[1] Arndt, N. T., 2013. Formation and Evolution of the Continental Crust. Geochemical Perspectives, 2(3): 405-533. https://doi.org/10.7185/geochempersp.2.3
[2] Avanzinelli, R., Lustrino, M., Mattei, M., et al., 2009. Potassic and Ultrapotassic Magmatism in the Circum-Tyrrhenian Region: Significance of Carbonated Pelitic vs. Pelitic Sediment Recycling at Destructive Plate Margins. Lithos, 113(1/2): 213-227. https://doi.org/10.1016/j.lithos.2009.03.029
[3] Bachmann, O., Miller, C. F., Silva, S. L., 2007. The Volcanic-Plutonic Connection as a Stage for Understanding Crustal Magmatism. Journal of Volcanology and Geothermal Research, 167(1/2/3/4): 1-23. https://doi.org/10.1016/j.jvolgeores.2007.08.002
[4] Barbarin, B., 1999. A Review of the Relationships between Granitoid Types, Their Origins and Their Geodynamic Environments. Lithos, 46(3): 605-626. https://doi.org/10.1016/s0024-4937(98)00085-1
[5] Barros, C. E., Nardi, L. V. S., 1994. O Maciço Granítico Santo Antônio, RS: Magmatismo Neoproterozóico de Afinidade Shoshonítica. Anais da Academia Brasileira de Ciências, 66(4): 441-465 (in Portguese)
[6] Bell, K., Lavecchia, G., Rosatelli, G., 2013. Cenozoic Italian Magmatism: Isotope Constraints for Possible Plume-Related Activity. Journal of South American Earth Sciences, 41: 22-40. https://doi.org/10.1016/j.jsames.2012.10.005
[7] Bitencourt, M. F., Nardi, L. V. S., 1993. Late- to Post-Collisional Brasiliano Magmatism in Southernmost Brazil. Anais da Academia Brasileira de Ciências, 65(Suppl. 1): 13-16 http://www.researchgate.net/profile/Lauro_Nardi/publication/272622772_Late-_to_Post-collisional_Brasiliano_Magmatism_in_Southernmost_Brazil/links/563d073d08aec6f17dd7e8fd.pdf
[8] Bitencourt, M. F., Nardi, L. V. S., 2004. The Role of Xenoliths and Flow Segregation in the Genesis and Evolution of the Paleoproterozoic Itapema Granite, a Crustally Derived Magma of Shoshonitic Affinity from Southern Brazil. Lithos, 73(1/2): 1-19. https://doi.org/10.1016/j.lithos.2003.08.004
[9] Bonin, B., 2007. A-Type Granites and Related Rocks: Evolution of a Concept, Problems and Prospects. Lithos, 97(1/2): 1-29. https://doi.org/10.1016/j.lithos.2006.12.007
[10] Boynton, W. V., 1984. Cosmochemistry of the Rare Earth Elements: Meteorite Studies. Rare Earth Element Geochemistry. Elsevier, Amsterdam. 63-114. https://doi.org/10.1016/b978-0-444-42148-7.50008-3
[11] Campos, T. F., Neiva, A. M., Nardi, L. V. S., 2002. Geochemistry of the Hybrid Complex and Their Minerals from Rio Espinharas Pluton, Northeastern Brazil. Lithos, 64(3/4): 131-153. https://doi.org/10.1016/s0024-4937(02)00199-8.
[12] Carroll, M. R., Wyllie, P. J., 1990. The System Tonalite-H2O at 15 kbar and the Genesis of Calc-Alkaline Magmas. American Mineralogist, 75(3): 345-357
[13] Carvalho, B. B., Janasi, V. D. A., Henrique-Pinto, R., 2014. Geochemical and Sr-Nd-Pb Isotope Constraints on the Petrogenesis of the K-Rich Pedra Branca Syenite: Implications for the Neoproterozoic Post-Collisional Magmatism in SE Brazil. Lithos, 205: 39-59. https://doi.org/10.1016/j.lithos.2014.06.016
[14] Chemale, F. Jr., Mallmann, G., Bitencourt, M. D. F., et al., 2012. Time Constraints on Magmatism along the Major Gercino Shear Zone, Southern Brazil: Implications for West Gondwana Reconstruction. Gondwana Research, 22(1): 184-199. https://doi.org/10.1016/j.gr.2011.08.018
[15] Civetta, L., Innocenti, F., Manetti, P., et al., 1981. Geochemical Characteristics of Potassic Volcanics from Mts. Ernici (Southern Latium, Italy). Contributions to Mineralogy and Petrology, 78(1): 37-47. https://doi.org/10.1007/bf00371142
[16] Conceição, R. V., Green, D. H., 2004. Derivation of Potassic (Shoshonitic) Magmas by Decompression Melting of Phlogopite+Pargasite Lherzolite. Lithos, 72(3/4): 209-229. https://doi.org/10.1016/j.lithos.2003.09.003
[17] Conceição, R. V., Green, D. H., 2000. Behavior of the Cotectic Curve En-Ol in the System Leucite-Olivine-Quartz under Dry Conditions to 2.0 GPa. Geochemistry, Geophysics, Geosystems, 1(11): 200GC000071. https://doi.org/10.1029/2000gc000071
[18] Conceição, R. V., Nardi, L. V. S., Conceição, H., 2000. The Santanápolis Syenite: Genesis and Evolution of Paleoproterozoic Shoshonitic Syenites in Northeastern Brazil. International Geology Review, 42(10): 941-957. https://doi.org/10.1080/00206810009465119
