permeability of Devonian Gas Shales in the Horn River and Liard Basins, Northeastern British Columbia, Canada. International Journal of Coal Geology, 103: 120-131. https://doi.org/10.1016/j.coal.2012.05.006
[6] Chen, L., Lu, Y. C., Jiang, S., et al., 2015. Heterogeneity of the Lower Silurian Longmaxi Marine Shale in the Southeast Sichuan Basin of China. Marine and Petroleum Geology, 65: 232-246. https://doi.org/10.1016/j.marpetgeo.2015.04.003
[7] Chung, F. H., 1974. Quantitative Interpretation of X-Ray Diffraction Patterns of Mixtures. Ⅰ. Matrix-Flushing Method for Quantitative Multicomponent Analysis. Journal of Applied Crystallography, 7(6): 519-525. https://doi.org/10.1107/s0021889874010375
[8] Dodson, C. R., Standing, M. B., 1944. Pressure-Volume-Temperature and Solubility Relations for Natural-Gas-Water Mixtures. Drilling and Production Practice, 44: 173-179
[9] Duan, Z. H., Møller, N., Greenberg, J., et al., 1992. The Prediction of Methane Solubility in Natural Waters to High Ionic Strength from 0 to 250 ℃ and from 0 to 1 600 Bar. Geochimica et Cosmochimica Acta, 56(4): 1451-1460. https://doi.org/10.1016/0016-7037(92)90215-5
[10] Fang, C. H., Huang, Z. L., Wang, Q. Z., 2014. Cause and Significance of the Ultra-Low Water Saturation in Gas-Enriched Shale Reservoir. Natural Gas Geoscience, 25(3): 471-476. https://doi.org/10.11764/j.issn.1672-1926.2014.03.0471 (in Chinese with English Abstract)
[11] Gasparik, M., Bertier, P., Gensterblum, Y., et al., 2014. Geological Controls on the Methane Storage Capacity in Organic-Rich Shales. International Journal of Coal Geology, 123: 34-51. https://doi.org/10.1016/j.coal.2013.06.010
[12] Gou, Q., Xu, S., 2019. Quantitative Evaluation of Free Gas and Adsorbed Gas Content of Wufeng-Longmaxi Shales in the Jiaoshiba Area, Sichuan Basin, China. Advances in Geo-Energy Research, 3(3): 258-267. https://doi.org/10.26804/ager.2019.03.04
[13] Hu, Y. N., Devegowda, D., Sigal, R., 2016. A Microscopic Characterization of Wettability in Shale Kerogen with Varying Maturity Levels. Journal of Natural Gas Science and Engineering, 33: 1078-1086. https://doi.org/10.1016/j.jngse.2016.06.014
[14] Ji, L. M., Qiu, J. L., Zhang, T. W., et al., 2012. Experiments on Methane Adsorption of Common Clay Minerals in Shale. Earth Science, 37(5): 1043-1050. https://doi.org/10.3799/dqkx.2012.111 (in Chinese with English Abstract)
[15] Jiang, L., Deng, B., Liu, S. G., et al., 2019. Paleo-Fluid Migration and Conservation Conditions of Shale Gas in Jiaoshiba-Wulong Area. Earth Science, 44(2): 524-538. https://doi.org/10.3799/dqkx.2018.515 (in Chinese with English Abstract)
[16] Korb, J. P., Nicot, B., Louis-Joseph, A., et al., 2014. Dynamics and Wettability of Oil and Water in Oil Shales. The Journal of Physical Chemistry C, 118(40): 23212-23218. https://doi.org/10.1021/jp508659e
[17] Lan, Q., Xu, M. X., Binazadeh, M., et al., 2015. A Comparative Investigation of Shale Wettability: The Significance of Pore Connectivity. Journal of Natural Gas Science and Engineering, 27: 1174-1188. https://doi.org/10.1016/j.jngse.2015.09.064
