[1] Arnaud, N. O., Vidal, P., Tapponnier, P., et al., 1992. The High K2O Volcanism of Northwestern Tibet: Geochemistry and Tectonic Implications. Earth and Planetary Science Letters, 111(2/3/4): 351-367. https://doi.org/10.1016/0012-821x(92)90189-3
[2] Bea, F., Arzamastsev, A., Montero, P., et al., 2001. Anomalous Alkaline Rocks of Soustov, Kola: Evidence of Mantle-Derived Metasomatic Fluids Affecting Crustal Materials. Contributions to Mineralogy and Petrology, 140(5): 554-566. https://doi.org/10.1007/s004100000211
[3] Bi, H., 1999. The Pengshan Source Structure and Its Control over Mineralization. Geology and Exploration, 9: 12-16 (in Chinese with English Abstract)
[4] Cheng, H., 1991. The Late Proterozoic Collision Orgen in Northwestern Zhejiang Province. Geological Review, 3: 203-213 (in Chinese with English Abstract)
[5] Deng, G. H., Luo, F., Song, Z. R., et al., 2003. Mapping of the Low-Grade Terrains in the Northeast of Jiangxi, the South of Anhui, Tectono-Rock Block-Strata Method. Journal of East China Geological Institute, 1: 32-37 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hddzxyxb200301008
[6] Deng, Q., Wang, Z. J., Wang, J., et al., 2016. 800-780 Ma Continental Rift Magmatism in the Eastern Part of the Jiangnan Orogen: Implications from ~790 Ma Aluminous A-Type Granites in Zhejiang-Anhui-Jiangxi Border Area. Geological Bulletin of China, 35(11): 1855-1868 (in Chinese with English Abstract)
[7] Dong, S. W., Zhang, Y. Q., Gao, R., et al., 2015. A Possible Buried Paleoproterozoic Collisional Orogen beneath Central South China: Evidence from Seismic-Reflection Profiling. Precambrian Research, 264: 1-10. https://doi.org/10.1016/j.precamres.2015.04.003
[8] Ge, W. C., Li, X. H., Li, Z. X., et al., 2001. Mafic Intrusions in Longsheng Area: Age and Its Geological Implications. Chin. J. Geol., 36: 112-118 (in Chinese with English Abstract)
[9] King, P. L., Chappell, B. W., Allen, C. M., et al., 2001. Are A-Type Granites the High-Temperature Felsic Granites? Evidence from Fractionated Granites of the Wangrah Suite. Australian Journal of Earth Sciences, 48(4): 501-514. https://doi.org/10.1046/j.1440-0952.2001.00881.x
[10] Li, X. H., 2000. Cretaceous Magmatism and Lithospheric Extension in Southeast China. Journal of Asian Earth Sciences, 18(3): 293-305. https://doi.org/10.1016/s1367-9120(99)00060-7
[11] Li, X. H., Li, W. X., Li, Z. X., et al., 2008. 850-790 Ma Bimodal Volcanic and Intrusive Rocks in Northern Zhejiang, South China: A Major Episode of Continental Rift Magmatism during the Breakup of Rodinia. Lithos, 102(1/2): 341-357. https://doi.org/10.1016/j.lithos.2007.04.007
[12] Li, X. H., Li, Z. X., Li, W. X., 2014. Detrital Zircon U-Pb Age and Hf Isotope Constrains on the Generation and Reworking of Precambrian Continental Crust in the Cathaysia Block, South China: A Synthesis. Gondwana Research, 25(3): 1202-1215. https://doi.org/10.1016/j.gr.2014.01.003
[13] Li, Z. X., Li, X. H., Kinny, P. D., et al., 2003. Geochronology of Neoproterozoic Syn-Rift Magmatism in the Yangtze Craton, South China and Correlations with Other Continents: Evidence for a Mantle Superplume that Broke up Rodinia. Precambrian Research, 122(1/2/3/4): 85-109. https://doi.org/10.1016/s0301-9268(02)00208-5