[19] Condie, K. C., 2015. Changing Tectonic Settings through Time: Indiscriminate Use of Geochemical Discriminant Diagrams. Precambrian Research, 266: 587-591. https://doi.org/10.1016/j.precamres.2015.05.004
[20] Conticelli, S., Guarnieri, L., Farinelli, A., et al., 2009. Trace Elements and Sr-Nd-Pb Isotopes of K-Rich, Shoshonitic, and Calc-Alkaline Magmatism of the Western Mediterranean Region: Genesis of Ultrapotassic to Calc- Alkaline Magmatic Associations in a Post-Collisional Geodynamic Setting. Lithos, 107(1/2): 68-92. https://doi.org/10.1016/j.lithos.2008.07.016
[21] Cvetković, V., Prelević, D., Downes, H., et al., 2004. Origin and Geodynamic Significance of Tertiary Postcollisional Basaltic Magmatism in Serbia (Central Balkan Peninsula). Lithos, 73(3/4): 161-186. https://doi.org/10.1016/j.lithos.2003.12.004
[22] Duchesne, J. C., Berza, T., Liégeois, J. P., et al., 1998. Shoshonitic Liquid Line of Descent from Diorite to Granite: The Late Precambrian Post-Collisional Tismana Pluton (South Carpathians, Romania). Lithos, 45(1/2/3/4): 281-303. https://doi.org/10.1016/s0024-4937(98)00036-x
[23] Eklund, O., Konopelko, D., Rutanen, H., et al., 1998. 1.8 Ga Svecofennian Post-Collisional Shoshonitic Magmatism in the Fennoscandian Shield. Lithos, 45(1/2/3/4): 87-108. https://doi.org/10.1016/s0024-4937(98)00027-9
[24] Eklund, O., Shebanov, A., 2005. Prolonged Postcollisional Shoshonitic Magmatism in the Southern Svecofennian Domain-A Case Study of the Åva Granite-Lamprophyre Ring Complex. Lithos, 80(1/2/3/4): 229-247. https://doi.org/10.1016/j.lithos.2004.06.012
[25] Ferreira, V. P., Sial, A. N., 1993. Mica Pyroxenite as Probable Source of Ultrapotassic and Potassic Magmas in Northeastern Brazil. Anais da Academia Brasileira de Ciências, 65(1): 51-61
[26] Ferreira, V. P., Sial, A. N., Long, L. E., et al., 1997. Isotopic Signatures of Neoproterozoic to Cambrian Ultrapotassic Syenitic Magmas, Northeastern Brazil: Evidence for an Enriched Mantle Source. International Geology Review, 39(7): 660-669. https://doi.org/10.1080/00206819709465294
[27] Ferreira, V. P., Sial, A. N., Pimentel, M. M., et al., 2015. Reworked Old Crust-Derived Shoshonitic Magma: The Guarany Pluton, Northeastern Brazil. Lithos, 232: 150-161. https://doi.org/10.1016/j.lithos.2015.06.030
[28] Fontana, E., Mexias, A. S., Renac, C., et al., 2017. Hydrothermal Alteration of Volcanic Rocks in Seival Mine Cu-Mineralization-Camaquã Basin-Brazil (Part I): Chloritization Process and Geochemical Dispersion in Alteration Halos. Journal of Geochemical Exploration, 177: 45-60. https://doi.org/10.1016/j.gexplo.2017.02.004
[29] Fontes, M. P., Conceição, H., Silva Rosa, M. L., et al., 2018. Minettes do Stock Monzonítico Glória Norte: Evidência de Magmatismo Ultrapotássico Pós-Orogênico, Com Assinatura de Subducção, no Sistema Orogênico Sergipano. Geologia USP Série Científica, 18(1): 51-66. https://doi.org/10.11606/issn.2316-9095.v18-133599 (in Portguese)
[30] Fowler, M. B., Kocks, H., Darbyshire, D. P. F., et al., 2008. Petrogenesis of High Ba-Sr Plutons from the Northern Highlands Terrane of the British Caledonian Province. Lithos, 105(1/2): 129-148. https://doi.org/10.1016/j.lithos.2008.03.003
[31] Gardien, V., Thompson, A. B., Ulmer, P., 2000. Melting of Biotite+Plagioclase+ Quartz Gneisses: The Role of H2O in the Stability of Amphibole. Journal of Petrology, 41(5): 651-666. https://doi.org/10.1093/petrology/41.5.651
[32] Gastal, M. C. P., Lafon, J. M., Hartmann, L. A., et al., 2005. Sm-Nd Isotopic Investigation of Neoproterozoic and Cretaceous Igneous Rocks from Southern Brazil: A Study of Magmatic Processes. Lithos, 82(3/4): 345-377. https://doi.org/10.1016/j.lithos.2004.09.025
[33] Gastal, M. C. P., Lafon, J. M., 2006. Reinterpretação do Complexo Intrusivo Lavras do Sul, Rs, de Acordo Com Os Sistemas vulcano-Plutônicos de Subsidênsia. Parte 2: Química Mineral, Geoquímica e Isótopos de Pb-Sr-Nd. Revista Brasileira de Geociências, 36(1): 125-146. https://doi.org/10.25249/0375-7536.2006361125146 (in Portguese)