[18] Lewan, M. D., 1997. Experiments on the Role of Water in Petroleum Formation. Geochimica et Cosmochimica Acta, 61(17): 3691-3723. https://doi.org/10.1016/s0016-7037(97)00176-2
[19] Li, J., Lu, J., Li, Z., et al., 2014. 'Four-Pore' Modeling and Its Quantitative Logging Description of Shale Gas Reservoir. Oil & Gas Geology, 35(2): 266-271. https://doi.org/10.11743/ogg20140214 (in Chinese with English Abstract)
[20] Li, P. P., Hao, F., Guo, X. S., et al., 2015. Processes Involved in the Origin and Accumulation of Hydrocarbon Gases in the Yuanba Gas Field, Sichuan Basin, Southwest China. Marine and Petroleum Geology, 59: 150-165. https://doi.org/10.1016/j.marpetgeo.2014.08.003
[21] Liu, H. L., Wang, H. Y., 2013. Ultra-Low Water Saturation Characteristics and the Identification of Over-Pressured Play Fairways of Marine Shales in South China. Natural Gas Industry, 33(7): 140-144. https://doi.org/10.3787/j.issn.1000-0976.2013.07.025 (in Chinese with English Abstract)
[22] Lu, J. M., Ruppel, S. C., Rowe, H. D., 2015. Organic Matter Pores and Oil Generation in the Tuscaloosa Marine Shale. AAPG Bulletin, 99(2): 333-357. https://doi.org/10.1306/08201414055
[23] Modica, C. J., Lapierre, S. G., 2012. Estimation of Kerogen Porosity in Source Rocks as a Function of Thermal Transformation: Example from the Mowry Shale in the Powder River Basin of Wyoming. AAPG Bulletin, 96(1): 87-108. https://doi.org/10.1306/04111110201
[24] Nie, H., Jin, Z., Zhang, J., 2018. Characteristics of Three Organic Matter Pore Types in the Wufeng-Longmaxi Shale of the Sichuan Basin, Southwest China. Scientific Reports, 8(1): 7014. https://doi.org/10.1038/s41598-018-25104-5
[25] Passey, Q. R., Creaney, S., Kulla, J. B., et al., 1990. A Practical Model for Organic Richness from Porosity and Resistivity Logs. AAPG Bulletin, 74: 1777-1794. https://doi.org/10.1306/0c9b25c9-1710-11d7-8645000102c1865d
[26] Pommer, M., Milliken, K., 2015. Pore Types and Pore-Size Distributions across Thermal Maturity, Eagle Ford Formation, Southern Texas. AAPG Bulletin, 99(9): 1713-1744. https://doi.org/10.1306/03051514151
[27] Ross, D. J. K., Bustin, R. M., 2007. Shale Gas Potential of the Lower Jurassic Gordondale Member, Northeastern British Columbia, Canada. Bulletin of Canadian Petroleum Geology, 55(1): 51-75. https://doi.org/10.2113/gscpgbull.55.1.51
[28] Ross, D. J. K., Bustin, R. M., 2009. The Importance of Shale Composition and Pore Structure Upon Gas Storage Potential of Shale Gas Reservoirs. Marine and Petroleum Geology, 26(6): 916-927. https://doi.org/10.1016/j.marpetgeo.2008.06.004
[29] Ruppert, L. F., Sakurovs, R., Blach, T. P., et al., 2013. A USANS/SANS Study of the Accessibility of Pores in the Barnett Shale to Methane and Water. Energy & Fuels, 27(2): 772-779. https://doi.org/10.1021/ef301859s
[30] Schimmelmann, A., Boudou, J. P., Lewan, M. D., et al., 2001. Experimental Controls on D/H and 13C/12C Ratios of Kerogen, Bitumen and Oil during Hydrous Pyrolysis. Organic Geochemistry, 32(8): 1009-1018. https://doi.org/10.1016/s0146-6380(01)00059-6