[14] Lassiter, J. C., DePaolo, D. J., 1997. Plume/Lithosphere Interaction in the Generation of Continental and Oceanic Flood Basalts: Chemical and Isotope Constraints. In: Mahoney. J., ed., Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism. Geophysical Monography 100, American Geophysical Union, Washionton DC. 335-355
[15] Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1/2): 537-571. https://doi.org/10.1093/petrology/egp082
[16] Lou, F. S., Huang, Z. Z., Song, Z. R., et al., 2003. Geotectonic Evolution Modal of the Middle-New Proterozoic Orogenic Belt in the Central Part of South China. Geological Survey and Research, 26(4): 200-206 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qhwjyjjz200304002
[17] Ma, C. X., 1989. A High-Volatile Diapiric Granite Dome in the Pengshan Area and Its Ore-Controlling Role. Geological Review, 35(2): 127-135 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp198902004
[18] Patiño Douce, A. E., 1997. Generation of Metaluminous A-Type Granites by Low-Pressure Melting of Calc-Alkaline Granitoids. Geology, 25(8): 743 https://doi.org/10.1130/0091-7613(1997)025 < 0743:gomatg > 2.3.co; 2 doi: 10.1130/0091-7613(1997)025<0743:gomatg>2.3.co;2
[19] Pearce, J. A., Cann, J. R., 1973. Tectonic Setting of Basic Volcanic Rocks Determined Using Trace Element Analyses. Earth and Planetary Science Letters, 19(2): 290-300. https://doi.org/10.1016/0012-821x(73)90129-5
[20] Pearce, J.A., 1996. Sources and Settings of Granitic Rocks. Episodes, 19(4): 120-125. https://doi.org/10.18814/epiiugs/1996/v19i4/005
[21] Polat, A., Hofmann, A. W., 2003. Alteration and Geochemical Patterns in the 3.7-3.8 Ga Isua Greenstone Belt, West Greenland. Precambrian Research, 126(3/4): 197-218. https://doi.org/10.1016/s0301-9268(03)00095-0
[22] Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust. Treatise on Geochemistry (Second Edition), 4: 1-51 doi: 10.1016-0016-7037(95)00038-2/
[23] Shu, L. S., 2012. An Analysis of Principal Features of Tectonic Evolution in South China Block. Geological Bulletin of China, 31(7): 1035-1053 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201207003
[24] Shu, L. S., Shi, Y. S., Guo, L. Z., et al., 1995. Plate Tectonic Evolution and the Kinematics of Collisional Orogeny in the Middle Jiangnan, Eastern China. Nanjing University Press, Nanjing (in Chinese with English Abstract)
[25] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144 /gsl.sp.1989.042.01.19. doi: 10.1144/gsl.sp.1989.042.01.19
[26] Taylor, S. R., McLennan, S. M., 1995. The Geochemical Evolution of the Continental Crust. Reviews of Geophysics, 33(2): 241. https://doi.org/10.1029/95rg00262
[27] Thompson, A. B., 1996. Fertility of Crustal Rocks during Anatexis. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 87(1/2): 1-10. https://doi.org/10.1017/s0263593300006428
[28] Wang, J. P., Kusky, T. M., Wang, L., et al., 2017. Petrogenesis and Geochemistry of Circa 2.5 Ga Granitoids in the Zanhuang Massif: Implications for Magmatic Source and Neoarchean Metamorphism of the North China Craton. Lithos, 268-271: 149-162. https://doi.org/10.1016/j.lithos.2016.10.028
[29] Wang, J. P., Li, X. W., Ning, W. B., et al., 2019. Geology of a Neoarchean Suture: Evidence from the Zunhua Ophiolitic Mélange of the Eastern Hebei Province, North China Craton. GSA Bulletin. https://doi.org/10.1130/b35138.1