[34] Gastal, M. C. P., Ferreira, F. J. F., Cunha, J. U. D., et al., 2015. Alojamento do Granito Lavras e a Mineralização Aurífera Durante Evolução de Centro Vulcano-Plutônico Pós-Colisional, Oeste do Escudo Sul-Riograndense: Dados Geofísicos e Estruturais. Brazilian Journal of Geology, 45(2): 217-241. https://doi.org/10.1590/23174889201500020004 (in Portguese)
[35] Gill, J. B., 1970. Geochemistry of Viti Levu, Fiji, and Its Evolution as an Island Arc. Contributions to Mineralogy and Petrology, 27(3): 179-203. https://doi.org/10.1007/bf00385777
[36] Goswami, B., Bhattacharyya, C., 2014. Petrogenesis of Shoshonitic Granitoids, Eastern India: Implications for the Late Grenvillian Post-Collisional Magmatism. Geoscience Frontiers, 5(6): 821-843. https://doi.org/10.1016/j.gsf.2013.09.003
[37] Guimarães, I. P., Silva Filho, A. F., 1992. Evolução Petrológica e Geoquímica do Complexo Bom Jardim, Pernambuco. Revista Brasileira de Geociências, 22(1): 29-42. https://doi.org/10.25249/0375-7536.19922942 (in Portguese)
[38] Guimarães, I. D. P., Silva Filho, A. F., 1998. Nd and Sr-Isotopic and U-Pb Geochronologic Constraints for Evolution of the Shoshonitic Brasiliano Bom Jardim and Toritama Complexes: Evidence for a Transamazonian Enriched Mantle under Borborema Tectonic Province, Brazil. International Geology Review, 40(6): 500-527. https://doi.org/10.1080/00206819809465221
[39] Guo, Z. F., Wilson, M., Liu, J. Q., et al., 2006. Post-Collisional, Potassic and Ultrapotassic Magmatism of the Northern Tibetan Plateau: Constraints on Characteristics of the Mantle Source, Geodynamic Setting and Uplift Mechanisms. Journal of Petrology, 47(6): 1177-1220. https://doi.org/10.1093/petrology/egl007
[40] Hegner, E., Kölbl-Ebert, M., Loeschke, J., 1998. Post-Collisional Variscan Lamprophyres (Black Forest, Germany): 40Ar/39Ar Phlogopite Dating, Nd, Pb, Sr Isotope, and Trace Element Characteristics. Lithos, 45(1/2/3/4): 395-411. https://doi.org/10.1016/S0024-4937(98)00041-3
[41] Ilbeyli, N., Pearce, J. A., Thirlwall, M. F., et al., 2004. Petrogenesis of Collision-Related Plutonics in Central Anatolia, Turkey. Lithos, 72(3/4): 163-182. https://doi.org/10.1016/j.lithos.2003.10.001
[42] Jakeš, P., White, A. J. R., 1972. Major and Trace Element Abundances in Volcanic Rocks of Orogenic Areas. Geological Society of America Bulletin, 83(1): 29-40. https://doi.org/10.1130/0016-7606(1972)83[29: mateai]2.0.co;2 doi: 10.1130/0016-7606(1972)83[29:mateai]2.0.co;2
[43] Janasi, V. A., Vlach, S. R. F., Ulbrich, H. H. G. J., 1993. Enriched Mantle Contributions to the Itu Granitoid Belt, Southeastern Brazil: Evidence from K-Rich Diorites and Syenites. Anais da Academia Brasileira de Ciências, 65: 107-118 (in Portguese) http://www.researchgate.net/profile/Valdecir_Janasi/publication/292031489_Enriched-mantle_contributions_to_the_Itu_Granitoid_Belt_Southeastern_Brazil_Evidence_from_K-rich_diorites_and_syenites/links/56c5b8f208ae7fd4625c53c8.pdf
[44] Jiang, Y. H., Jiang, S. Y., Ling, H. F., et al., 2002. Petrology and Geochemistry of Shoshonitic Plutons from the Western Kunlun Orogenic Belt, Xinjiang, Northwestern China: Implications for Granitoid Geneses. Lithos, 63(3/4): 165-187. https://doi.org/10.1016/s0024-4937(02)00140-8
[45] Joplin, G. A., 1968. The Shoshonite Association: A Review. Journal of the Geological Society of Australia, 15(2): 275-294. https://doi.org/10.1080/00167616808728699
[46] Knijnik, D., Bitencourt, M. F., Nardi, L. V. S., et al., 2012. Caracterização Geoquímica e Estrutural do Granodiorito Cruzeiro do Sul: Magmatismo Shoshonítico Pós-Colisional Neoproterozoico em Zona de Transcorrência, Região de Quitéria, RS. Geologia USP Série Científica, 12(1): 17-38. https://doi.org/10.5327/z1519-874x2012000100003 (in Portguese)
[47] Knijnik, D. B., 2018. Geocronologia U-Pb e Geoquímica Isotópica Sr-Nd dos Granitoides Sintectônicos às Zonas de Cisalhamento Transcorrentes Quitéria Serra do Erval e Dorsal do Canguçu, Rio Grande do Sul, Brasil: [Dissertation]. Universidade Federal do Rio Grande do Sul, Porto Alegre. 260 (in Portuguese)
[48] Köksal, S., Romer, R. L., Göncüoglu, M. C., et al., 2004. Timing of Post-Collisional H-Type to A-Type Granitic Magmatism: U-Pb Titanite Ages from the Alpine Central Anatolian Granitoids (Turkey). International Journal of Earth Sciences, 93(6): 974-989. https://doi.org/10.1007/s00531-004-0432-5