[31] Schimmelmann, A., Lewan, M. D., Wintsch, R. P., 1999. D/H Isotope Ratios of Kerogen, Bitumen, Oil, and Water in Hydrous Pyrolysis of Source Rocks Containing Kerogen Types Ⅰ, Ⅱ, ⅡS, and Ⅲ. Geochimica et Cosmochimica Acta, 63(22): 3751-3766. https://doi.org/10.1016/S0016-7037(99)00221-5
[32] Shen, C. B., Hu, D., Min, K., et al., 2020. Post-Orogenic Tectonic Evolution of the Jiangnan-Xuefeng Orogenic Belt: Insights from Multiple Geochronometric Dating of the Mufushan Massif, South China. Journal of Earth Science, 31(5): 905-918. https://doi.org/10.1007/s12583-020-1346-2
[33] Song, D. J., Wu, C. J., Chen, K., et al., 2019. Gas Generation from Marine and Terrestrial Shales by Semi-Closed Pyrolysis Experiments. Earth Science, 44(11): 3639-3652. https://doi.org/10.3799/dqkx.2019.197 (in Chinese with English Abstract)
[34] Shen, W., Li, X., Cihan, A., et al., 2019. Experimental and Numerical Simulation of Water Adsorption and Diffusion in Shale Gas Reservoir Rocks. Advances in Geo-Energy Research, 3(2): 165-174. https://doi.org/10.26804/ager.2019.02.06
[35] Tian, Y. D., Li, N., 2007. Affecting Factors of the Coal Adsorbting Methane Capability. Journal of Xi'an University of Science and Technology, 27(2): 247-250. https://doi.org/10.3969/j.issn.1672-9315.2007.02.019 (in Chinese with English Abstract)
[36] Wang, X. F., Liu, W. H., Xu, Y. C., 2006. Thermal Simulation of the Role of Water in the Evolution of Gaseous Hydrocarbons from Organic Matter. Progress in Natural Science, 16(10): 1275-1281. http://ir.lig.ac.cn/handle/132962/456
[37] Wang, P. W., Liu, Z. B., Jin, Z. J., et al., 2019. Main Control Factors of Shale Gas Differential Vertical Enrichment in Lower Cambrian Qiongzhusi Formation, Southwest Sichuan Basin, China. Earth Science, 44(11): 3628-3638. https://doi.org/10.3799/dqkx.2019.00 (in Chinese with English Abstract)
[38] Yang, R., He, S., Yi, J. Z., et al., 2016a. Nano-Scale Pore Structure and Fractal Dimension of Organic-Rich Wufeng-Longmaxi Shale from Jiaoshiba Area, Sichuan Basin: Investigations Using FE-SEM, Gas Adsorption and Helium Pycnometry. Marine and Petroleum Geology, 70: 27-45. https://doi.org/10.1016/j.marpetgeo.2015.11.019
[39] Yang, R., He, S., Hu, Q. H., et al., 2016b. Pore Characterization and Methane Sorption Capacity of Over-Mature Organic-Rich Wufeng and Longmaxi Shales in the Southeast Sichuan Basin, China. Marine and Petroleum Geology, 77: 247-261. https://doi.org/10.1016/j.marpetgeo.2016.06.001
[40] Yao, J., Wang, H., Pei, G., et al., 2014. The Formation Mechanism of Upper Paleozoic Tight Sand Gas Reservoirs with Ultra-Low Water Saturation in Eastern Ordos Basin. Natural Gas Industry, 34(1): 37-43. https://doi.org/10.3787/j.issn.1000-0976.2014.01.005 (in Chinese with English Abstract)
[41] Zhang, H., Kang, Y., Chen, Y., et al., 2005. The Study of Geology Course and Experiment Simulation for Forming Ulter-Low Water Saturation in Tight Sandstones Gas Reservoir. Natural Gas Geoscience, 16(2): 186-189. https://doi.org/10.3969/j.issn.1672-1926.2005.02.011 (in Chinese with English Abstract)