[30] Wang, Q., Wyman, D. A., Li, Z. X., et al., 2010. Petrology, Geochronology and Geochemistry of ca. 780 Ma A-Type Granites in South China: Petrogenesis and Implications for Crustal Growth during the Breakup of the Supercontinent Rodinia. Precambrian Research, 178(1/2/3/4): 185-208. https://doi.org/10.1016/j.precamres.2010.02.004
[31] Wang, S. J., Schertl, H. P., Pang, Y. M., 2019a. Geochemistry, Geochronology and Sr-Nd-Hf Isotopes of Two Types of Early Cretaceous Granite Porphyry Dykes in the Sulu Orogenic Belt, Eastern China. Canadian Journal of Earth Sciences. https://doi.org/10.1139/cjes-2019-0003
[32] Wang, S. J., Li, X. P., Schertl, H. P., et al., 2019b. Petrogenesis of Early Cretaceous Andesite Dykes in the Sulu Orogenic Belt, Eastern China. Mineralogy and Petrology, 113(1): 77-97. https://doi.org/10.1007/s00710-018-0636-1
[33] Wang, W., Zhao, J. H., Zhou, M. F., et al., 2014. Neoproterozoic Mafic- Ultramafic Intrusions from the Fanjingshan Region, South China: Implications for Subduction-Related Magmatism in the Jiangnan Fold Belt. The Journal of Geology, 122(4): 455-473. https://doi.org/10.1086/676596
[34] Wang, W., Zhou, M. F., Yan, D. P., et al., 2013. Detrital Zircon Record of Neoproterozoic Active-Margin Sedimentation in the Eastern Jiangnan Orogen, South China. Precambrian Research, 235: 1-19. https://doi.org/10.1016/j.precamres.2013.05.013
[35] Wang, X. L., Shu, X. J., Xing, G. F., et al., 2012. LA-ICP-MS Zircon U-Pb Ages of the Shijiao-Huangshan Intrusive Rocks in Zhuji Area, Zhejiang Province: Implications for the Petrogenesis of the Ultramafic Orbicular Rocks. Geological Bulletin of China, 31(1): 75-81 (in Chinese with English Abstract)
[36] Wang, X. L., Zhou, J. C., Chen, X., et al., 2017. Formation and Evolution of the Jiangnan Orogen. Bulletin of Mineralogy. Petrology and Geochemistry, 5: 714-735 (in Chinese with English Abstract)
[37] Wang, X. L., Zhou, J. C., Qiu, J. S., et al., 2008. Geochronology and Geochemistry of Neoproterozoic Mafic Rocks from Western Hunan, South China: Implications for Petrogenesis and Post-Orogenic Extension. Geological Magazine, 145(2): 215-233. https://doi.org/10.1017/s0016756807004025
[38] Wang, X. X., Wang, T., Qi, Q. J., et al., 2011. Temporal Spatial Variations, Origin and Their Tectonic Significance of the Late Mesozoic Granites in the Qinling, Central China. Acta Prtrologica Sinica, 27(6): 1573-1593 (in Chinese with English Abstract)
[39] Wang, Y. Y., Song, C. Z., Li, J. H., et al., 2019. Deformational Characteristics and LA-ICP-MS Zircon U-Pb Ages of Granites at Shiershan in the Jiangnan Orogen and Their Geological Significance. Geological Review, 65(1): 85-102 (in Chinese with English Abstract) http://d.old.wanfangdata.com.cn/Periodical/dzlp201901011
[40] Wang, Z. J., Wang, J., Duan, T. Z., et al., 2010. Geochronology of Middle Neoproterozoic Volcanic Deposits in Yangtze Craton Interior of South China and Its Implications to Tectonic Settings. Science China Earth Science, 53: 1307-1315 (in Chinese with English Abstract) doi: 10.1007/s11430-010-4012-1
[41] Wu, F. Y., Li, X. H., Yang, J. H., et al., 2007. Discussions on the Petrogensis Granites. Acta Petrologica Sinica, 23(6): 1217-1238 (in Chinese with English Abstract)
[42] Wu, R. X., Zheng, Y. F, Wu, Y. B., 2005. Zircon U-Pb Age, Element and Oxygen Isotope Geochemisty of Neoproterozoic Granites at Shiershan in South Anhui Province. Geological Journal of China Universities, 11(3): 364-382 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb200503008