[49] Lameyre, J., Bowden, P., 1982. Plutonic Rock Types Series: Discrimination of Various Granitoid Series and Related Rocks. Journal of Volcanology and Geothermal Research, 14(1/2): 169-186. https://doi.org/10.1016/0377-0273(82)90047-6
[50] Lara, P., Oyhantçabal, P., Dadd, K., 2017. Post-Collisional, Late Neoproterozoic, High-Ba-Sr Granitic Magmatism from the Dom Feliciano Belt and Its Cratonic Foreland, Uruguay: Petrography, Geochemistry, Geochronology, and Tectonic Implications. Lithos, 277: 178-198. https://doi.org/10.1016/j.lithos.2016.11.026
[51] Le Maitre, R. W., 2002. A Classification of Igneous Rocks and Glossary of Terms. Cambridge University Press, Cambridge. 236
[52] Leat, P. T., Thompson, R. N., Morrison, M. A., et al., 1988. Silicic Magmas Derived by Fractional Crystallization from Miocene Minette, Elkhead Mountains, Colorado. Mineralogical Magazine, 52(368): 577-585. https://doi.org/10.1180/minmag.1988.052.368.03
[53] Lima, E. F., Nardi, L. V. S., 1991. Os Lamprófiros Espessartíticos da Associação Shoshonítica de Lavras do Sul, RS. Geochimica Brasiliensis, V(1/2): 117-131 (in Portguese)
[54] Lima, E. F., Nardi, L. V. S., 1998. Química Mineral Das Rochas Vulcânicas e Lamprófiros Espessartíticos da Associação Shoshonítica de Lavras do Sul-RS. Revista Brasileira de Geociências, 28(2): 113-124. https://doi.org/10.25249/0375-7536.1998113124 (in Portguese)
[55] Lisboa, V. A., Conceição, H., Silva Rosa, M. L., et al., 2019. The Onset of Post-Collisional Magmatism in the Macururé Domain, Sergipano Orogenic System: The Glória Norte Stock. Journal of South American Earth Sciences, 89: 173-188. https://doi.org/10.1016/j.jsames.2018.11.005
[56] Litvinovsky, B. A., Jahn, B. M., Zanvilevich, A. N., et al., 2002. Crystal Fractionation in the Petrogenesis of an Alkali Monzodiorite-Syenite Series: The Oshurkovo Plutonic Sheeted Complex, Transbaikalia, Russia. Lithos, 64(3/4): 97-130. https://doi.org/10.1016/s0024-4937(02)00179-2
[57] Liz, J. D., Lima, E. F., Nardi, L. V. S., et al., 2004. Aspectos Petrográficos, Composicionais e Potencialidade para Mineralizações de ouro e Sulfetos do Sistema Multi-Intrusivo da Associação Shoshonítica de Lavras do Sul (RS). Revista Brasileira de Geociências, 34(4): 539-552 (in Portguese) doi: 10.25249/0375-7536.2004344539552
[58] Liz, J. D., Lima, E. F., Nardi, L. V. S., 2009. Avaliação de Fontes Magmáticas de Séries Shoshoníticas Pós-Colisionais Com Base Na Normalização Pela Associação Shoshonítica de Lavras do Sul-Aplicação de Sliding Normalization. Revista Brasileira de Geociências, 39(1): 55-66. https://doi.org/10.25249/0375-7536.20093915566 (in Portguese)
[59] Lopes, R. W., Fontana, E., Mexias, A. S., et al., 2014. Caracterização Petrográfica e Geoquímica da Sequência Magmática da Mina do Seival, Formação Hilário (Bacia do Camaquã-Neoproterozoico), Rio Grande do Sul, Brasil. Pesquisas em Geociências, 41(1): 39-51. https://doi.org/10.22456/1807-9806.78035 (in Portguese)
[60] López-Plaza, M., López-Moro, F. J., Gonzalo-Corral, J. C., et al., 1999. Asociaciones de Rocas Bpasicas e Inter-Médias de Afinidad Calcoalcalina y Shoshonítica y Granitóides Relacionados em al Domo Hercínicodel Tormes (Salamanca y Zamora). Boletin de la Sociedad Española de Mineralogia, 22: 211-234 (in Portguese)
[61] López-Moro, F. J., López-Plaza, M., 2004. Monzonitic Series from the Variscan Tormes Dome (Central Iberian Zone): Petrogenetic Evolution from Monzogabbro to Granite Magmas. Lithos, 72(1/2): 19-44. https://doi.org/10.1016/j.lithos.2003.08.002
[62] Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of American Bulletin, 101(5): 635-643 doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
[63] Maria, A. H., Luhr, J. F., 2008. Lamprophyres, Basanites, and Basalts of the Western Mexican Volcanic Belt: Volatile Contents and a Vein-Wallrock Melting Relationship. Journal of Petrology, 49(12): 2123-2156. https://doi.org/10.1093/petrology/egn060
[64] Martini, A., Bitencourt, M. F., Weinberg, R. F., et al., 2019. From Migmatite to Magma-Crustal Melting and Generation of Granite in the Camboriú Complex, South Brazil. Lithos, 340/341: 270-286. https://doi.org/10.1016/j.lithos.2019.05.017
[65] Martins, G. G., Mendes, J. C., Schmitt, R. S., et al., 2016. 550-490 Ma Pre- to Post-Collisional Shoshonitic Rocks in the Ribeira Belt (SE Brazil) and Their Tectonic Significance. Precambrian Research, 286: 352-369. https://doi.org/10.1016/j.precamres.2016.10.010
[66] Melzer, S., Foley, S. F., 2000. Phase Relations and Fractionation Sequences in Potassic Magma Series Modelled in the System CaMgSi2O6-KAlSiO4- Mg2SiO4-SiO2-F2O-1 at 1 bar to 18 kbar. Contributions to Mineralogy and Petrology, 138(2): 186-197. https://doi.org/10.1007/s004100050017
[67] Mexias, A. S., Berger, G., Gomes, M. E., et al., 2005. Geochemical Modeling of Gold Precipitation Conditions in the Bloco do Butiá Mine, Lavras do Sul/Brazil. Anais da Academia Brasileira de Ciencias, 77(4): 717-728. https://doi.org/10.1590/s0001-37652005000400010
[68] Miller, C., Schuster, R., Klotzli, U., et al., 1999. Post-Collisional Potassic and Ultrapotassic Magmatism in SW Tibet: Geochemical and Sr-Nd-Pb-O Isotopic Constraints for Mantle Source Characteristics and Petrogenesis. Journal of Petrology, 40(9): 1399-1424. https://doi.org/10.1093/petroj/40.9.1399
[69] Montel, J. M., Vielzeuf, D., 1997. Partial Melting of Metagreywackes, Part II. Compositions of Minerals and Melts. Contributions to Mineralogy and Petrology, 128(2): 176-196. https://doi.org/10.1007/s004100050302
[70] Morrison, G. W., 1980. Characteristics and Tectonic Setting of the Shoshonite Rock Association. Lithos, 13(1): 97-108. https://doi.org/10.1016/0024-4937(80)90067-5
[71] Müller, D., Groves, D. I., 1993. Direct and Indirect Associations between Potassic Igneous Rocks, Shoshonites and Gold-Copper Deposits. Ore Geology Reviews, 8(5): 383-406. https://doi.org/10.1016/0169-1368(93)90035-w
[72] Müller, I. F., Nardi, L. V. S., Lima, E. F., et al., 2012. Os Diques Latíticos Portadores de Ouro e Sulfetos da Associação Shoshonítica de Lavras do Sul-RS: Petrogênese e Geoquímica. Pesquisas em Geociências, 39(2): 173-191. https://doi.org/10.22456/1807-9806.35911 (in Portguese)
[73] Nardi, L. V. S., 1984. Geochemistry and Petrology of the Lavras Granite Complex, R.S., Brazil: [Dissertation]. London University, London. 268
[74] Nardi, L. V. S., 1986. As Rochas Granitóides da Série Shoshonítica. Revista Brasileira de Geociências, 16(1): 3-10. https://doi.org/10.25249/0375-7536.1986310 (in Portguese)
[75] Nardi, L. V. S., Lima, E. F., 1985. A Associação Shoshonítica de Lavras do Sul, RS. Revista Brasileira de Geociências, 15(2): 139-146. https://doi.org/10.25249/0375-7536.1985139146
[76] Nardi, L. V. S., Lima, E. F., 1988. Hidrotermalismo no Complexo Granítico Lavras e Vulcânicas Associadas, RS. Revista Brasileira de Geociências, 18(3): 369-375. https://doi.org/10.25249/0375-7536.1988369375
[77] Nardi, L. V. S., Lima, E. F., 2000. Hybridisation of Mafic Microgranular Enclaves in the Lavras Granite Complex, Southern Brazil. Journal of South American Earth Sciences, 13(1/2): 67-78. https://doi.org/10.1016/s0895-9811(00)00006-7
[78] Nardi, L. V. S., 2016. Granitoides e Séries Magmáticas: O Estudo Contextualizado dos Granitoides. Pesquisas em Geociências, 43(1): 85. https://doi.org/10.22456/1807-9806.78194 (in Portguese)
[79] Nardi, L. V. S., Plá Cid, J., Bitencourt, M. F., 2007. Minette Mafic Microgranular Enclaves and Their Relationship to Host Syenites in Systems Formed at Mantle Pressures: Major and Trace Element Evidence from the Piquiri Syenite Massif, Southernmost Brazil. Mineralogy and Petrology, 91(1/2): 101-116. https://doi.org/10.1007/s00710-007-0186-4
[80] Nardi, L. V. S., Plá Cid, J., Bitencourt, M. F., et al., 2008. Geochemistry and Petrogenesis of Post-Collisional Ultrapotassic Syenites and Granites from Southernmost Brazil: The Piquiri Syenite Massif. Anais da Academia Brasileira de Ciencias, 80(2): 353-371. https://doi.org/10.1590/s0001-37652008000200014
[81] Nascimento, A. L., Antunes, A. F., Galindo, A. C., et al., 2000. Geochemical Signature of the Brasilianoage Plutonism in the Seridó Belt, Northeastern Borborema Province (NE Brazil). Revista Brasileira de Geociências, 30(1): 161-164. https://doi.org/10.25249/0375-7536.2000301161164
[82] Oyhantçabal, P., Wagner-Eimer, M., Wemmer, K., et al., 2012. Paleo- and Neoproterozoic Magmatic and Tectonometamorphic Evolution of the Isla Cristalina de Rivera (Nico Pérez Terrane, Uruguay). International Journal of Earth Sciences, 101(7): 1745-1762. https://doi.org/10.1007/s00531-012-0757-4