[43] Wu, R. X., Zheng, Y. F., Wu, Y. B., et al., 2006. Reworking of Juvenile Crust: Element and Isotope Evidence from Neoproterozoic Granodiorite in South China. Precambrian Research, 146(3/4): 179-212. https://doi.org/10.1016/j.precamres.2006.01.012
[44] Wu, W. G., Xie W. H., 2005. The features of Pengshan Dome Strata Bound the Dominating Magma and Mine of the Pengshan Area, Dean Country, Jiangxi. Beijing Geology, 17(1): 7-11 (in Chinese with English Abstract)
[45] Wu, Y. B., Zheng, Y. F., 2004. Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age. Chinese Science Bulletin, 49(15): 1554-1569. https://doi.org/10.1007/bf03184122
[46] Xia, Y., Xu, X. S., Niu, Y. L., et al., 2018. Neoproterozoic Amalgamation between Yangtze and Cathaysia Blocks: The Magmatism in Various Tectonic Settings and Continent-Arc-Continent Collision. Precambrian Research, 309: 56-87. https://doi.org/10.1016/j.precamres.2017.02.020
[47] Xin, Y. J., Li, J. H., Dong, S. W., et al., 2017. Neoproterozoic Post-Collisional Extension of the Central Jiangnan Orogen: Geochemical, Geochronological, and Lu-Hf Isotopic Constraints from the Ca. 820-800 Ma Magmatic Rocks. Precambrian Research, 294: 91-110. https://doi.org/10.1016/j.precamres.2017.03.018
[48] Yang, F., Song, C. Z., Ren, S. L., et al., 2015. Metamorphism and Deformation of the Lushan Metamorphic Core Complex and Their Tectonic Significance. Geological Review, 61(4): 752-766 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201504005
[49] Yao, J. L., Shu, L. S., Santosh, M., 2014. Neoproterozoic Arc-Trench System and Breakup of the South China Craton: Constraints from N-MORB Type and Arc-Related Mafic Rocks, and Anorogenic Granite in the Jiangnan Orogenic Belt. Precambrian Research, 247: 187-207. https://doi.org/10.1016/j.precamres.2014.04.008
[50] Yin, G. S., Xie, G. G., 1996. Extensional Structure and the Xingzi Metamorphic Core Complex in the Lushan Area, Jiangxi. Regional Geology of China, 1: 7-26 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600880200
[51] Zhang, G. W., Guo, A. L., Wang, Y. J., et al., 2013. Tectonics of South China Continent and Its Implications. Science China Earth Sciences, 56(11): 1804-1828. https://doi.org/10.1007/s11430-013-4679-1
[52] Zheng, Y. F., Wu, R. X., Wu, Y. B., et al., 2008. Rift Melting of Juvenile Arc-Derived Crust: Geochemical Evidence from Neoproterozoic Volcanic and Granitic Rocks in the Jiangnan Orogen, South China. Precambrian Research, 163(3/4): 351-383. https://doi.org/10.1016/j.precamres.2008.01.004
[53] Zhou, J. B., Li, X. H., Ge, W. C., et al., 2007. Age and Origin of Middle Neoproterozoic Mafic Magmatism in Southern Yangtze Block and Relevance to the Break-Up of Rodinia. Gondwana Research, 12(1/2): 184-197. https://doi.org/10.1016/j.gr.2006.10.011
[54] Zhou, J. C., Wang, X. L., Qiu, J. S., 2009. Geochronology of Neoproterozoic Mafic Rocks and Sandstones from Northeastern Guizhou, South China: Coeval Arc Magmatism and Sedimentation. Precambrian Research, 170(1/2): 27-42. https://doi.org/10.1016/j.precamres.2008.11.002
[55] Zhou, J. C., Wang, X. L., Qiu, J. S., et al., 2004. Geochemistry of Meso- and Neoproterozoic Mafic-Ultramafic Rocks from Northern Guangxi, China: Arc or Plume Magmatism. Geochemical Journal, 38(2): 139-152. https://doi.org/10.2343/geochemj.38.139 (in Chinese with English Abstract)