[83] Padilha, D. F., Bitencourt, M. F., Nardi, L. V. S., et al., 2019. Sources and Settings of Ediacaran Post-Collisional Syenite-Monzonite-Diorite Shoshonitic Magmatism from Southernmost Brazil. Lithos, 344/345: 482-503. https://doi.org/10.1016/j.lithos.2019.06.004
[84] Pagel, M., Leterrier, J., 1980. The Subalkaline Potassic Magmatism of the Ballons Massif (Southern Vosges, France): Shoshonitic Affinity. Lithos, 13(1): 1-10. https://doi.org/10.1016/0024-4937(80)90056-0
[85] Paim, M. M., Plá Cid, J., Rosa, M. L. S., et al., 2002. Mineralogy of Lamprophyres and Mafic Enclaves Associated with the Paleoproterozoic Cara Suja Syenite, Northeast Brazil. International Geology Review, 44(11): 1017-1036. https://doi.org/10.2747/0020-6814.44.11.1017
[86] Patiño Douce, A. E., 1999. What do Experiments Tell us about the Relative Contributions of Crust and Mantle to the Origin of Granitic Magmas? Geological Society, London, Special Publications, 168(1): 55-75. https://doi.org/10.1144/gsl.sp.1999.168.01.05
[87] Pearce, J. A., 2008. Geochemical Fingerprinting of Oceanic Basalts with Applications to Ophiolite Classification and the Search for Archean Oceanic Crust. Lithos, 100(1/2/3/4): 14-48. https://doi.org/10.1016/j.lithos.2007.06.016
[88] Peccerillo, A., 1992. Potassic and Ultrapotassic Rocks: Compositional Characteristics, Petrogenesis, and Geologic Significance. Episodes, 15(4): 243-251. https://doi.org/10.18814/epiiugs/1992/v15i4/002
[89] Peruchi, F. M., Florisbal, L. M., Bitencourt, M. F., et al., 2021. Time Constraints, Sources and Settings of the Neoproterozoic Post-Collisional Shoshonitic Magmatism in the Dom Feliciano Belt: A Case Study of the Estaleiro Granitic Complex, South Brazil. Lithos. https://doi.org/10.1016/j.lithos.2021.106341
[90] Plá Cid, J., Nardi, L. V. S., Conceição, H., et al., 2000. The Alkaline Silica- Saturated Ultrapotassic Magmatism of the Riacho do Pontal Fold Belt, NE Brazil: An Example of Syenite-Granite Neoproterozoic Association. Journal of South American Earth Sciences, 13(7): 661-683. https://doi.org/10.1016/s0895-9811(00)00047-x
[91] Plá Cid, J., Nardi, L. V. S., Stabel, L. Z., et al., 2003. High-Pressure Minerals in Mafic Microgranular Enclaves: Evidences for Co-Mingling between Lamprophyric and Syenitic Magmas at Mantle Conditions. Contributions to Mineralogy and Petrology, 145(4): 444-459. https://doi.org/10.1007/s00410-003-0451-4
[92] Plá Cid, J., Nardi, L. V. S., 2006. Alkaline Ultrapotassic A-Type Granites Derived from Ultrapotassic Syenite Magmas Generated from Metasomatized Mantle. International Geology Review, 48(10): 942-956. https://doi.org/10.2747/0020-6814.48.10.942
[93] Plá Cid, J., Campos, C. S., Nardi, L. V. S., et al., 2012. Petrology of Gameleira Potassic Lamprophyres, São Francisco Craton. Anais da Academia Brasileira de Ciências, 84(2): 377-398. https://doi.org/10.1590/s0001-37652012005000030
[94] Prelević, D., Akal, C., Foley, S. F., et al., 2012. Ultrapotassic Mafic Rocks as Geochemical Proxies for Post-Collisional Dynamics of Orogenic Lithospheric Mantle: The Case of Southwestern Anatolia, Turkey. Journal of Petrology, 53(5): 1019-1055. https://doi.org/10.1093/petrology/egs008
[95] Remus, M. V. D., McNaughton, N. J., Hartmann, L. A., et al., 1997. U-Pb SHRIMP Zircon Dating and Nd Isotope Data of Granitoids of the São Gabriel Block, Southern Brazil: Evidence for an Archaean/Paleoproterozoic Basement. Second International Symposium on Granites and Associated Mineralization, Salvador, Brazil. 271-272
[96] Remus, M. V. D., Hartmann, L. A., McNaughton, N. J., et al., 2000. Distal Magmatic-Hydrothermal Origin for the Camaquã Cu (Au-Ag) and Santa Maria Pb, Zn (Cu-Ag) Deposits, Southern Brazil. Gondwana Research, 3(2): 155-174. https://doi.org/10.1016/s1342-937x(05)70094-0
[97] Richards, J. P., Spell, T., Rameh, E., et al., 2012. High Sr/Y Magmas Reflect Arc Maturity, High Magmatic Water Content, and Porphyry Cu±Mo±Au Potential: Examples from the Tethyan Arcs of Central and Eastern Iran and Western Pakistan. Economic Geology, 107(2): 295-332. https://doi.org/10.2113/econgeo.107.2.295
[98] Rios, D. C., Conceição, H., Davis, D. W., et al., 2007. Paleoproterozoic Potassic-Ultrapotassic Magmatism: Morro do Afonso Syenite Pluton, Bahia, Brazil. Precambrian Research, 154(1/2): 1-30. https://doi.org/10.1016/j.precamres.2006.11.015
[99] Rivera, C. B., 2019. Construção do Maciço Sienítico Piquiri (609 a 583 Ma) por Colocação Sucessiva de Pulsos de Magma Ultrapotássico e Shoshonítico sob Extensão no Escudo Sul-rio-Grandense: [Dissertation]. Universidade Federal do Rio Grande do Sul, Porto Alegre. 219 (in Portuguese)
[100] Rivera, C. B., Bittencourt, M. F., Nardi, L. V. S., 2004. Integração de Parâmetros Físicos do Magma e Composição Química Dos Minerais Na Petrogênese do Granito Itapema, SC. Revista Brasileira de Geociências, 34(3): 361-372. https://doi.org/10.25249/0375-7536.2004343361372
[101] Rogers, N. W., 1992. Potassic Magmatism as a Key to Trace-Element Enrichment Processes in the Upper Mantle. Journal of Volcanology and Geothermal Research, 50(1/2): 85-99. https://doi.org/10.1016/0377-0273(92)90038-f
[102] Sawyer, E. W., Cesare, B., Brown, M., 2011. When the Continental Crust Melts. Elements, 7(4): 229-234. https://doi.org/10.2113/gselements.7.4.229
[103] Schaltegger, U., 1997. Magma Pulses in the Central Variscan Belt: Episodic Melt Generation and Emplacement during Lithospheric Thinning. Terra Nova, 9(5/6): 242-245. https://doi.org/10.1046/j.1365-3121.1997.d01-43.x
[104] Schmitt, R. S., Trouw, R. A. J., van Schmus, W. R., et al., 2004. Late Amalgamation in the Central Part of West Gondwana: New Geochronological Data and the Characterization of a Cambrian Collisional Orogeny in the Ribeira Belt (SE Brazil). Precambrian Research, 133(1/2): 29-61. https://doi.org/10.1016/j.precamres.2004.03.010
[105] Silva Filho, A. F., Guimaraes, I. P., Thompson, R. N., 1993. Shoshonitic and Ultrapotassic Proterozoic Intrusive Suites in the Cachoeirinha- Salgueiro Belt, NE Brazil: A Transition from Collisional to Post- Collisional Magmatism. Precambrian Research, 62(3): 323-342. https://doi.org/10.1016/0301-9268(93)90028-z
[106] Skjerlie, K. P., Johnston, A. D., 1996. Vapour-Absent Melting from 10 to 20 kbar of Crustal Rocks that Contain Multiple Hydrous Phases: Implications for Anatexis in the Deep to very Deep Continental Crust and Active Continental Margins. Journal of Petrology, 37(3): 661-691. https://doi.org/10.1093/petrology/37.3.661
[107] Sommer, C. A., Lima, E. F., Nardi, L. V. S., et al., 2005. Potassic and Low- and High-Ti Mildly Alkaline Volcanism in the Neoproterozoic Ramada Plateau, Southernmost Brazil. Journal of South American Earth Sciences, 18(3/4): 237-254. https://doi.org/10.1016/j.jsames.2004.11.003
[108] Sommer, C. A., Lima, E. F., Nardi, L. V., et al., 2006. The Evolution of Neoproterozoic Magmatism in Southernmost Brazil: Shoshonitic, High-K Tholeiitic and Silica-Saturated, Sodic Alkaline Volcanism in Post-Collisional Basins. Anais da Academia Brasileira de Ciencias, 78(3): 573-589. https://doi.org/10.1590/s0001-37652006000300015
[109] Springer, W., Seck, H. A., 1997. Partial Fusion of Basic Granulites at 5 to 15 kbar: Implications for the Origin of TTG Magmas. Contributions to Mineralogy and Petrology, 127(1/2): 30-45. https://doi.org/10.1007/s004100050263
[110] Stabel, L. Z., Nardi, L. V. S., Plá Cid, J., 2001. Química Mineral e Evolução Petrológica do Sienito Piquiri: Magmatismo Shoshonítico, Neoproterozóico, Pós-Colisional no Sul do Brasil. Revista Brasileira de Geociências, 31(2): 211-222. https://doi.org/10.25249/0375-7536.200131221122
[111] Stevens, G., Clemens, J. D., Droop, G. T. R., 1997. Melt Production during Granulite-Facies Anatexis: Experimental Data from "Primitive" Metasedimentary Protoliths. Contributions to Mineralogy and Petrology, 128(4): 352-370. https://doi.org/10.1007/s004100050314
[112] Stoppa, F., Rukhlov, A. S., Bell, K., et al., 2014. Lamprophyres of Italy: Early Cretaceous Alkaline Lamprophyres of Southern Tuscany, Italy. Lithos, 188: 97-112. https://doi.org/10.1016/j.lithos.2013.10.010
[113] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
[114] Tarney, J., Jones, C. E., 1994. Trace Element Geochemistry of Orogenic Igneous Rocks and Crustal Growth Models. Journal of the Geological Society, 151(5): 855-868. https://doi.org/10.1144/gsjgs.151.5.0855
[115] Tauson, L. V., Kozlov, V. D., 1972. Distribution Functions and Ratios of Trace Element Concentrations as Estimators of Ore-Bearing Potential of Granites. In: Jones, M. J., ed., Geochemical Exploration. Institution of Mining and Metallurgy, London. 3744
[116] Tauson, L. V., 1983. Geochemistry and Metallogeny of the Latitic Series. International Geology Review, 25: 125-135 doi: 10.1080/00206818309466685
[117] Thompson, R. N., Fowler, M. B., 1986. Subduction-Related Shoshonitic and Ultrapotassic Magmatism: A Study of Siluro-Ordovician Syenites from the Scottish Caledonides. Contributions to Mineralogy and Petrology, 94(4): 507-522. https://doi.org/10.1007/bf00376342
[118] Turner, S., Arnaud, N., Liu, J., et al., 1996. Post-Collision, Shoshonitic Volcanism on the Tibetan Plateau: Implications for Convective Thinning of the Lithosphere and the Source of Ocean Island Basalts. Journal of Petrology, 37(1): 45-71. https://doi.org/10.1093/petrology/37.1.45
[119] Valério, C. S., Macambira, M. J. B., Souza, V. D. S., et al., 2017. SiO2-Saturated Potassic Alkaline Magmatism in the Central Amazonian Craton, Southernmost Uatumã-Anauá Domain, NE Amazonas, Brazil. Brazilian Journal of Geology, 47(3): 441-446. https://doi.org/10.1590/2317-4889201720170044
[120] Venturelli, G., Thorpe, R. S., Piaz, G. V., et al., 1984. Petrogenesis of Calc-Alkaline, Shoshonitic and Associated Ultrapotassic Oligocene Volcanic Rocks from the Northwestern Alps, Italy. Contributions to Mineralogy and Petrology, 86(3): 209-220. https://doi.org/10.1007/bf00373666
[121] Vielzeuf, D., Schmidt, M. W., 2001. Melting Relations in Hydrous Systems Revisited: Application to Metapelites, Metagreywackes and Metabasalts. Contributions to Mineralogy and Petrology, 141(3): 251-267. https://doi.org/10.1007/s004100100237
[122] Wang, R., Weinberg, R. F., Collins, W. J., et al., 2018. Origin of Postcollisional Magmas and Formation of Porphyry Cu Deposits in Southern Tibet. Earth- Science Reviews, 181: 122-143. https://doi.org/10.1016/j.earscirev.2018.02.019
[123] Weaver, S. L., Wallace, P. J., Johnston, A. D., 2013. Experimental Constraints on the Origins of Primitive Potassic Lavas from the Trans-Mexican Volcanic Belt. Contributions to Mineralogy and Petrology, 166(3): 825-843. https://doi.org/10.1007/s00410-013-0921-2
[124] Weaver, B. L., 1991. The Origin of Ocean Island Basalt End-Member Compositions: Trace Element and Isotopic Constraints. Earth and Planetary Science Letters, 104(2/3/4): 381-197. https://doi.org/10.1016/0012-821x(91)90217-6
[125] Weinberg, R. F., Hasalová, P., 2015. Water-Fluxed Melting of the Continental Crust: A Review. Lithos, 212/213/214/215: 158-188. https://doi.org/10.1016/j.lithos.2014.08.021
[126] White, R. W., Stevens, G., Johnson, T. E., 2011. Is the Crucible Reproducible? Reconciling Melting Experiments with Thermodynamic Calculations. Elements, 7(4): 241-246. https://doi.org/10.2113/gselements.7.4.241
[127] Wildner, W., Nardi, L. V. S., Lima, E. F., 1999. Post-Collisional Alkaline Magmatism on the Taquarembó Plateau: A Well-Preserved Neoproterozoic-Cambrian Plutono-Volcanic Association in Southern Brazil. International Geology Review, 41(12): 1082-1098. https://doi.org/10.1080/00206819909465193
[128] Williams, H. M., Turner, S. P., Pearce, J. A., et al., 2004. Nature of the Source Regions for Post-Collisional, Potassic Magmatism in Southern and Northern Tibet from Geochemical Variations and Inverse Trace Element Modelling. Journal of Petrology, 45(3): 555-607. https://doi.org/10.1093/petrology/egg094
[129] Yang, W. B., Niu, H. C., Shan, Q., et al., 2012. Late Paleozoic Calc-Alkaline to Shoshonitic Magmatism and Its Geodynamic Implications, Yuximolegai Area, Western Tianshan, Xinjiang. Gondwana Research, 22(1): 325-340. https://doi.org/10.1016/j.gr.2011.10.008
[130] Zhang, Y. Q., Xie, Y. W., Li, X. H., et al., 2001. Isotopic Characteristics of Shoshonitic Rocks in Eastern Qinghai-Tibet Plateau: Petrogenesis and Its Tectonic Implication. Science in China Series D: Earth Sciences, 44(1): 1-6 doi: 10.1007/BF02906879
[131] Zhao, J.-X., Shiraishi, K., Ellis, D. J., et al., 1995. Geochemical and Isotopic Studies of Syenites from the Yamato Mountains, East Antarctica: Implications for the Origin of Syenitic Magmas. Geochimica et Cosmochimica Acta, 59(7): 1363-1382. https://doi.org/10.1016/0016-7037(95)00050-a